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Research on optimal
configuration of mobile energy
storage in distribution networks
considering various energy
utilization efficiencies

Dong Fu, Bin Li*, Liangzhi Yin, Xuebin Sun and Hong Cui

State Grid Anshan Electric Power Supply Company, Anshan, China

The increasing integration of renewable energy sources such as wind and
solar into the distribution grid introduces new complexities and instabilities to
traditional electrical grids. This study tackles these challenges by optimizing
the configurations of Modular Mobile Battery Energy Storage (MMBES) in
urban distribution grids, particularly focusing on capacity-limited areas. Our
method investigates five core attributes of energy storage configurations and
develops a model capable of adapting to the uncertainties presented by
extreme scenarios. This approach not only enhances the adaptability of energy
storage systems but also equips decision-makers with proactive and flexible
tools for decision-making in complex environments. Empirical evidence from
the study shows that modular mobile energy storage significantly improves
distribution grid performance by effectively managing the challenges posed
by renewable integration. Furthermore, the research confirms that optimizing
decision-makers’ cognitive parameters to align with subjective preferences
ensures economic viability and enhances grid resilience. This study offers a
new perspective and methodology for configuring energy storage, contributing
to more flexible and reliable grid operations amidst widespread renewable
integration.
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1 Introduction

As urbanization continues to progress, the disparity between peak and off-peak
electricity demand in urban core areas has gradually increased. Moreover, electricity
consumption in these areas is approaching saturation, and the availability of land for
further infrastructure expansion is becoming increasingly limited. The power industry,
being a major consumer of energy (Wang et al., 2022a), has drawn extensive attention to
the need for energy conservation and loss reduction. In the five segments of the power
system, namely, generation, transmission, transformation, distribution, and consumption,
distribution networks account for over 60% of the total power losses in the entire grid
(Ying et al., 2017). Therefore, achieving energy conservation and loss reduction at the
distribution level has become even more critical (Chen et al., 2022).
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1.1 Challenges in traditional technical
measures

Traditional technical measures for loss reduction in distribution
networks primarily involve the replacement of high-energy-
consuming distribution transformers, shortening supply radii,
balancing three-phase loads, and implementing reactive power
compensation. However, these methods are often associated
with high investments, construction challenges, and long
implementation periods (Zang, 2020).

1.2 Potential of flexible regulation
resources

With the widespread adoption of flexible regulation resources
in distribution networks, including energy storage systems (Jiang,
2021), there is a growing emphasis on uncovering the loss reduction
potential of existing flexible regulation resources. Modular Mobile
Battery Energy Storage (MMBES), representing a novel energy
storage technology, possesses the flexibility of both time and
space. It can be rapidly deployed at specified locations in response
to demand, providing services such as emergency response
(Zhang et al., 2020), uninterrupted operations (Li et al., 2022a),
and peak load management (Li et al., 2022b; Sun et al., 2023) to
distribution networks.

1.3 Current energy storage deployment
scenarios

Currently, energy storage deployment in the power system can
be broadly categorized into three scenarios:

1) Energy storage deployment on the generation side: In this
scenario, energy storage is integrated on the generation side.
Literature (Ma et al., 2016) has established a comprehensive
economic benefit model for Battery Energy Storage Systems
(BESS) participating in wind power ancillary services. It
assesses the profitability of the BESS by calculating investment
return rates, payback periods, and other economic indicators.
Literature (Lü et al., 2015) focuses on the relationship between
photovoltaic system and energy storage costs, electricity price
models, load characteristics, and the economic feasibility
of energy storage systems, aiming to find the optimal
economic solution.

2) Energy storage deployment on the user side: This scenario
involves the installation of energy storage systems at the
user’s premises. Literature (Nayak and Nayak, 2017) considers
only the peak shaving benefits of users after installing energy
storage, while literature (Narimani et al., 2017) concentrates on
the economic viability of demand-side management. Neither
of these studies simultaneously considers both aspects of
energy storage benefits in their optimization research.

3) Energy storage deployment on the grid side: In this scenario,
energy storage is deployed on the grid side. Literature
(Chaspierre et al., 2022) and others have developed dynamic
equivalent models that respond to reactive power as much

as possible. These models are applied to Battery Energy
Storage Systems (BESS) in the main substations of distribution
networks. They compensate for the inevitable inaccuracies
in fluctuating energy sources, ensuring higher precision
operation. Literature (Alasali et al., 2022) and others have
designed and developed optimal integration of photovoltaic
and Energy Storage Systems (ESS) in Active Distribution
Networks (ADN). They use optimization methods like
the Golden Ratio Optimization Method (GROM) and
Particle Swarm Optimization (PSO) algorithms to find the
best configurations, achieving 100% photovoltaic energy
consumption. Literature (Mokryani, 2022), in considering
the planning, design, and operation of the best stations in
the distribution network, highlights the contributions of
BESS in providing flexibility, enhancing energy security, and
supporting Variable Generation (VG) integration.

1.4 Limitations of fixed energy storage
systems

In current energy storage systems, a conventional strategy
involves deploying these systems at fixed locations, typically at
strategically selected sites such as power generation stations,
industrial facilities, or substations near residential areas. This
deployment strategy is primarily designed based on the geographical
location of facilities and the stability of grid demands, enabling
efficient energy transmission from storage sites to demand locations.
Fixed energy storage systems are advantageous in providing
continuous and stable energy output, particularly suitable for grid
environments with high predictability and relatively fixed demands.

However, this fixed deployment approach exhibits several
significant limitations. First, the flexibility of fixed systems is limited;
they cannot rapidly adjust to real-time changes in grid demands. In
situations where there are sudden changes in load or emergencies
(such as disruptions caused by natural disasters), fixed systems
are unable to quickly reposition or adjust their locations to more
effectively support specific areas of the grid. Additionally, the
installation and maintenance costs of fixed energy storage systems
are high, especially in geographically remote or inaccessible areas.
This not only increases the economic burden of initial investments
but also may affect the long-term sustainability and efficiency of
the system. Lastly, fixed systems often require close integration with
existing grid infrastructure, which limits their application potential
in emerging or slowly upgrading grids where infrastructure may not
support efficient energy distribution and management.

1.5 Advantages of mobile energy storage
systems

To further enhance the flexibility of energy storage applications,
both domestic and international research has initiated preliminary
studies on mobile energy storage. Literature (Lei et al., 2016),
for instance, introduced a two-stage scheduling framework for
mobile energy storage based on pre-positioning and real-time
allocation. This framework enhances resilience by improving the
response to unexpected events. Literature (Lei et al., 2019) proposed
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a mixed-integer programming model to address challenges related
to mobile energy storage scheduling and the disparate time scales
of distribution system operation, as well as the coupling of road
networks and power grids. By optimizing the dynamic scheduling
of mobile power sources, this approach enhances the resilience
of the distribution network. To encapsulate, the significance of
portable energy storage systems stems from their capacity to
manage unforeseen circumstances, including traffic congestion
and catastrophic events, alongside securing diverse advantages via
adaptable deployments. Hence, the unpredictability of such events
and the inclination towards decision-making that accounts for
multiple benefits are key elements that affect the setup of energy
storage solutions.

1.6 The main breakthroughs of this
research

This study introduces a refined approach for arranging Modular
Mobile Battery Energy Storage (MMBES) within distribution
networks, taking into account both overall utility and individual
perception.The primary breakthroughs of this research encompass:

1) From the viewpoint of the electric utility company, the research
suggests a method for the integrated use of modular energy
storage across three situations: standard operation of the
distributionnetwork, addressing equipmentmalfunctions, and
managing emergency conditions. In detail, MMBES is utilized
for peak shaving in normal operations, providing energy to
adaptable loads upon unexpected equipment failures, and
allocating power to essential loads in crisis circumstances.This
strategy not only improves the comprehensive utility of the
energy storage system but also augments the adaptability of the
distribution network.

2) To address the varied advantages derived from these three
scenarios, alongside the unpredictability linked to extreme
events and the individual biases of decision-makers towards
these benefits, the paper incorporates prospect theory.
This introduces an optimization framework for configuring
MMBES, aimed at maximizing the expected value of the
wide-ranging benefits (Meng, 2019; Mei et al., 2020).

3) The paper also presents calculation models and solution
methods for assessing the prospect values related to reducing
distribution losses, improving reliability, delaying upgrade
and renovation, reducing outage losses in extreme scenarios,
and configuring costs. Notably, the prospect of delaying grid
upgrade and renovation is computed from a probabilistic
perspective using credible capacity, providing a more
accurate measure of the capacity substitution value of
energy storage (Qi et al., 2023).

In summary, this research introduces an optimized
configuration method for MMBES in distribution networks
operated by electric utility companies. It considers comprehensive
utility and subjective cognition, addressing various scenarios and
benefits. Additionally, it incorporates prospect theory to account for
decision-makers’ subjective preferences and handles the uncertainty
associated with extreme events. Innovative calculation methods for
prospect values related to network reliability and upgrade delay

are also presented, enhancing our understanding of energy storage
deployment in distribution systems.

2 Analysis of configuration strategies
and issues for MMBES

The Growing Dependence on Electricity in Modern Society
and the Escalating Frequency of Extreme Weather Events. In
contemporary society, there is an ever-increasing reliance on
electricity, coinciding with a yearly rise in the occurrence of
extreme weather events. Presently, the electricity system relies
on a combination of redundant network structures, user-owned
backup power sources, and emergency repair measures to address
extreme disasters. Despite the adaptability of the network and
the dependability of user-managed backup energy sources, there
is no assurance of a continuous power supply to essential users.
Nevertheless, the adaptability of the network and the dependability
of consumer-owned backup power solutions cannot ensure a
constant power supply to essential users. While deploying a
larger number of backup power sources can ensure reliability, it
often comes at the expense of cost-effectiveness. To address the
challenge of enhancing the resilience of distribution networks,
recent scholars from both domestic and international contexts have
proposed utilizing distributed resources for on-site dispatch during
interruptions in power supply from the larger electrical grid to
provide emergency power (Li et al., 2023; Liu et al., 2023). However,
due to the scale and distribution characteristics of distributed
resources, they are currently unable to serve as a significant resource
for ensuring resilience.

MMBES is composed of several independently powered energy
storage modules, each consisting of battery units arranged in
series and parallel and integrated into containers. These modules
provide multiple electrical interfaces and possess the capability
for seamless integration with the electrical grid. During normal
system operation and in the event of random equipment failures,
the energy storage modules are configured in parallel combinations
at substations, yielding benefits such as reduced network losses,
improved distribution network reliability, and delayed grid upgrade
requirements. In scenarios where the power system faces localized
disruptions caused by events like typhoons, earthquakes, or
intentional sabotage, leading to extended periods of inactivity,
MMBES units can be disassembled and relocated to offer temporary
power assistance to key regions or users. This enhances distribution
network resilience without the need for additional investments.

When configuring MMBES, investors typically exhibit
subjective preferences in assessing its various benefits and
configuration costs. These preferences include considerations such
as the expectation of reducing network losses and generating
profit under normal conditions A1 and ensuring the security of
critical loads in extreme scenarios A2, rather than solely pursuing
maximum total revenue. Therefore, taking into account the
subjective preferences of investors aligns more closely with the
original intent of MMBES planning. Prospect theory is a framework
for understanding decision-making that takes into account the
cognitive biases of decision-makers. It suggests that individuals
demonstrate unequal reactions to comparable positive and negative
outcomes, with the perception of an outcome as a gain or a loss being
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FIGURE 1
The basic approach to MMBES configuration.

determined in relation to the psychological baseline of the decision-
maker. In this paper, based on prospect theory, we elaborate on the
utility achievable through MMBES configuration, representing it
as a set of multiple attributes. These attribute values are framed
within a prospect, replacing the scalar gains typically used in
traditional optimization, resulting in configuration outcomes that
better align with the decision-maker’s expectations. Additionally,
this approach effectively addresses the impact of extreme events
with high uncertainty on planning results. Based on the analysis
presented above, the fundamental approach for configuringMMBES
in this study is illustrated in Figure 1.

3 An MMBES optimization
configuration model incorporating
subjective cognition

To comprehensively evaluate the effectiveness of the Modular
Mobile Battery Energy Storage (MMBES) configuration, the
following evaluation parameters were utilized:

1. Network Loss Reduction (Edec)

Definition: Represents the reduction in electrical energy losses
within the distribution network achieved by configuring the
MMBES. Calculation: The expected reduction in network losses
is calculated based on the MMBES’s charging and discharging
capacities and the state-of-charge (SOC) distribution (see
Equations 10–12).

2. Reliability Improvement (Erel)

Definition: Evaluates the improvement in system reliability
before and after configuring the MMBES. Calculation: The initial
reliability level is calculated, followed by the establishment of a
reliability model after MMBES configuration and the calculation of
the expected improvement in reliability (see Equations 16–21).

3. Deferral Value (Edel)

Definition: Measures the time period that MMBES can delay
upgrades and renovations of the distribution network. Calculation:
Based on the reliabilitymodel, the dependable capacity ofMMBES is
calculated, which in turn is used to determine the value of deferring
upgrades (see Equations 22–25).

Diverging from the classic anticipated utility model, the
framework of prospect theory indicates that decision-makers
do not exhibit total rational behavior. The assessment of
gains and losses, together with the probabilities linked to the
outcomes of decisions, is shaped by the benchmarks established
by the decision-makers themselves. The prospect value, V, is
defined through the combination of the value function, v (x),
and the probability weighting function, π (p), illustrating how
subjective perspectives influence decision valuation (Sha, 2023)
(see Equation 1):

V = π+ (p)v+ (x) + π− (p)v− (x) (1)

In this context, V denotes the prospect value attributed to the
outcome of a decision. The functions π+ (p) and π− (p) refer
to the weighting functions, while v+ (x) and v− (x) refer to the
value functions that the decision-maker associates with gains
and losses, respectively. Here, p symbolizes the likelihood of the
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decision outcome being viewed as a gain or a loss under uncertain
conditions; x signifies the quantifiable value of the decision
outcome.

The electric utility company’s involvement in the electricity
market through the deployment of energy storage on the grid
side is considered in this study. Five attributes related to energy
storage are identified: distribution and transmission losses, power
supply reliability, grid expansion investments, blackout losses
in extreme scenarios, and the cost of configuring MMBES.
This document utilizes prospect theory to address planners’
personal inclinations and the unpredictability linked to critical
situations. The objective is to maximize the integrated prospect
value over the operating cycle of MMBES, as formulated in
Equations 2–5 below. In these equations, the dimensional units of
each attribute are converted to “currency” to eliminate the influence
of different units on the integrated prospect value. The attributes
are also discounted to a common present value based on the
initial construction period, using the net present value method
(Zhang et al., 2023).

maxV = ω1Vdec +ω2Vrel +ω3Vdel +ω4Vext +ω5Vc (2)

s.t. ∑
a∈NDG

pDGa.t + pMMBES.t + pinput.t = ∑
b∈Nload

ploadb.t + ploss.t (3)

Umin
c ≤ Uc ≤ Umax

c (4)

Plde ≤ P
max
lde (5)

Where: V represents the integrated prospect value of the electric
utility company’s MMBES configuration; Vdec represents the
prospect value associated with minimizing network losses; Vrel
signifies the potential value associated with improving the reliability
of the distribution grid; Vdel represents the prospect value of
delaying grid upgrade and renovation; Vext embodies the potential
value derived from minimizing power outage losses under severe
conditions; Vc represents the prospect value of the full lifecycle cost
of MMBES considering recovery and disposal. ω1, ω2, ω3, ω4, and
ω5 represent the importance weights assigned to the aforementioned
prospects, typically determined by the decision-maker, satisfying 0 ≤
ω1,ω2,ω3,ω4,ω5 ≤ 1, and ω1 +ω2 +ω3 +ω4 +ω5 = 1. The decision
variables include the rated capacity (Sn), rated power (Pn), and the
minimum state of charge limit (Soc.min). These factors are crucial
in defining the configuration parameters and operational strategy
of the MMBES.

In the constraint conditions, Equation 3 represents the system’s
active power balance constraint: pDGa.t, pMMBES.t, and pinput.t
represent the output of distributed generator a, the output of
MMBES (positive for discharging), and the input power to the
distribution network at time t respectively. ploadb.t and ploss.t represent
the power at load node b and the network losses in the system at
time t, respectively. NDG and Nload are the numbers of distributed
generators and load nodes in the distribution network, respectively.
Equation 4 represents the node voltage constraint, where Uc is the
voltage magnitude at node c, Umax

c and Umin
c are the upper and

lower voltage limits at that node. Equation 5 represents the line
transmission capacity constraint, where Plde and Pmax

lde are the active
power flow from node d to node e and the maximum transmission
capacity of line d− e, respectively.

FIGURE 2
The evaluation curve.

FIGURE 3
The weighting function.

The subjective cognition of decision-makers follows certain
patterns. When attributes are considered gains relative to the
reference point, decision-makers exhibit risk aversion, and their
value function is convex. Conversely, when attributes are perceived
as losses relative to the reference point, decision-makers tend to be
risk-seeking, and their value function is concave. Furthermore, equal
magnitudes of losses and gains result in more significant distress
than pleasure for decision-makers, as depicted in Figure 2. Decision
weights represent the subjective weighting of uncertain event
outcomes with probabilities denoted as “p.” For small probabilities,
decision-makers often attribute weights that are higher than the
actual probability, whereas for large probabilities, the tendency is
to assign weights that are lower than the actual probability, as
depicted in Figure 3.
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1) The exact formulation for the evaluation curve is
specified as follows:

① When the attribute indicates a “gain”

v+ (x) = (x− x0)
α,x ≥ x0 (6)

② When the attribute represents ‘loss’

v− (x) = −λ(x0 − x)
β,x < x0 (7)

In this context, x0 is the baseline or reference point for the
attribute, encapsulating the subjective perspective of planners. The
parameters α and β, both ranging from 0 to 1, represent the
coefficients for risk-seeking and risk-averse behaviors, respectively.
Additionally, the parameter λ, which is greater than 1, denotes the
coefficient for loss aversion.

2) The comprehensive equation for the weighting function is
detailed in the following manner:

① Whenever the characteristic represents a “gain”

π+ (p) = pγ/[pγ + (1− p)γ]
1
γ (8)

② Whenever the characteristic indicates a “loss”

π− (p) = pδ/[pδ + (1− p)δ]
1
δ (9)

Here: Parameters γ and δ represent the coefficients for risk
attitudes when decision-makers encounter “gains” and “losses,”
respectively.

The uncertainty within the scenario presents itself through
two distinct dimensions. Firstly, there is uncertainty in the
development of distributed power sources and loads. Secondly, there
is uncertainty in the occurrence probability of extreme scenarios
and outage durations. This paper primarily focuses on the latter
aspect. Apart from the losses stemming from outages in extreme
scenarios, all other characteristics, when compared to a reference
point, are depicted as probabilities of “gain” or “loss” being either 1
or 0. Consequently, the weighting function π (p) remains constant
as well, set at either 1 or 0. The value function and weight
function for reducing outage losses in extreme scenarios should
be complemented based on the probability density functions they
follow, in addition to the foundation provided by Equations 6–9.

The models for various prospective values are as follows.

3.1 Prospective model for distribution
network loss reduction based on power
difference control strategy

Thepresence ofMMBES (ModifiedMulti-Bus Electrical System)
within the substation affects the losses of the upstream power grid
and the transformers within the substation. When the operating
strategy is fixed and errors are not considered, the reduction
in distribution network losses is uniquely correlated with the
decision variables. Therefore, the value of distribution network loss
reduction, denoted as v(Edec), is equivalent to the prospective value

of distribution network loss reduction, Vdec. The specific expression
is as follows:

Vdec = π+ (pdec)v
+ (Edec) + π− (pdec)v

− (Edec)

=
{
{
{

v+ (Edec) = (Edec −Edec.0)
α,Edec ≥ Edec.0

v− (Edec) = −λ(Edec.0 −Edec)
β,Edec < Edec.0

(10)

In the equation: Edec represents the reduction in distribution
network losses before and after configuring MMBES; Edec.0
represents the anticipated reduction in losses as expected by
the planners.

Edec (Sn,Pn,Soc.min) =
Ny

∑
k=1

∑S
j=1
∑24/ΔT

t=1
Δploss,tj ⋅ΔT ⋅ nj ⋅ fcost

(1+ i0)
k

(11)

Ny =min(Nlife,Nwar) (12)

In the equation provided: Ny represents the operational lifespan
of MMBES; S denotes the number of categories into which the
daily load profile is divided over the course of a year;nj denotes
the quantity of days within a year that are classified under the jth
type of standard daily load profiles; Δploss.tj signifies the difference in
distribution network losses before and after configuringMMBES for
the jth typical daily load category; ΔT represents the time interval per
unit, with this paper using a value of 1 h; fcost denotes the unit cost of
purchasing electricity from the grid; i0 represents the baseline rate of
return;Nlife represents the operational lifespan of the battery system,
taking into account the impact of discharge depth and the number
of cycles. This lifespan can be determined through the rainflow
counting method (Wang et al., 2022b); Nwar stands for the warranty
period provided by the MMBES manufacturer.

The effectiveness of distribution network loss reduction is
closely related to the operational strategy of MMBES (Modified
Multi-Bus Electrical System). Appropriate management of energy
storage systems can equalize the flow of electricity in the
primary distribution lines and substation transformers across
peak and low-demand periods, thereby diminishing losses in
the network. In this paper, a peak shaving and valley filling
power difference control strategy is employed during normal grid
operation, and its performance is illustrated in Figure 4. MMBES
undergoes a complete charge-discharge cycle daily, while adhering
to Equations 13–15 as the foundation. The start and stop times
tg (g ≥ 4) for charging and discharging, as well as the power levels (P1
and P2), are determined based on the configured capacity and state
of charge (SOC) constraints. The difference between P1, P2, and the
actual load represents the charging and discharging power within
each time interval.

MMBES Operation Satisfying Equations 13–15:

Soc.t =
{{{{
{{{{
{

Soc,t−1 +
ηpMMBES.tΔT

Sn
,pMMBES.t ≥ 0

Soc,t−1 −
(1/η)pMMBES.tΔT

Sn
,pMMBES.t < 0

(13)

Soc.min ≤ Soc.t ≤ Soc.max (14)

|pMMBES.t| ≤ Pn (15)
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FIGURE 4
Schematic diagram of MMBES operational performance.

In the equation: Soc.t represents the state of charge (SOC) of
MMBES at time t; η denotes the charging and discharging
efficiency of MMBES.

3.2 Prospective model for enhancing
distribution network reliability in the
presence of random equipment failures

In the event of a malfunction on the high-voltage side of the
substation or within the substation transformer itself, MMBES can
supply energy to the loads within the same island throughout
the fault rectification period. This capability significantly boosts
the dependability of the distribution system. The dependability
traits of the distribution grid are constant, and the advantage of
enhancing supply dependability, denoted by v(Erel), corresponds to
the anticipated benefit of bolstering the distribution grid’s reliability,
Vrel. The specific formulation is presented below:

Vrel = π+ (prel)v
+ (Erel) + π− (prel)v

− (Erel)

=
{
{
{

v+ (Erel) = (Erel −Erel.0)
α,Erel ≥ Erel.0

v− (Erel) = −λ(Erel.0 −Erel)
β,Erel < Erel.0

(16)

In the equation: Erel represents the economic benefits resulting from
the enhancement of distribution network reliability; Erel.0 represents
the anticipated economic benefits as expected by the planners.

This research utilizes the metric known as Expected Energy Not
Supplied (EENS) to assess the dependability of the distribution grid.

Erel (Sn,Pn,Soc.min) =
Ny

∑
k=1

ΔEENS ⋅ ( fsell + fcomp ⋅RIEA)

(1+ i0)
k

(17)

In the equation: ΔEENS represents the difference in Expected Energy
Not Supplied (EENS) before and after configuring MMBES; fsell
denotes the average unit selling price of electricity from the grid;
fcomp represents the production-to-electricity ratio per unit of
energy not supplied; RIEA stands for the User Evaluation Coefficient.

Reliability assessment methods can primarily be classified into
two major categories: analytical methods and simulation methods.
Battery energy storage exhibits temporal characteristics, but Monte
Carlo sampling simulations are time-consuming for optimization
problems. Therefore, in this paper, we employ the analytical
approach known as Fault Consequence Analysis to perform the
calculations. The residual energy capacity of MMBES is contingent
upon real-world operating conditions and has a direct impact on
the outcomes of system failures. Therefore, conducting a statistical
analysis of the State of Charge (SOC) in line with the operational
strategy is crucial. This analysis enables the determination of the
probabilities linked to various SOC levels, which, in turn, facilitates
the calculation of the distribution network’s reliability at each
SOC level. The comprehensive reliability assessment is achieved by
compiling these findings using suitable weighting methods.

The specific formula for calculating EENS is as follows:

EENS =
J

∑
h=1
{
ah
A

B

∑
b=1
[EENSb −min(EENSb,Soc.h)prec.b]} (18)

EENSb =
Nb

∑
m=1
(λmμm)Pb (19)

Soc.h = Sn
ah
∑
n=1

bhn
ah

(20)

prec.b =
Is
∑
m=1
(λmμm)/

Nb

∑
m=1
(λmμm) (21)

In the equation, J denotes the total number of scenarios
corresponding to different SOC levels; A signifies the aggregate
count of SOC samples; ah represents the quantity of samples for
the hth SOC scenario; and B indicates the complete number of
loads within the distribution network; EENSb is the annual expected
energy not supplied for the bth load;Soc.h represents the anticipated
residual energy of the MMBES for the hth State of Charge (SOC)
scenario; prec.b is the expected ability of MMBES to supply power
to the bth load during a fault; Nb represents the elements that can
cause a power outage for the bth load due to a fault; λm and μm are
respectively the failure rate and repair time for the mth element;
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Pb is the required power to ensure normal power supply for load b
during an outage; bhn represents the nth sample value for the hth
SOC scenario; IS represents the elements for whichMMBES and the
load are in the same island after a fault.

3.3 Prospective model for delaying power
grid upgrades based on credible capacity

The traditional assessment method for delaying power grid
upgrades is based on measuring the number of years the expansion
can be postponed by evaluating the maximum load reduction
before and after energy storage configuration. Despite the potential
benefits, the intrinsic likelihood of failures within energy storage
systems means they cannot ensure uninterrupted adherence to
the N− 1 criterion for grid reliability. This limitation leads to an
overestimation of the systems’ advantages. The phrase “credible
capacity” for energy storage refers to the volume of supply
capacity that can be dependably replaced with a given degree of
dependability. It offers a finer assessment of MMBES’s addition
to the grid and its replacement worth. The specific expression
for the prospective value Vdel of delaying power grid upgrades
is given by (Zhao et al., 2023):

Vdel = π+ (pdel)v
+ (Edel) + π− (pdel)v

− (Edel)

=
{
{
{

v+ (Edel) = (Edel −Edel.0)
α,Edel ≥ Edel.0

v− (Edel) = −λ(Edel.0 −Edel)
β,Edel < Edel.0

(22)

Edel (Sn,Pn,Soc.min) =
ΔTy

∑
k=1

cinv ⋅ (1− e
−i0⋅ΔTy)/ΔTy

(1+ i0)
k

(23)

ΔTy = lg(1+
Prel
Pmax
)/ lg (1+ τ) (24)

In the equation: Edel represents the benefits of postponing
distribution network expansion; Edel.0 represents the anticipated
benefits as expected by the planners; cinv is the required investment
for substation and line expansion; ΔTy is the number of years
by which MMBES delays power grid upgrades;τ represents the
annual rate of load growth; Pmax signifies the peak load of the
system prior to the integration of MMBES; Prel denotes the credible
capacity of MMBES.

In this research, following the concept of matching reliability,
the credible capacity of MMBES is evaluated using the Effective
Load Carrying Capability (ELCC) indicator. The exact correlation
is outlined below:

R(L0) = R′ (L0 +ΔL) (25)

Within the formula, R and R′ represent the dependability of the
distribution grid prior to and subsequent to the deployment of
MMBES, respectively. These reliability levels are assessed using the
reference Equations 18–21, specifically for the evaluation metric
EENS; L0 and ΔL represent the original total load at various load
points within the distribution network and the additional load,
respectively. When Equation 25 holds true, the corresponding ΔL
represents the credible capacity Prel of MMBES. The step-by-step
calculation process is depicted in Figure 5 for reference.

FIGURE 5
The calculation process for MMBES credible capacity.

3.4 Prospective model for reducing power
outage losses in extreme scenarios

In situations where the electrical power system encounters
severe weather phenomena or widespread power interruptions due
to military operations, the continuous provision of power to vital
loads is essential. MMBES can be divided into various autonomous
supply entities depending on the specific nature of the fault, with
a focus on guaranteeing power delivery to essential loads should
backup power sources fail. If there is surplus capacity, it can then
be used to safeguard some of the secondary loads that lack backup
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support. The prioritization for protection ought to be thoroughly
evaluated across three critical dimensions: the safety of human life,
the security of the nation, and the potential for economic losses.

Diminishing losses from power outages in critical situations
correlates with the likelihood and length of these scenario events.
Since both of these factors are uncertain, this attribute follows a
certain probability distribution rather than a deterministic value.
Its value function should be improved based on Equations 6, 7,
as shown specifically in Equation 26. In the weight functions,
Equations 8, 9, the probability, denoted as p, for attributes being
either gains or losses is no longer 1 or 0. Instead, it is calculated based
on the probability density functions as indicated in Equations 27, 28,
respectively:

v (x) =
{{{
{{{
{

∫
+∞

x0
(x− x0)

α f (x)dx,x ≥ x0

∫
x0

−∞
− λ(x0 − x)

β f (x)dx,x < x0
(26)

p = F (+∞)− F(x0) (27)

p = F(x0) − F (−∞) (28)

Within the formulas: f (x) denotes the probability density function
associated with the attribute, while F (x) symbolizes the attribute’s
cumulative distribution function.

Integrating Equations 8, 9 together with Equations 26 through
28, the prospective model for reducing power outage losses in
extreme scenarios, denoted as Vext, can be formulated as follows:

Vext = π+ (pext)v
+ (Eext) + π− (pext)v

− (Eext)

=
(G+)γ

{(G+)γ + [1− Fext (+∞)+ Fext (Eext.o)]
γ}1/γ

⋅[∫
+∞

Eext.0
(Eext −Eext.0)

α fext (Eext)dEext]

+
(G−)

δ

{(G−)δ + [1− Fext (Eext.0) + Fext (−∞)]
δ}1/δ

⋅[∫
Eext.0

−∞
− λ(Eext.0 −Eext)

β fext (Eext)dEext]

(29)

In the equation:G+ = Fext (+∞)− Fext (Eext.0);G− = Fext (Eext.0) −
Fext (+∞); Eext represents the benefits of reducing power outage
losses in extreme scenarios; Eext.0 represents the anticipated benefits
as expected by the planners; pext represents the probability that Eext
is expressed as either gains or losses relative to Eext.0.

Eext (Sn,Pn,Soc.min) ∼ fext (Eext) =
Ny

∑
k=1

∑
Nimp
b=1 (H− ftra.b) ⋅ ζext ⋅ fζext (ζext)

(1+ i0)
k

(30)

Wsup.b =min[Wrem.b,max[(tfai ⋅ ftfai (tfai) − ttra.b) ,0] ⋅ Pb] (31)

In the equation:H =Wsup.b ⋅ ( fsell + fcomp ⋅RIEA); Nimp represents the
number of critical loads to be protected; Wsup.b represents the
amount of electricity supplied by the energy storage unit to load
b during a power outage; ftra.b represents the cost of transporting
the energy storage unit to load b; ζext is the probability of extreme

scenarios occurring; Wrem.b represents the remaining energy of the
energy storage unit supplying load b; tfai is the outage duration, not
exceeding 7 days (Zhao et al., 2023); ttra.b represents the duration
needed for the energy storage unit to establish a connection with
load b.

3.5 Model for assessing entire lifecycle
costs including recycling and treatment
processes

The full lifecycle cost of configuring MMBES falls under
expenditures. When the cost exceeds a reference value, decision-
makers perceive it as a loss, and when it is less than the reference
value, they perceive it as a gain. The specific expression for the
prospective value Vc is as follows:

Vc = π+ (pc)v
+ (Ccyc) + π− (pc)v

− (Ccyc)

=
{
{
{

v+ (Ccyc) = (Ccyc.0 −Ccyc)
α,Ccyc ≤ Ccyc.0

v− (Ccyc) = −λ(Ccyc −Ccyc.0)
β,Ccyc > Ccyc.0

(32)

In the equation:Ccyc represents the full lifecycle cost of configuring
MMBES; Ccyc.0 represents the anticipated cost as expected by
the planners.

The full lifecycle cost consists of three parts: the initial
investment and construction cost Ccon, the operational and
maintenance cost Cope, and the post-disposal recycling and
treatment cost Crec.

Ccyc (Sn,Pn) = Ccon +Cope +Crec (33)

The upfront investment and construction expenses encompass
the energy costs for a specified battery capacity and the costs related
to energy conversion, monitoring, and management.

Ccon = csSn + cpPn (34)

In the equation: cs represents the unit capacity investment cost of
MMBES; cp represents the unit power investment cost.

Operational and maintenance costs include fixed charges based
on rated power and variable costs related to energy losses,
stemming from the energy storage system’s processes of charging
and releasing energy.

Cope =
Ny

∑
k=1

copePn + [(1− η)Wch + (1/η− 1)Wdch] ⋅ fcost
(1+ i0)

k
(35)

In the equation: cope represents the unit power annual operational
and maintenance cost; Wch and Wdch denote the yearly energy
quantities for charging and discharging in MMBES.

The post-disposal recycling and treatment cost is the difference
between the production cost for decomposing and handling the
discarded batteries and the revenue obtained from recovering
extracted metal materials.

Crec = −
crSn

103 ⋅ ρe(1+ i0)
Ny
=
[chan −∑

v
u=1
(cuvρuv)]Sn

103 ⋅ ρe(1+ i0)
Ny

(36)

In the equation: cr represents the unit weight battery recycling
price; ρe represents the particular energy capacity characteristic of
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the battery; chan represents the cost associated with processing a
unit weight of discarded batteries; v indicates the variety of metals
contained within the battery; cuv is the recycling value of metal
u; and ρuv quantifies the proportion of metal u per unit weight
present in MMBES.

4 Model solving

Due to the absence of uniform specifications for energy storage
batteries, this study approaches decision variables as continuous
entities. It utilizes a differential evolution algorithm to address
the nonlinear optimization model presented. The methodology is
depicted in Figure 6, with the detailed procedures outlined below:

1) Enter the fundamental parameters and initiate the decision
variables Sn, Pn, and Soc.min.

2) Establish reference points for each attribute: Edec.0, Erel.0,
Edel.0, Eext.0, and Ccyc.0, along with their respective importance
weights ω1, ω2, ω3, ω4, and ω5.

3) Initialize the iteration counter, n, to 1.
4) Initialize the population count,m, to 1.
5) Execute the approach depicted in Figure 4 by determining the

charging and discharging capacity of MMBES for different
standard daily load patterns and constructing the likelihood
distribution of the State-of-Charge (SOC) for the energy
storage system over multiple periods.

6) Compute the prospective network loss reduction according to
Equations 10–12.

7) Assess the system’s reliability before configuringMMBES using
Equations 16–21, then establish amodel for network reliability
after MMBES configuration and calculate the prospective
improvement in network reliability.

8) Based on the reliability model from step 7, calculate the
dependable capacity of MMBES using Equation 25, and
subsequently, compute the prospective value of deferring grid
upgrade and retrofitting based on Equations 22–24.

9) Compute the anticipated residual energy of MMBES using
the outcomes from step 5, and assess the prospective value
of diminishing outage losses in severe conditions through
Equations 29–31.

10) Compute the cost prospect value based on Equations 32–36.
11) Calculate and output the comprehensive prospect value based

on Equations 2–5, considering the results obtained in steps 6,
7, 8, 9, and 10.

12) If m ≤MNP, proceed to step 5; otherwise, perform mutation,
crossover, and selection operations across the populace.

13) If n ≤ Nite, return to step 4; otherwise, present the best
configuration outcomes for MMBES.

Here is the pseudocode for the algorithm: Optimize MMBES
Configuration Using Differential Evolution.

Input: Fundamental parameters, population size MNP,
maximum iterations. Nite

Initialize: Decision variables Sn, Pn, Soc.min. Reference points
Edec.0, Erel.0, Edel.0, Eext.0, Ccyc.0 Importance weights ω1, ω2, ω3, ω4, ω5
Set iteration counter n = 1 Set population countm = 1.

Procedure: 1.While n ≤ Nite do: 2.Whilem ≤MNP do: 3. Execute
SOC and load pattern analysis - Determine charging/discharging

FIGURE 6
Solving process flowchart.

capacities for standard daily load patterns - Construct SOC
distribution over multiple periods 4. Compute network loss
reduction using Equations 10–12 5. Assess initial system reliability
using Equations 16–21 6. Model network reliability post-MMBES
configuration—Calculate improvement using derived reliability
model 7. Determine dependable capacity of MMBES using
Equation 25 8. Compute value of deferring grid upgrades using
Equations 22–24 9. Estimate residual energy of MMBES and value
of reduced outage losses using Equations 29–31 10. Calculate
cost prospect using Equations 32–36 11. Compute comprehensive
prospect value considering all results from steps 4 to 10 12. If m ≤
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FIGURE 7
Regional distribution network system structure.

MNP then: Perform mutation, crossover, and selection operations -
Increment population count m by 1 Else: Reset population count
m to 1—Increment iteration counter n by 1 13. Output the best
MMBES configuration results.

End Procedure.

5 Scenario analysis

5.1 Scenario specifications

The paper examines a Class A distribution network in City A,
which receives its power from a 220 kV substation connected in a
T-shaped configuration to a 66 kV transformer station. The 10 kV
output from the 66 kV transformer station is set up in a looped
arrangement, as illustrated in Figure 7.

The distribution ratio between substations 1 and 2 stands at
0.55. The schematic displays three outgoing lines, with the main
trunk lines designed similarly to the depicted structure. All circuit
breakers, with the exceptions of QF5, QF6, and QF12, remain in
a normally closed position. MMBES is deployed within substation
1, influencing the electricity flow in the 66 kV and higher voltage
networks. Nevertheless, given the urban power grid’s complexity,

this study limits its focus to the sectors most impacted, specifically,
the alterations in losses for L1, L2, T1, and T2. In the event of
a regional network failure, MMBES is activated to segment and
reroute power, aiming to reestablish service to vital loads, with S1
and S3 identified as critical loads requiring protection.

1) Distribution system structure parameters: Line L1 and L2 have
a length of 5 km, while L3, L4, L5, and L6 are each 3.5 km
long. The unit length resistance and reactance are both 0.17
Ω/km and 0.395 Ω/km, respectively. There are 4 transformers
with short-circuit losses ΔPk = 88.35 kW, short-circuit voltage
percentage Uk% = 10.5, no-load losses ΔP0 = 19.20 kW, and
no-load current percentage I0% = 0.69.

2) MMBES related parameters: MMBES, using lithium-ion
batteries as an example, possesses advantages such as high
energy density, low self-discharge rate, long cycle life, and fast
charge-discharge capability. This battery type is among the
most prevalent in energy storage applications. Key parameters
are detailed in Table 1.

3) Load details: Figure 4 illustrates the typical daily load pattern
for transformer station 1, including data for various load
points as shown in Table 2. An annual load increase of 1.5%
is assumed, and the power factor is kept constant at 0.9.
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TABLE 1 Parameters for lithium-ion batteries.

Performance metrics Values and units

Cost of electricity cp 500 yuan/kW

Capacity cost cs 2,000 yuan/(kW⋅h)

Maintenance cost cope 85 yuan/(kW⋅year)

Efficiency of charging and discharging η 95%

State of charge (SOC) range 0.2∼0.8

Warranty period Nwar 9 years

Recycling price cr 8,000 yuan/t

Specific energy ρe 0.18 kW⋅h/kg

TABLE 2 Load node data.

S1/(kVA) S2/(kVA) S3/(kVA) S4/(kVA)

2,580 2,200 1,560 3,220

TABLE 3 Parameters for component dependability.

Components/
Comparable

parts

Rate of
malfunction

Time to repair a
Failure/h

Line 0.05 times/(km⋅year) 5

Transformer 0.015 times/year 48

Circuit Breaker 0.006 times/year 4

With external
connection nodes

0.2 times/year 5

4) Reliability metrics for components: See Table 3.
5) Financial parameters: Consult Table 4.

5.2 MMBES optimal configuration
simulation analysis

The population size for the Differential Evolution Algorithm,
MNP, is set to 100, and other parameters are referenced from
(Liu et al., 2021). The parameters related to prospect theory in the
model: α is 0.88, β is 0.88, λ is 2.25, γ is 0.61, δ is 0.69. Through the
analysis of significant historical incidents in the area, the probability
of extreme scenario occurrence, ζ ext (times/year), follows a uniform
distribution U (0.005, 0.1), which corresponds to an occurrence
frequency of once every 10–200 years. Setting the outage duration
according to guidelines (National Energy Administration, 2018):
tfai (h) ∼ U (12,168), equivalent to a restoration time of half a
day to 7 days.

TABLE 4 Economic-related parameters.

Economic parameters Values and units

Average selling price of electricity fsell 0.55 yuan/(kW⋅ h)

Purchase cost of electricity fcost 0.37 yuan/(kW⋅ h)

Generation efficiency fcomp 13.6 yuan/(kW⋅ h)

Benchmark interest rate i0 8%

Expansion investment cinv 5,000 million yuan

Transportation cost ftra 20 yuan/km

Given that all attributes are deemed equally significant, we set
ω1,ω2,ω3,ω4, and ω5 each at 0.2. After configuring MMBES, the
expected benefits for delaying grid upgrade, enhancing reliability,
reducing outage losses in extreme scenarios, and reducing network
losses are 100, 90, 50, and 50 thousand yuan, respectively. The
expected cost expenditure is half of the net benefits, which is 145
thousand yuan, as shown in Table 5.

Based on the parameters mentioned above, conducting
simulation calculations using the Differential Evolution Algorithm
converges in 200 iterations, with a maximum iteration limit set at
300 iterations. The optimization configuration results for MMBES,
along with the benefits/costs and prospects for each attribute, total
benefits, and comprehensive prospects, can be found in Table 6.

The data extracted from the table suggests that the optimal
configuration forMMBES features a storage capacity of 4986.83 kW-
hours (kW⋅ h), a rated power of 1,600.5 kW (kW), and maintains
the operational State of Charge (SOC) at a maximum limit of 0.8.
The net profit is 2,793.85 million yuan. The attribute benefits/costs,
in descending order, are as follows: Delayed expansion benefit Edel,
enhanced reliability benefit Erel, configuration cost Ccyc, reduced
outage loss benefit under disasters Eext, and loss reduction benefit
Edec. As the reference point values are relatively small, Edel, Erel,
Eext, and Ccyc are all greater than the reference points, resulting
in positive prospects for benefit attributes and negative prospects
for cost attributes. Edec is 0, which is less than the reference point,
resulting in a negative prospect.

The potential benefits of postponing grid upgrades and
renovations are the most significant, particularly when considering
MMBES with a substantial capacity of 3,330 kW. In line with the
current rate of load growth, this delay can extend the need for
expansion by a remarkable 12 years, aligning with the original
configuration intent. Following closely is the potential value
associated with enhancing the reliability of the distribution network.
By doing so, it is possible to reduce the annual electricity deficit by
a substantial 2,162.29 kW⋅ h. The probability of extreme scenarios
occurring is relatively low, which explains the smaller prospective
value of mitigating outage losses in such circumstances. However, in
the unfortunate event of a disaster, MMBES can still contribute to
reducing outage losses by a significant 3,989.46 kW⋅ h. It is essential
to note that the chosen study area exhibitsminimal load fluctuations,
and the cost of reducing losses is tied to the grid’s electricity
purchase cost. Consequently, the optimized outcome suggests a
relatively high lower limit for state of charge (SOC), which may not
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TABLE 5 Baseline benchmarks for each benefit/cost characteristic.

Edec.0/(10
6 ⋅ yuan) Erel.0/(10

6 ⋅ yuan) Edel.0/(10
6 ⋅ yuan) Eext.0/(10

6 ⋅ yuan) Ecyc.0/(10
6 ⋅ yuan)

0.5 0.9 1 0.5 1.45

TABLE 6 Optimal configuration results and attribute benefits/costs and prospects.

Optimal configuration results Sn (kW⋅ h) Pn/kW Soc.min

4,986.83 1,600.5 0.8

Attribute benefits/costs/total benefits

Edec/yuan Erel/(10
7yuan) Edel/(10

7yuan)

0 1.83 1.94

Eext/(106yuan) Ccyc/(107yuan) E/(107yuan)

1.77 1.15 2.79

Attribute prospects/comprehensive prospects

Vdec/105 Vrel/106 Vdel/106

−2.33 2.35 2.47

Vext/10
5 Vc/10

6 V/105

1.61 −3.27 2.96

be advantageous for minimizing network losses. The outcomes of
the optimization distinctly show that, considering the established
benchmarks and their relative significance, energy storage systems
remain fully charged under normal operational conditions and
activate to provide power only during disruptions, leading to the
maximum aggregate prospective value (V).

When optimizing with the objective of maximizing net profit,
the MMBES configuration results are as follows: Sn = 9,043.75 kW⋅
h, Pn = 1712.1 kW, Soc.min = 0.8. Both capacity and power are
greater than the optimization results when aiming to maximize
comprehensive prospects. This is because the positive attribute
benefits are weakened while the negative ones are strengthened
when aiming to maximize net profit, as decision-makers tend to
be more risk-averse, resulting in smaller configuration results.
Additionally, when not considering extreme scenarios, the
configuration results do not significantly increase, but the net profit
decreases by 321.64 million yuan.This suggests that portable energy
storage units can improve the overall effectiveness of the configured
energy storage system.

5.3 The impact analysis of system
adequacy on the optimization
configuration results of energy storage

Exploring the substantial advantages of postponing grid
upgrades while improving reliability, this research delves deeper
into the consequences of system sufficiency on the outcomes of the
configuration analysis. The substation load rate is increased from
0.50 in a geometric progression to 0.65, and the changes in the
prospects of various attributes are shown in Figure 8.

FIGURE 8
The prospects of various attributes at different levels of adequacy.

As network adequacy decreases, the system’s demand for
MMBES capacity Sn and power Pn increases continuously, and the
optimization configuration results increase monotonically from 0 to
11,019.44 kW⋅ h and 4,711.5 kW, respectively. The holistic outlook,
denoted as value V, demonstrates a pattern characterized by a
sharp ascent followed by a gradual decline, reaching its zenith at
approximately a load rate of 0.505. This is because at this point,
Sn and Pn are relatively small, leading to lower cost prospect value
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Vc, and the delayed expansion prospect value Vdel is already ideal.
However, as adequacy decreases further, although the reliability
prospect value Vrel increases significantly, the increase in Vc is even
greater, resulting in a decrease in the overall prospect value V.

The prospect value Vrel for enhancing distribution network
reliability and the prospect value Vext for reducing losses in extreme
scenarios both exhibit a monotonically increasing trend.The annual
deficit in electricity supply and outage losses after disasters that can
be reduced increase from 0 to 4778.03 kW⋅ h and 8,815.55 kW⋅ h,
respectively. The cost prospect Vc monotonically decreases, with
configuration costs increasing from 0 to 2,665.14 million yuan. The
prospectVdel for delaying grid upgrade and renovation first increases
rapidly and then slightly decreases, with the peak occurring near a
load rate of 0.52. This is because when the load rate is greater than
0.5 but less than 0.52, as Sn and Pn increase, the number of years
ΔTy that expansion can be delayed increases rapidly, leading to a
rapid increase in Vdel. However, when the load rate is greater than
0.52, although ΔTy and the total amount of future-year expansion
investment still increase with Sn and Pn, when ΔTy is large, the
present value of the profits for the later years is relatively small,
resulting in an overall decline in prospects. Furthermore, despite
fluctuations in the load rate, the prospect value Vdec, aimed at
decreasing network losses, invariably holds a steady negative figure,
while the optimization results for State of Charge (SOC) consistently
stay at the maximum threshold of 0.8 for every load rate scenario.

5.4 Analyzing the influence of attribute
importance and cognitive parameters on
the configuration outcomes

Recognizing the persistent high level of network loss rate
at 6.28% within the distribution system, efforts to enhance this
metric entail elevating the significance of the loss reduction
attribute ω1. This research investigates how cognitive factors related
to decision-making, as informed by prospect theory, affect the
outcomes of optimization. When ω1 = 0.95 and ω2 = ω3 = ω4 =
ω5 = 0.0125, and the reference points are as shown in Table 5,
the optimization configuration re-sults differ from Table 6. The
configured capacity and power experience a rise from 4986.83 kW⋅ h
and 1,600.5 kW–11,051.02 kW⋅ h and 1,663.2 kW, correspondingly.
Simultaneously, the lower limit of State of Charge (SOC) decreases
to 0.20. This adjustment is necessitated by the need for MMBES to
achieve reductions in network losses, which entails implementing
a strategy of discharging during peak load periods and charging
during off-peak periods. This strategy requires a larger capacity and
a smaller State of Charge (SOC). Prior to configuring the energy
storage system, the network loss stands at 788.17 million kW⋅ h, and
post-configuration, it diminishes to 780.49 million kW⋅ h, resulting
in a network loss rate decrease to 6.22%.Therefore, it becomes
clear that by elevating ω1, the attribute related to reducing losses
is no longer eclipsed by the remaining three attributes, leading to
a significant decrease in losses.

If the emphasis is on enhancing the resilience of the distribution
network and the importance of reducing losses in extreme scenarios
ω4 is increased, when ω4 is set to 0.6, and the values of ω1,ω2,ω3
and ω5 are each adjusted to 0.1, the configured capacity and
power increase to 9,043.75 kW⋅ h and 1,712.1 kW, respectively,

with an SOC lower limit of 0.8. This is due to the necessity of
maintaining the uninterrupted provision of critical loads during
extreme scenarios. To achieve this, MMBES requires a larger
anticipated surplus energy, which, in turn, demands a larger capacity
and State of Charge (SOC). At this level of importance, the reduction
in outage losses in extreme scenarios increases from 3,989.46 kW⋅ h
to 7,234.00 kW⋅h, significantly enhancing the resilience of the power
distribution network.

The decision-maker’s subjective expectations are not constant.
When cognitive parameters change, to study their impact on the
optimization results, the expected cost expenditure Ccyc,0, which has
a significant impact on the comprehensive prospect valueV in Figure 8,
is increased to 1,500million yuan.TheMMBES configuration capacity
and power increase to 6,626.80 kW⋅ h and 1,646.7 kW, respectively,
which is a 32.89% increase for capacity and a 2.89% increase for power
compared to Table 6. This phenomenon arises from the fact that when
there is an increase in the psychological anticipation of investment,
it can shift the prospect value of investment costs from negative to
positive. Given the decision-maker’s inclination to be risk-averse when
it comes to losses as opposed to gains, a reduction in cost, while
keeping other attribute expectations constant, results in an increase
in configured capacity and power.

We have conducted a comparative analysis between our
proposed scheme for optimizing the configuration of Modular
Mobile Battery Energy Storage (MMBES) and existing systems,
focusing on several key factors. Our analysis evaluates the
performance and effectiveness of our approach in the context of
renewable energy integration and grid stability.

5.4.1 Economic benefits
Our proposed scheme significantly boosts the economic benefits

of integrating MMBES into distribution grids. By fine-tuning the
configuration of MMBES, we demonstrate a notable improvement in
the net profit compared to existing systems. For instance, when aiming
tomaximize net profit, the configuration results for capacity and power
are 9,043.75 kW⋅ h and 1,712.1 kW, respectively, which are higher than
the results aimed at maximizing comprehensive prospects.

5.4.2 Reliability Improvement
Thereliability prospect value for enhancing distributionnetwork

reliability increases monotonically as the adequacy of the system
decreases. This indicates that our proposed scheme enhances the
reliability of the distribution grid, especially in scenarios where the
system adequacy is low.

5.4.3 Cost-effectiveness
We analyze the cost prospect value, which demonstrates a

monotonic decrease as the adequacy of the system decreases. This
suggests that our proposed scheme is more cost-effective compared
to existing systems, especially when the system adequacy is lower.

5.4.4 System adequacy impact
As the substation load rate increases, the system’s demand

for MMBES capacity and power also increases. The optimization
configuration results for Sn and Pn increase monotonically from 0
to 11,019.44 kW⋅ h and 4,711.5 kW, respectively, indicating that our
proposed scheme adapts well to changes in system adequacy.
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5.4.5 Extreme scenario consideration
Our scheme takes into account the reduction of outage losses in

extreme scenarios, which is reflected in the increasing trend of the
prospect value.This shows that our approach enhances the resilience
of the distribution grid in the face of severe weather events or other
extreme conditions.

5.4.6 Comprehensive prospect value
The comprehensive prospect value initially increases sharply

and then gradually declines as the system adequacy decreases. This
pattern indicates that our scheme optimally balances the trade-offs
between cost, reliability, and system adequacy.

6 Conclusion

This phenomenon arises from the fact that when there is an
increase in the psychological anticipation of investment, it can shift
the prospect value of investment costs from negative to positive.
Considering the decision-maker’s tendency to favor risk-averse
strategies regarding losses rather than gains, decreasing costs, with
the expectation of other attributes remaining unchanged, leads to
enhanced capacity and power. The effectiveness of the model and
methodology is confirmed via a case study focusing on a city’s
distribution grid.The results of the case study indicate the following:
1) Considering the benefits of extreme scenarios, mobile energy
storage can achieve additional benefits in terms of resilience without
significantly increasing costs; 2)When greater emphasis is placed on
a specific profit/cost attribute, increasing the ω value can effectively
bias the growth towards that attribute, directly affecting the planning
results; 3) When the psychological expectation of a certain attribute
is increased, the configuration results will move in a direction
favorable to that prospect; 4) As the network adequacy decreases, the
optimization configuration results for energy storage capacity and
powermonotonically increase. However, influenced by the cognitive
preferences of prospect theory, the comprehensive prospect value
shows a trend of initially increasing and then decreasing.

This study conducted a case study on a specific city’s distributed
grid, validating the effectiveness of the model and methodology
employed, and explored the potential of mobile energy storage in
enhancing grid resilience and reducing network losses. Although
our case study provided some positive insights, its limitations also
indicate necessary directions for future research.

Firstly, our research was primarily based on a specific city’s
grid, and its applicability may be affected by differences in grid
scale or technical conditions. Additionally, the setting of key
parameters such asω had a significant impact in this study, but these
settings were based on specific assumptions, which may limit their
general applicability. Furthermore, decision-makers’ psychological
expectations were analyzed qualitatively in this study, necessitating
the development of quantitative tools and methods to specifically
quantify these changes in future research.

For future studies,wesuggest expanding thegeographical scopeand
network types of case studies to validate themodel’s broad applicability.
Further research should consider how to optimize the setting of
key parameters to improve the model’s adaptability and flexibility
across different grid environments. Additionally, we plan to introduce
opportunity-constrained planning to address the uncertainties in grid

demand and energy storage system performance in extreme scenarios.
By optimizing the configuration of energy storage, we aim to further
enhance the system’s resilience and reliability.

We will also consider user needs and comfort, incorporating
user behavior and demand patterns into future research to adjust
the scheduling strategy of energy storage equipment to meet users’
electricity demands and comfort requirements. Through in-depth
analysis and simulation of different user groups’ electricity usage
behaviors, we anticipate that technological innovations will achieve
more refined energy management.

Through these improvements, we hope to further demonstrate
the potential of mobile energy storage technology and its
contributions to grid systems, while promoting further research
and optimization in the field.
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