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With the successful application of artificial intelligence technology in various
fields, deep reinforcement learning (DRL) algorithms have applied in active
corrective control in the power system to improve accuracy and efficiency.
However, the “black-box” nature of deep reinforcement learning models
reduces their reliability in practical applications, making it difficult for
operators to comprehend the decision-making mechanism. process of these
models, thus undermining their credibility. In this paper, a DRL model is
constructed based on the Markov decision process (MDP) to effectively address
active corrective control issues in a 36-bus system. Furthermore, a feature
importance explainability method is proposed, validating that the proposed
feature importance-based explainabilitymethod enhances the transparency and
reliability of the DRL model for active corrective control.
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1 Introduction

With the construction and development of the new-type power system, the transmission
power of lines continues to increase. When power lines experience overload or voltage
violations, the operational state of the power system may deviate or become unstable, often
accompanied by an imbalance in power within sections, which threatens the safety and
stability of the power system Fitzmaurice et al. (2010). Hence, it is crucial to implement
precisemeasures tomitigate overloads and excessive currents in power lines, aiming to avert
the initiation of cascading failures.The exploration of prompt and efficient active corrective
methods holds considerable importance for ensuring the secure and steady functioning of
the power system.

The application of AI technology in active corrective control for power systems
can significantly enhance decision-making efficiency, high-dimensional data processing
capabilities, and the level of intelligence in the power system. By establishingmechanisms for
assisting safety operation decisions and autonomous knowledge learning, it can improve the
response speed and efficiency of the power grid in handling exceptional and fault conditions,
reducing the workload of manual scheduling. To address the issues with traditional active
corrective methods such as computational efficiency, accuracy, and the handling of massive
data, DRL, as an emerging AI technology, has been gaining widespread attention. Reference
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Xu et al. (2019) introduces a model-free DRL algorithm for solving
formulated MDP and learning optimal adjustment strategies.
Reference Xu et al. (2021) presents a simulation-driven graph
attention-based reinforcement learning approach for robust active
power corrective control. Reference Zhang et al. (2022) integrates
grid topology information into neural networks using a graph
attention-based DRL model for digital simulation of power
system operation and control decisions. Reference Zheng et al.
(2024) develops a two-stage model for ESS that respects the
nonanticipativity of multistage dispatch, and implement it into a
distributionally robust model predictive control scheme. Reference
Zhang C. et al. (2023) proposes a central limit theorem-based
method (CLTM) to overcome the conservatism of interval DC
and AC power flow analysis under uncertainty of renewable
power generation. Reference Hossain et al. (2021) proposes a graph
convolution-based DRL model framework to address topological
changes in power systems.

AI technology can enhance the efficiency and accuracy of active
corrective control in power systems. However, corrective control
demands a high level of safety and reliability. The decision-making
process of AI models should be understandable and trustworthy
so that human operators can intervene and make adjustments.
In the research of interpretable methods for machine learning
models in power systems, one widely used approach is feature
importance Shrikumar et al. (2017), which analyzes the impact
of features on the model to assess their importance and further
understand the relationships between variables. Reference Wu et al.
(2022) addresses the interpretable of a multi-factor wind speed
prediction model in power systems. Reference Zhang et al. (2021)
proposes the design of a key part of a visual heterogeneous
information network for explaining model decisions in power
systems. Reference Zhang K. et al. (2023) presented a graph deep
reinforcement learning model applied to active power correction
control and introduced a subgraph explanation method. Reference
Liu et al. (2023) adopts the method of feature importance to
explain and analyze the transient stability assessment process of
power systems based on machine learning. Reference Ren et al.
(2021) proposes using feature importance method to explain the
decision results of transient stability preventive control model and
identify the most effective control objects to reduce the number of
control objects. Reference Yang et al. (2022) can predict the static
voltage stability index online by correcting the control model, and
calculate the approximate value of each characteristic sensitivity to
the voltage stability index under any operating mode. Reference
Mitrentsis and Lens (2022) uses the feature importance SHAP
value method to explain the decision results of photovoltaic power
prediction models. Reference Hamilton and Papadopoulos (2023)
adopts the feature importance method to obtain the interpretation
of machine learning models for location-specific transient
stability assessment.

Explainable Artificial Intelligence (XAI) does not have a
mathematical definition Molnar (2020), it can refer to the
degree to which individuals can consistently predict model
outcomes Kim et al. (2016). The higher the interpretability of
machine learning, the easier it is for individuals to understand
why certain decisions or predictions are made Molnar (2020).
Specifically, XAI is a set of processes and methods that facilitate
the understanding and trust of results and outputs computed

by machine learning algorithms, presenting model decision
outcomes in an easily understandable manner. It is essential for
helping individuals comprehend the inner workings of complex
models and how they make specific decisions. At the core
of XAI is providing the rationale and execution logic for the
decision-making process of artificial intelligence models, and
visualizing these through a series of human-understandable
means, thereby fostering trust in artificial intelligence
models by humans.

In the process of active power corrective control of power
system, operators can understand the contribution of model input
features to output decision-making through XAI, and by combining
experience and domain knowledge, operators can understand the
causal relationship to improve the confidence and acceptance of
operators on the DRL model of active power corrective control
proposed in this paper.

This paper proposes the use of a Markov Decision Process
(MDP) to establish a competitive Dueling Double Deep Q-network
model (D3QN) to implement active corrective control in the
power system. When facing scenarios such as “N-1” faults and
fluctuations in supply and demand, it achieves the redistribution and
rescheduling of active power among different generator units in the
system, effectively addressing transmission line overloading issues.
Additionally, a feature importance-based interpretable method
(Deep-SHAP) is introduced to enhance the efficiency of feature
importance calculations and provide explanations for the decisions
made by DRL models in the context of active corrective control in
the power system.

The remaining sections of this paper are structured as follows. In
Section 2, we delve into the problemmodeling aspect, encompassing
corrective control objectives, constraints, and the formulation
of the Markov Decision Process (MDP). Section 3 provides
a comprehensive and interpretable overview of the proposed
approaches, highlighting both the D3QN model and the Deep-
SHAP method. Moving on to Section 4, we showcase the test
cases along with their corresponding outcomes. Finally, Section 5
encapsulates our conclusions and outlines potential directions for
future research.

2 Problem modeling

2.1 Corrective control objective function
and constraints

While satisfying the operational constraints of the power grid,
active corrective measures include adjusting the active output of
generators, shedding a portion of the active load, and topology
adjustments to achieve the redistribution of active power flow.
During practical implementation, the safety corrective control
optimization model must account for diverse factors. These include
the adaptability of various power generation units over a given time
period, fluctuations in loads at different times, alterations in the
active power output from different types of generating units, the
maximum output capacity of renewable energy units, and variations
in line currents. Active safety corrective models can set different
objective functions based on specific requirements. In this paper, the
primary objective is to eliminate transmission line overloads, and
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therefore, the aim of active corrective control can be articulated as
follows:

FAP =minC(|ΔPG| ,ΔPL) (1)

where C(⋅) denotes a function associated with adjustment costs,
while ΔPG and ΔPL represent the changes in generator rescheduling
and the reduction in power system load, respectively. In addition
to the standard constraints of the power system, the adjustment
of generators is also subject to constraints related to their own
active power output limits, constraints on the amount of generator
rescheduling, and constraints on the adjustable capacity of different
types of power generations within a unit of time, all to minimize
interference with the power system. Furthermore, it is necessary
to adhere to line flow constraints, ensuring that the line load
does not exceed the maximum allowable transmission power as
a transmission constraint after implementing corrective control.
Additionally, voltage constraints for the bus-bars, both upper and
lower limits, should be set.

|ΔPG| ≤min(PGmax −PG,PG −PGmin) (2)

PG⋅down ≤ |ΔPG| ≤ PG⋅up (3)

PTL ≤ P
max
TL (4)

Umin
B ≤ UB ≤ U

max
B (5)

where PGmax and PGmin are the upper and lower bounds of
generator output power, respectively. PG⋅down and PG⋅up represent
the maximum downward and upward adjustment capacities of
the generator within a unit of time. PTL is the power transmitted
through transmission lines. Pmax

TL represents themaximum allowable
transmission power of the transmission lines. Umax

B and Umin
B

represent the upper and lower limits of the bus-bar voltage, with
specific values being 1.15 p.u. and 0.9 p.u., respectively. For the node
power balance constraint, power flow calculation requires that the
sum of injected active power from other lines and generated power
at a node equals the sum of the node’s load consumption and the
power flowing into other lines, maintaining power balance within
the power systemWang et al. (2019).

∑
G∈Gn

PG − ∑
L∈Ln

PL − ∑
TL∈TLor,n

PTL + ∑
TL∈TLex,n

PTL = 0 (6)

where Gn and Ln represent the sets of generators and loads
connected to node n, respectively. TLor,n and TLex,n represent the
sets of transmission lines connected to node n at the beginning and
the end, respectively. In the premise of only considering adjustments
to the active power output of generators within the electrical
system to meet power balance requirements, implementing power
balance constraints is essential to guarantee the secure and steady
functioning of the power system.

NG

∑
i=0

ΔPGi
= 0 (7)

where ΔPGi
represents the rescheduling amount of active power for

the ith generator. NG is number of generators capable of adjusting

active power. Take corrective measures when there is an overload in
the transmission lines following normal overloads or unexpected
events. Take “do nothing” measures when no transmission line
violates constraints. This paper transforms event-driven active
corrective into time-based corrective control. Time-based corrective
control executes operations according to a predefined schedule,
independent of specific events, making it more regular and
predictable, enhancing the management of power system stability
and efficiency. It reformulates the objective of active corrective
control as the preservation of systemoperation throughout the entire
duration, with the simultaneous aim of minimizing overall costs.

F′AP =min
T

∑
t=0
[C(|ΔPG (t)| ,ΔPL (t)) +Cnet (t)

+Eloss (t) ⋅ p (t)] (8)

where T corresponds to the duration of the control period. Cnet (t)
denotes the network loss cost, serving to capture the economic
repercussions of corrective measures. Eloss (t) represents the energy
loss incurred at time t during a power outage, and p (t) signifies
themarginal price.The optimal control strategy combines operating
costs and outage penalties to maintain grid stability with lower-cost
corrective measures. In light of the mentioned constraints, a DRL
algorithm can be employed to achieve grid dispatch based on active
corrective control strategies.

2.2 MDP modeling

The active corrective problem within the power system is
framed as a reinforcement learning challenge. This study outlines
the construction of the state space S , action space A, and reward
function R based on Markov Decision Process (MDP) principles
to facilitate optimal control of the system. The proposed approach
introduces a time-based active corrective control, where control
strategies are periodically executed at predefined time intervals.
Specifically, the state is defined as the observable information at
the current time step, with the state space S encapsulating the
observable states of the agent within the power system. The agent’s
state space may encompass pertinent features of generators, loads,
transmission lines, and bus-bars.

The action space A encompasses the collection of all actions
available to the agent. Typical active corrective actions involve
adjustments to generator active power output and load shedding.
The agent assigns rewards to chosen actions and, by leveraging
the optimal strategy learned from observed environmental states,
identifies the most effective action to alter the environmental state.
The objective is to execute the optimal action corresponding to
the current condition, enabling the agent to accumulate maximum
rewards over an extended period.

By crafting a reward function R tailored to address diverse
objectives and constraints for secure corrective measures, R
quantifies the reward value attributed to the agent for implementing
a specific action in the current state. Considering the central theme
of this paper, which revolves around maintaining the stability of
the power system amid fluctuations in load and renewable energy
generation, additionally accounting formaintenance andunforeseen
events, it becomes crucial to optimize the remaining capacity of
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the grid and enhance its flexibility in response to unexpected
occurrences. Consequently, the performance at time t can be
expressed as:

ot = A−
NL

∑
i=1
[max(0, (1− ρ2i )) − μ ⋅max(0,ρi − 1)

− η ⋅max(0,ρi − 0.9))] − ν ⋅
NG

∑
k=1
|ΔPkG| (9)

where A represents the reward value during normal system
operation.NL is the number of lines, and ρi is the load ratio of the ith
line,NG is the number of generators. μ and η are penalty coefficients
for overloading and overvoltage, respectively. ν is a penalty factor
for the regulation of generators. This issue involves managing the
system in a time series fashion, with the goal of extending the
longevity of the power system. Hence, by providing rewards that
consider both historical and current performance, the agent is
driven to choose actions that enhance system stability consistently
across past and present time steps. Accounting for “N-1” faults and
line maintenance, the primary goal when the agent implements
corrective actions is to rectify anomalies in power lines and improve
overall system stability. As a result, the immediate reward function,
denoted as rt , can be articulated as:

rt =
{{{
{{{
{

λ failure
t

∑
t=0

ot success
(10)

where λ is a large negative number.

3 Methods

3.1 Overall framework

This paper integrates the perceptual capabilities embedded
in deep learning with the decision-making prowess inherent in
reinforcement learningZhang et al. (2019). It utilizes aD3QNmodel
to obtain target observations and the current environmental state
from the environment while also providing a feature extraction
capability for the topological structure. The paper employs
interpretable methods to trace or explain the execution logic
and decision basis of the D3QN model. Figure 1 describes the
process of human-machine collaboration through DRL models
with active corrective control and its interpretable techniques. The
goal of human-machine collaboration in Figure 1 is to leverage
the strengths of both humans and machines through interpretable
techniques to achieve a more efficient and accurate active corrective
control process. During the implementation of the corrective control
task based on theDRLmodel, interpretable techniques enable power
system operators to comprehend the decision-making mechanism
employed by the DRL model, facilitating mutual cooperation
between operators and machine intelligence to collectively address
the corrective control problem.

3.2 D3QN model

Within the D3QNmodel, the reinforcement learning algorithm
associates the present state with actions and rewards, guided by

the anticipated return. The agent engages with the environment
persistently, utilizing states, actions, and rewards to acquire
knowledge through exploration and exploitation, culminating in the
formulation of optimal decisions. The specific details are illustrated
in Figure 2.

In the D3QN model, states are no longer solely dependent
on the value of actions for evaluation but can also undergo
separate value predictions. The model can learn both the value of a
particular state and the value of different actions in that state. It can
independently and closely observe and learn the states and actions
in the environment, allowing for more flexible handling.

Q (s,a;θ,α,β) = V (s;θ,β) +A (s,a;θ,α) (11)

The D3QN network architecture incorporates two distinct
branches following the convolutional network.V(s;θ,β) is employed
to forecast the state’s value, whileA(s,a;θ,α) is utilized to predict the
value of actions associated with the state. Here, θ signifies the shared
part of the network structure, and α and β represent the distinct
parameters corresponding to these two branches. The outcomes
from these two branches are subsequently combined to produce
the Q-values.

In the overall D3QN algorithm workflow, the first step is
to define the state space and action space. Then, two deep
neural networks with essentially the same structure are established,
including the current network θi and the target network θi

′. These
two networks consist of a shared convolutional layer and two
branches: one for outputting state values V(s;θ,β) and the other for
outputting advantage values for each action A(s,a;θ,α). Based on
the present state and the Q-values output by the neural network,
an action is chosen using a ɛ− greedy policy to maintain a certain
level of algorithm exploration. The selected action is then executed,
resulting in the next state and the corresponding reward. The states,
actions, rewards, and next states [st ,at , rt , st+1] obtained during
execution are stored in an experience pool for future training. Next,
a batch of data is randomly selected from the experience pool for
training the neural network. During the training process, mean
squared error is used as the loss function to gradually approach the
target Q-values with the network’s output Q-values.

3.3 The Deep-SHAP method

In current research, there are also studies that mention
the adoption of feature importance interpretation methods for
deep reinforcement learning (DRL) models Heuillet et al. (2022)
Schreiber et al. (2022) Syavasya and Muddana (2022). In DRL, the
aim of feature importance interpretation methods is to determine
which input features are crucial for the model when making
specific decisions.These methods typically calculate the importance
of each input feature based on gradient information or changes
in other model weights. For example, this paper mentions using
backpropagation of gradients to compute the contribution of each
input feature to the output, which aids in understandingwhich input
features the model’s decisions are based on.

This paper proposes an interpretable feature importancemethod
called Deep-SHAP, which combines traditional SHAP interpretable
methods with backpropagation techniques. The specific algorithm
framework is illustrated in Figure 3.
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FIGURE 1
Machine learning model for active corrective control in power systems and its interpretable human-machine collaboration process.

FIGURE 2
Logical framework of D3QN model for active power correction control in power systems.

Considering the long-tail effect in power grid data, where most
of the time the system remains safe and stable, with only a few fault
states, this paper preprocesses the state space S of the DRL model
for active corrective control. The paper employs under-sampling
techniques to randomly remove a portion of normal power grid state
samples, with the objective of maximizing the purity of fault state
samples, this paper introduces an objective function based on S to
assess the information purity within the sample set. In particular, a
smaller value of H corresponds to a higher purity level of S.

minH (S) = −
D

∑
d=1

pd log2pd (12)

where d represents the category of S, with d ∈ D, where D denotes
the overall number of categories. The probability pd denotes the

likelihood that a sample belongs to the class d.

{
{
{

st [k] ∈ S f failure

st [k] ∈ Sn else
(13)

where st[k] signifies the kth sample in the power grid state at the
time instant t. The sets Sf and Sn respectively denote the sample sets
containing faulty and normal power grid states. Following the binary
classification of the samples, the objective is to obtain a sample set
with the highest purity, specifically for the faulty samples of the
power grid state.

minH (S) = −((P(S f |S;δ) log2 (P(S f |S;δ) + (P(Sn|S;φ) log2
× (P(Sn|S;φ)) (14)
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FIGURE 3
The Deep-SHAP algorithm framework for the D3QN model based on active corrective control.

FIGURE 4
A revised 36-bus system derived from the IEEE 118-bus system.

where δ and φ are the weights of Sf and Sn. Using the balanced
sample set S′, the DEEP-SHAP explainability algorithm is employed
to calculate the contribution values of model input features relative
to the model’s output results.

xi = [x(PG,PL,PTL,PB,ρ)
1
i ,⋯x(PG,PL,PTL,PB,ρ)

k
i ,

⋯x(PG,PL,PTL,PB,ρ)
K
i ]

T (15)

where xi denotes the set of features xi across all input samples of
the DRL model. The feature set in the state space encompasses the
active power of generators, loads, transmission lines, buses, and the
transmission line load ratios. x(PG,PL,PTL,PB,ρ)

k
i represents the ith

feature in the kth sample, where i ∈ Nf ,Nf denotes the total number
of features, andK represents the sample count, where k is an element

of the set K. The difference value Δxki between the load rate features
xki and xi in the sample space can be articulated as:

Δxki = x
k
i − xi
= [x(PG,PL,PTL,PB,ρ)

k
i − x(PG,PL,PTL,PB,ρ)

1
i ,⋯0,

⋯x(PG,PL,PTL,PB,ρ)
k
i − x(PG,PL,PTL,PB,ρ)

K
i ]

T (16)

Based on the DRL model, the action space includes actions for
adjusting active power generator output and load shedding actions.
The predicted output matrix of the model for the kth sample can be
represented as follows:

Yk = [(aG,aL)
1
k ⋯ (aG,aL)

h
k ⋯ (aG,aL)

H
k ]

T (17)
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TABLE 1 Details of the example scenario.

Example scenario Cause of failure Model decision After the active corrective control (%)

Scenario 1

lines 0 and 39 are disconnected Generator G10 increased active ρ25 = 71

line 25 is overloaded power output by 1.4 MW

ρ25 = 121% Generator G0 decreased active

power output by 1.4 MW.

Scenario 2

lines 18 is disconnected Generator G16 increased active ρ13 = 75

line 13 is overloaded power output by 1.4 MW

ρ13 = 111% Generator G3 decreased active

power output by 1.4 MW.

FIGURE 5
The reward accumulation trend throughout the agent’s training
process, relative to the power system’s time progression. (A)
Cumulative reward curve of the agent training process; (B) Distribution
of system time step in different scenarios.

where h stands for the hth action within the kth output
action, where H denotes the total number of actions
and h ∈H.

Reinforcement learning models typically have large action
spaces A. Therefore, for the DEEP-SHAP algorithm recommended
in this manuscript, only the best output action a

hopt
k in the action

space A specific to that sample is selected when calculating.
By computing the reverse gradient of the model’s output, the
optimal action decision xki with respect to any input feature
can be obtained, resulting in the output differences under that
input feature.

∇ f (xki ) =
∂a

hopt
k

∂x(PG,PL,PTL,PB,ρ)
k
i

(18)

Leveraging reverse gradient calculation denotes the depiction of
the influence of input features on the model’s output actions. This
methodology facilitates the assessment of the marginal contribution
value of features xki to the optimal output action a

hopt
k for the kth

sample.

C
ΔxkiΔa

hopt
k
= ∇ f (xki ) ⊙Δx

k
i

=
∂a

hopt
k

∂x(PG,PL,PTL,PB,ρ)
k
i

⊙Δx(PG,PL,PTL,PB,ρ)
k
i (19)

Through the Deep-SHAP interpretable algorithm, we can obtain
a ranking of the contributions of input features to the model’s
decision outcomes. The algorithmic logic of the DEEP-SHAP
method is described in a more clear and intuitive manner
in Algorithm 1.

Algorithm 1. The distributed deep SHAP value method.
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4 Cases study

4.1 A revised 36-bus system

In this study, we opted for an enhanced 36-bus system derived
from the IEEE 118-bus system as our research setting.The schematic
details of the power grid topology can be observed in Figure 4.
This particular power grid system encompasses 36 substations, 59
transmission lines, 37 loads, 22 generators and 177 elements linked
to the substations. The 36-bus system features various generator
units, such as thermal, hydro, wind, solar, and nuclear power, with a
substantial proportion dedicated to renewable energy installations.
Our training environment is established using the Grid2Op open-
source power system testing platform. Spanning 48 years of power
grid data, the dataset for this power grid system accommodates
scenarios over 28 consecutive days, accounting for fluctuations in
supply and demand along with seasonal characteristics. Notably,
all scenarios have been pre-scheduled to ensure power balance.
Additionally, considering random disturbances in the system, each
scenario experiences daily “N-1” line faults occurring at random
times and locations. At the same time, planned outages for
maintenance are also introduced in the test system. The goal of the
agent is to perform time-based active corrective control in the 36-
bus test system, eliminating and mitigating line overloads under
“N-1” faults and supply-demand fluctuations to maintain stable
system operation.The power flow calculation tool used in this case is
LightSim2Grid.

In this case, the D3QN model is established based on the
active corrective control objective. It considers using actions for
adjusting generator active power output to eliminate and mitigate
line overloads under “N-1” faults and supply-demand fluctuations.
The decision cycle of the agent is 1 day, with a time interval
of 5 min between t and t+ 1 within a day. Therefore, under
active corrective control, each scenario, in coordination with the
scheduling plan, involves a sequential decision process comprising
288 decision steps within a day.

In the target power grid, there are a total of 177 components,
including generators, loads, and the start and end points of
transmission lines. In this paper, it is defined that each observable
feature of each component falls into two types, including the
transmission line load ratios and the active power of various
components. The state space S characterizes the states observed
by the agent within the power system, encompassing 354-
dimensional features. The observed state of the components can be
represented as:

St = [X1 (P,ρ) X2 (P,ρ) ⋯ XN (P,ρ) ]T (20)

where X represents the observed feature vector on the components,
and N is the number of components in the target power grid.

The action space A used in this paper consists of generator
rescheduling actions. In this case, there are a total of 22
generators, including thermal, hydro, wind, solar, and nuclear power
types. Among these, 10 generators are available for rescheduling
adjustments. To simplify the action space, this paper stipulates that
the action of generator rescheduling should consider a maximum
of two simultaneously adjustable generators. Under the condition
of considering only generator rescheduling actions, it is necessary

FIGURE 6
Transmission line load rate in test scenario 1. (A) Line load rates before
and after generator rescheduling; (B) Line load rate within the system
operation time step.

to meet the power balance constraint. According to the reverse
equal amount pairing principle, which means that the total sum
of active power rescheduling of all generators is zero. This paper
selects 1.4 MW, 2.8 MW, 4.3 MW, 8.5 MW, 9.9 MW, and 10.5 MWas
various adjustment levels for generator rescheduling. For example,
increasing the output of generator A by 2.8 MW while decreasing
the output of generator B by 2.8 MW. Under this rule for adjusting
active power of generators, there are a total of 153 possible actions
to choose from, including the “do nothing” option.

4.2 Training and deployment of the D3QN
model

Throughout the training of the D3QN model, significant
attention is dedicated to addressing fluctuations in supply and
demand as well as the inherent uncertainty associated with
renewable energy sources. The training process encompasses 2,000
diverse scenarios, emulating a spectrum of operational conditions
encountered in real power systems, including sudden shifts in load,
generator failures, and faults in transmission lines. In each scenario,
“N-1” line faults occur randomly, varying in both time and location.
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TABLE 2 The value about the top five important components in example scenario 1

Device name P(MW) Line load rate SHAP Probability representation (%)

or_25 −260 1.21 0.01 22.4

or_24 350 0.9 0.009 16.8

gen_16 0 0 −0.009 −15.1

or_57 10 0.14 −0.006 −10.3

or_41 182 0.89 0.0049 8.2

FIGURE 7
Transmission line load rate in test scenario 2. (A) Line load rates before
and after generator rescheduling; (B) Line load rate within the system
operation time step.

The agent’s task involves employing decision actions to regulate the
active power output of generators within the power system to sustain
stable operation. An assessment of the agent’s control effectiveness is
based on the rewards garnered during the training process and the
duration of time steps that the agent successfully navigates in each
scenario. This evaluation is depicted in Figure 5.

Figure 5B displays the cumulative reward curves associated with
the agent throughout the training involving 2,000 scenarios, using
a sliding average cumulative reward to facilitate better analysis.

From Figure 5B, it can be observed that within the initial 750
training scenarios, the agent’s reward values were initially low
and not very stable, exhibiting a trending but turbulent rise.
However, after continuous training in the first 750 scenarios,
the average cumulative reward curve becomes relatively stable.
Figure 5B demonstrates the duration of time steps in which the
D3QN agent is able to sustain system operation after encountering
overload faults in the 2,000 training scenarios. Specifically, in a
given scenario, when a random “N-1” event leads to overload
faults in the system, if the agent’s decision actions cannot maintain
the system’s continuous stable operation within three consecutive
time steps, that scenario crashes, and the corresponding system
operation steps stop. Figure 5A reveals that in the 2,000 training
scenarios, after training in the initial 750 scenarios, the agent can
run for more than 200 steps in 100% of the scenarios, and in
80% of the scenarios, it can achieve a complete operation duration
of over 230 steps. The findings from this investigation suggest
that the D3QN model is capable of guaranteeing the stability of
the power system throughout a wide range of training scenarios,
ensuring the sustained and uninterrupted normal functioning of
the system.

After the agent completes its training, to further validate
the deployment performance of the D3QN model, this section
constructs a set of 500 test scenarios for the deployment
and evaluation of the D3QN agent. To intuitively compare
and verify that the D3QN model presented in this chapter
can effectively address the issue of line overloads in active
corrective control scenarios in the power system through
generator rescheduling measures, this section provides two specific
test scenarios for detailed analysis. Please refer to Table 1 for
more details.

Figure 6A displays the line load rates before and after generator
rescheduling in scenario 1.The blue and red lines represent the load
rates before and after the adjustments, while the black line represents
the load rate limit that the transmission lines can withstand. The
horizontal axis represents the 59 transmission lines in the 36-bus
system’s state space, and the vertical axis represents the load rate
values on the transmission lines. It can be observed that, after the
generator rescheduling actions proposed by the D3QN agent, the
load rates on all transmission lines in the system are reduced to
below 0.71. Figure 6B shows the load rate on the overloaded line
during a complete cycle of 288 operating time steps. A random
fault occurs at step 202, and after the agent takes decision actions,
the overload issue on the 25th transmission line is resolved, and
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FIGURE 8
The explanation results of the DEEP-SHAP method in example scenario 1.

FIGURE 9
The explanation results of the DEEP-SHAP method in example scenario 2.

no further overload issues occur throughout the entire cycle. This
indicates that the agent’s decision actions can reasonably address
the system’s line overload issue, maintaining the system’s operational
stability.

The specific details of scenario 2 are shown in Figure 7.
Figure 7A displays the load rates on transmission lines before and
after generator rescheduling. It can be observed that after the
generator rescheduling, the load rates on all transmission lines
in the system are reduced to below 0.8. In Figure 7B, the fault
occurs at the 13th time step, and when the agent takes decision
actions, the load rate on the 13th transmission line remains
within a normal range throughout the entire cycle, and no further
overloading issues occur. This indicates that the agent’s active
corrective control decisions can effectively handle overloading fault
situations.

4.3 The Deep-SHAP method validation

To further validate the DEEP-SHAP method recommended
in this manuscript in explaining the decision outcomes of DRL
models in different scenarios, Figure 8 displays the sorting of the
interpretable method’s impact on the agent model results by the
significance of components. The vertical axis represents various
equipment components in the power grid, arranged from top to
bottombased on their contribution to themodel’s output results.The
horizontal axis represents the corresponding component’s SHAP
value, which reflects the degree of contribution of the component
to the model’s output results. The red area in the figure indicates
a positive contribution to the decision outcomes of the model,
while the blue area indicates a negative contribution to the decision
outcomes of the DRL model.
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TABLE 3 The value about the top five important components in example scenario 2

Device name P(MW) Line load rate Value of SHAP Probability representation (%)

gen_16 0 0 −0.00902 −17.4

or_13 230 1.11 0.0079 11.9

or_11 −290 0.97 0.00672 10.1

or_47 700 0.38 −0.0052 −10.0

gen_19 400 0 0.00346 5.2

TABLE 4 Comparison between Deep-SHAP and SHAP methods.

Interpretability Number of Proportion of Proportion of Action Dimension of Computation

Methods Samples Right samples (%) Fault samples (%) Space Features Time (s)

SHAP 300 88 12 153 177 11,592

Deep-SHAP 50 28 72 1 177 23

FIGURE 10
The comparison of the accuracy of the Deep-SHAP method and the SHAP method on a single sample. (A): accuracy of top 5 features. (B): accuracy of
top 10 features. (C): accuracy of top 20 features.

From Figure 8, it can be seen that the component with the
most significant impact on the decision results of the D3QN model
is transmission line 25. Following closely is transmission line 24.
The results from the DEEP-SHAP interpretable method indicate
that transmission line 24 has an important positive influence on
the model’s output results. The load rate on transmission line 24

reaches 90%, indicating that it is overloaded. Similarly, component
41, which has a positive contribution, has a load rate of 89% on
transmission line 41, indicating it is also overloaded. When dealing
with overloaded lines, it is important to carefully consider the
actions of adjacent generators. Increasing the active power output
of generators adjacent to overloaded lines can significantly increase
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TABLE 5 Comparison of accuracy between the Deep-SHAP and SHAP methods on individual samples.

Comparison of feature accuracy Minimum accuracy (%) Maximum accuracy (%) Average accuracy (%)

Accuracy of the top 5 features 40 100 82.4

Accuracy of the top 10 features 50 100 80.5

Accuracy of the top 20 features 45 100 80.3

FIGURE 11
The accuracy distribution of the Deep-SHAP method compared to the
SHAP method on a single sample.

the load rate, potentially leading to the risk of overloading the line.
Therefore, generator 16, which is connected to transmission line 41,
needs special attention. At this time, generator 16 is in a standby
state and, as shown in Figure 8, is having an inhibitory effect on the
current decision results.

From Figure 8, it is evident that the factors significantly
impacting the decision-making results of the intelligent agent are
mainly concentrated on heavily loaded or overloaded transmission
lines, as well as generators with abnormal output states. Model
interpretation methods, such as feature importance, are usually
helpful for grid dispatchers to better understand the current status
of the power system. For reinforcement learning agents, decision-
making results are directly reflected in the reward function. In
the active power correction control task proposed for our 36-node
system, the reward functionmainly involves penalties for overloaded
and heavily loaded transmission lines. Therefore, the performance
of feature importance is more reflected in the transmission lines
that are overloaded or heavily loaded. To better understand the
relationship between the active power output states of components
that significantly contribute to the system and the line load
ratio states, Table 2 provides detailed information on the top 5
components with higher contributions as shown in Figure 8 by the
Deep-SHAP method, including their SHAP values and probability
representations.

In the case of example scenario 2, Figure 9 provides a ranking
of components with a relatively larger influence on the intelligent
agent’s model results, as obtained through the DEEP-SHAPmethod.

Among the components shown in Figure 9, transmission lines 13
and 11 have a significant positive impact. Transmission line 13 is
overloaded, and line 11 has a load rate of 97%, indicating it is
heavily loaded. Information about these overloaded lines is crucial
for decision-making by the grid operator. Additionally, generator 16
and generator 19 are identified as components that require special
attention. Generator 16 currently has an active power output of 0,
indicating it is in standby mode and may need to be considered for
increasing its active power output. Generator 19 has an active power
output of 400 MW, which is at its upper limit, making it another
key element for the grid operator to monitor closely. Figure 9 also
highlights the positive contribution of load 27 to decision-making
actions. You can observe that load 27 currently consumes 122 MW
of active power, making it one of the larger consumers of active
power in the target network.

In the context of Scenario 2, as clearly observed from Figure 9,
the factors significantly impacting the decision outcomes of the
intelligent agent are primarily concentrated in the overloaded
and overburdened transmission lines, as well as the abnormal
output states of the generator. Table 3 provides detailed information
on the top five components, obtained through the Deep-SHAP
method, that exert a greater influence on the intelligent agent model
results.This information includes their SHAP values and probability
representations.

Through the specific sample analysis of these two test scenarios,
it can be observed that the interpretable results of the D3QN
model’s decisions help operators understand the reasons behind
the intelligent agent’s decision-making. It is crucial to emphasize
that SHAP values can reveal relationships between input features
and output outcomes learned from the data, they do not inherently
signify or mirror causality. Consequently, operators or domain
experts should undertake additional verification using domain
knowledge or alternative causal reasoning methods to ascertain
the causal effects of the interpretable approach Hamilton and
Papadopoulos (2023).

This article supplements the comparison between the proposed
Deep-SHAP method and the traditional SHAP value method. The
specific content is as follows:

To validate the superiority of the Deep-SHAP interpretable
method proposed in this paper over the initial SHAP method in
terms of computational efficiency, a comparison of the twomethods
is presented, as shown in Table 4.

Considering the issue of computational complexity, this study
randomly selected 300 scenarios from a 36-node system to construct
the initial sample set. Table 4 shows that the fault samples account
for 12% of the initial sample set, the action space contains 153
actions, and the dimension of themodel input features is 177. In this
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scenario, the SHAP method requires 11,592 s of computation time,
which is impractical for power system correction control.Therefore,
the SHAP interpretable method cannot be applied to the decision
explanation of the correction control deep reinforcement learning
model. In the Deep-SHAP interpretable method, sample selection
is performed from the initial sample set through undersampling
techniques to increase the proportion of fault samples. At this
point, the sample set contains 50 samples, with fault samples
accounting for 72% of the total sample set. By selecting actions,
only the most likely predicted actions are retained. In this case,
the computational time cost of the Deep-SHAP interpretable
method is 23 s, which is 504 times more efficient compared to
the SHAP method. This validates the superiority of the Deep-
SHAP method proposed in this paper in terms of computational
efficiency.

This paper further considers the accuracy of the interpretability
of the two methods on a single sample and conducts a comparative
analysis. For the SHAP and Deep-SHAP interpretable methods
computed in Table 4, this study randomly selects 100 samples to
compare the features that are significantly contributing to the model
results according to the two methods, and performs an accuracy
analysis, as shown in Figure 10 and Figure 11, and Table 5. Using
the output feature importance results of the SHAP method as the
baseline, this paper compares the accuracy of the output feature
importance under the Deep-SHAPmethod in Figure 10 and reveals
the distribution range of feature importance accuracy in Figure 11.

Figure 10A shows the accuracy percentages of the top 5 features
for 100 samples under the Deep-SHAP method, with a minimum
of 40% and a maximum of 100%, and an average accuracy of
82.4%. Figure 10B displays the accuracy percentages of the top 10
features for 100 samples under the Deep-SHAP method, with a
minimum of 50%, a maximum of 100%, and an average accuracy
of 80.5%. Figure 10C presents the accuracy percentages of the top
20 features for 100 samples under the Deep-SHAP method, with a
minimum of 45%, a maximum of 100%, and an average accuracy
of 80.3%. Figure 2 indicates that, compared to the SHAP method,
the Deep-SHAPmethodmaintains an average accuracy of over 80%.
These results, which show highly similar outcomes between the
two methods, demonstrate that the Deep-SHAP method proposed
in this paper can effectively replace the interpretability results of
the SHAP method while significantly improving computational
efficiency.

5 Conclusion

This paper proposes the use of an improved 36-bus system
as a representative task scenario, completing the training and
deployment tasks for the D3QN agent. Through the analysis of
the agent’s reward curve during the training process and the
duration of system survival, the effectiveness of the D3QN agent
in active corrective control is verified. Additionally, this paper
validates the proposed DEEP-SHAP interpretable method on the
improved 36-bus system, which enhances the transparency and
reliability of the active corrective D3QN model. Through the
analysis of specific scenario examples, operators can understand the
contribution of model input features to output decisions, and by
combining experience and domain knowledge, operators can grasp

causality relationships. This improves the trust and acceptance of
operators in theDRLmodel for active corrective control presented in
this paper.
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