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In order to realize the optimal planning of grid–resource–storage for distribution
networks (DNs) with high penetrated distributed photovoltaics (PVs), a cluster
partition-based two-layer expansion planning for DNs is proposed. First, a
comprehensive cluster partition index-based cluster partition method is
proposed, which involves the indexes such as electrical distance, power
balance of the cluster, and cluster size. Second, a cluster partition-based two-
layer expansion planning model is proposed. In the upper layer, a line planning
model for clusters is established to carry out the planning of cluster connection
lines. In the lower layer, a robust source-storage planning model is established
with the uncertainty of PVs and loads, and then, the optimal location and capacity
of PVs and energy storages (ESs) can be obtained. In addition, the uncertainty
regulation parameter is utilized to control the range of uncertainty sets, which can
reduce the conservatism of the optimization. Finally, the proposed method is
carried out in a real DN in China, which can effectively improve the economy of
DN planning.
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1 Introduction

With the rapid growth of energy demand, photovoltaics (PVs) are developing rapidly in
China. The large amount of distributed PVs has significantly changed the power flow of the
distribution network (DN) (Li Z. et al., 2022), which poses new challenges to DN planning
and operation (Li et al., 2022b). How to carry out optimal DN planning is the key to realize
the economic operation of the DNs with large-scale distributed PVs.

Currently, the main idea for planning the DNs with distributed PVs is to build a
centralized planning model (Liu et al., 2021) by strengthening or extending the lines of the
DNs (WuH. et al., 2022), which takes into account the investment of PVs (Koutsoukis et al.,
2018) and the operating costs (Shen et al., 2018). The centralized planning model is suitable
for the DN planning when the proportion of distributed PVs is low. However, when large-
scale distributed PV is connected to the DNs, the dimensionality of the variables in the
centralized planning model increases significantly (Wu L. et al., 2022), and the planning
model becomes too complex to be solved (Zhang et al., 2021). To solve the challenges of
centralized optimization, a cluster partition-based planning method provides a new way for
DN planning. The cluster partition-based planning method can not only decompose the
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centralized optimization problem into simple sub-problems of
cluster optimization but also maximize the degree of power
matching between PVs and the load within the cluster during the
planning process, which can greatly increase the PV consumption
(Hu et al., 2023).

Cluster partition-based DN planning mainly includes two
aspects of cluster partition and cluster planning. In terms of
cluster partition, existing research mainly establishes cluster
partition indexes based on the grid structure (Xiao et al., 2017)
and the power balance in the clusters (Kong et al., 2022). Cluster
partition is optimized by particle swarm algorithms (Li and Yang,
2022), clustering algorithms (Wang et al., 2021), and community
detection algorithms (Yang et al., 2017). By improving the
community algorithm, the division of reactive and active clusters
considering the power balance and node coupling degree is realized
by Ge et al. (2024). The gray clustering method based on the
improved whitening weight function is used to partition the
distribution network by Xu L. et al. (2021), and the index weight
is obtained by comprehensively applying the analytic hierarchy
process and the entropy weight method. The modular index
based on the electrical distance and the active power balance
index are used as comprehensive division indexes by Li et al.
(2022c), and the distributed photovoltaic generation in the
distribution network is divided into clusters by using genetic
algorithms. Based on the theory of the modularity function
model in complex networks, a voltage coordination control
method of partitioning the aggregated domain of reactive voltage
sensitivity weights and active network loss-voltage sensitivity
weights of power systems is proposed by Wang Z. et al. (2023).
The nodes with a strong coupling relationship are merged to
determine the initial number of partitioning by Ji et al. (2023),
and then, the final partitioning result is determined according to the
affiliation between each load node and each reactive power source.
Combining the K-means clustering algorithm and optimized PSO
algorithm for voltage regulation within the cluster ensures that the
voltage crossing problem is solved by Su et al. (2023). A cluster
partition index system considering the structural and functional
properties is proposed by Pan et al. (2021), and the modular index
that takes into account the characteristics of electric and heat
networks is used on the structural property to describe the
connection strength between different network nodes. However,
the existing cluster partition indexes only concern the active power
balance in each cluster, ignoring the impact of reactive power.
Meanwhile, the existing cluster partition indexes ignore the
influence of cluster size on the planning results, which can easily
lead to large differences in the cluster size, even leading to isolated
nodes (Li et al., 2023). In addition, the existing cluster partition
methods have insufficient computational accuracy, and for a
complex cluster partitioning index, the optimization results tend
to fall into local optimum solutions.

The current active distribution network (ADN) planning
strategy usually includes the reinforcement or expansion of
distribution networks and DG integration under the active
management of DG outputs (Mukherjee and Sossan, 2023). A
two-level robust optimal feeder routing model for the planning
of radial distribution networks is proposed by Zdraveski et al.
(2023), where power demand is uncertain. The robust model is
solved by implementing the column and constraint generation

strategy. A method based on calculating the probability of
electric vehicles (EVs) entering each parking lot is proposed by
Haji-Aghajani et al. (2023) for the long-term planning of EV parking
lots. An integrated power and gas systems of IPGS considering
cascading effects for enhancing resilience is proposed by Wang Y.
et al. (2023), and the two-phase framework containing phases of
“demand reachability evaluation” and “integrated planning” is
proposed. A framework for the optimal planning of battery
swapping stations (BSSs) in centralized charging mode is
proposed by Shaker et al. (2023), and in this mode, the batteries
are charged at a central charging station. Possible equipment
measures are classified into several categories by Sasaki et al.
(2023), formulating the “low-voltage system configuration
determination problem;” in addition, a solution algorithm based
on the practical priorities of classified measures is proposed. The
resilience-oriented distribution network planning problem utilizing
a novel three-stage hybrid framework is proposed by Faramarzi et al.
(2023), and the decision-making on the line hardening and DG
placement is carried out in the first stage. In the second stage,
emergency and normal operation optimization is conducted. A
collaborative stochastic expansion planning model of a
cyber–physical system with resilience constraints is proposed by
Zhang et al. (2023), and the model can reduce the coupling risk and
enhance the resilience under extreme scenarios. An appropriate
probabilistic wind power capacity expansion planning method for a
bundled wind–thermal generation system with retrofitted coal-fired
units is reformulated as a mixed-integer second-order cone
programming problem by Lei et al. (2023). In terms of cluster
planning, the existing research mainly considers deterministic
scenarios as the research background (Bi et al., 2019), ignoring
the impact of source-load uncertainty (Cai et al., 2022). Aiming at
solving the problems of resource waste caused by the large-scale
access of distributed generators to distribution networks and
improving the economy of energy storage systems, a cluster
energy-storage control strategy for prompting the distributed
generation accommodation and improving the economy of
energy storage systems is proposed by Li et al. (2021). In
considering the optimization of load distribution among units
and introducing consumption costs, a grid evaluation index
system including the coordination index of the power
transmission and distribution network is constructed by Xu X.
et al. (2021). A novel cluster-based distributed generation
planning approach is proposed by Ding et al. (2019), and the
distribution network is divided into several partitions considering
the system network structure and the load characteristics, thus
conducting a hierarchical and partitioned network structure. A
planning model of renewable energy access is established by Hu
et al. (2020) based on cluster partition considering the investments
and power generation interests of power producers and the power
match degree within clusters. With the increasing proportion of
distributed PVs, the source-load uncertainty increases the difficulty
in modeling the uncertainty of DNs (Liu et al., 2022) and increases the
dimensionality of variables in the planning model (Jiang et al., 2022).
How to establish a cluster planning model based on the source-load
uncertainty (Zhu et al., 2018) and simplify the traditional centralized
planning model need to be further researched.

Based on the above analysis, this paper proposes a cluster
partition-based two-layer expansion planning model of
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grid–resource–storage for DNs. The main contributions of this
paper are summarized as follows:

(1) To deal with poor power balance and unbalanced cluster size
in existing cluster partition, a comprehensive cluster partition
index is proposed, which includes the modularity index,
power balance index, and nodal size index. In addition,
based on the comprehensive cluster partition index, an
improved genetic algorithm is proposed to partition the
DN into some clusters.

(2) To deal with complex models in centralized planning
methods, a cluster partition-based two-layer expansion
planning model is established for the DNs. In the upper
layer, a line planning model is established to carry out the
planning of cluster connection lines. In the lower layer, the PV
and ES planning model within a cluster is established, which
can realize the optimal planning of PVs and ESs in
each cluster.

(3) To reduce the conservatism of the traditional robust
optimization, a box uncertainty set is utilized to
characterize the uncertainty of loads and PVs, and an
uncertainty regulation parameter is used to control the
range of uncertainty sets, which can reduce the
conservatism of the optimization and simplify the
calculation process.

The remainder of this paper is organized as follows: a
comprehensive cluster partition index-based cluster partition
method is proposed in Section 2; a cluster partition-based two-
layer expansion planning method is proposed in Section 3; in
Section 4, the case study is analyzed; and the conclusion is given
in Section 5.

2 Comprehensive cluster partition
index-based cluster partition method

2.1 Comprehensive cluster partition index

As the existing cluster partition index is not comprehensive,
based on the DN structure and cluster function, a comprehensive
cluster partition index is proposed to complete the cluster partition
in this paper. The proposed comprehensive cluster partition index
includes the modularity index, power balance index, and nodal
size index.

2.1.1 Modularity index
The coupling degree between nodes can be measured by a

modularity index based on voltage sensitivity, which is
expressed as

ρ � 1
2Ω ∑i∈S ∑j∈S vij − κiκj

2Ω( )ϕ i, j( ), (1)

Ω �
∑
i∈S
∑
j∈S

vij

2
, (2)

κi �∑
j∈S

vij, (3)

where ρm is the modularity index. vij is the edge weight between
node i and node j. S is the node set of DNs. Ω is the sum of the edge
weight of all networks. κi is the sum of the edge weights that are
connected to node i. ϕ(i, j) is the judgment function of the cluster;
when node i and node j are in the same cluster, then ϕ(i, j) = 1;
otherwise, ϕ(i, j) = 0. vij is determined by the electrical distance, and
the electrical distance can indicate the electrical coupling degree
between two nodes in the network. For a DN with N nodes, the
electrical distance based on the reactive voltage sensitivity matrix is
expressed as

LQV
ij �

���������������������������
SQVi1 − SQVj1( )2 + .... + SQViN − SQVjN( )2,√

(4)

where SQVi1 is the element in row i and column j of the reactive
voltage sensitivity matrix, which represents the sensitivity of reactive
power generation at node i to the voltage at node j. LQVij is the
electrical distance between the two nodes based on the reactive
voltage sensitivity matrix; the larger the value of LQVij , the smaller the
electrical distance between the two nodes. Similarly, the electrical
distance LPVij based on the active voltage sensitivity matrix can be
obtained. The node voltages are affected by active and reactive power
variations, and then, the electrical distance based on the sensitivity
matrix is expressed as follows:

Lij �
LQV
ij + LPV

ij

2
. (5)

The relationship between the edge weight and electrical distance
is that the larger the edge weight, the smaller the electrical distance.
Then, the mathematical expression between the edge weight and
electrical distance can be obtained as follows:

vij � 1 − Lij

max Lij( ), (6)

where max(Lij) is the maximum value of the elements in the
electrical distance matrix.

2.1.2 Power balance index
In order to avoid large-scale power transfer between

clusters, the PV output and load demand within a cluster
should be as equal as possible. In order to evaluate the ability
of clusters to hold the distributed PVs, this paper proposes the
power balance index. The active power balance index φP is given
as follows:

φP � 1
Nk
∑Nk

k�1
1 − 1

T
∑T
t�1

Pk,t

maxPk,t

⎛⎝ ⎞⎠, (7)

where Nk is the number of clusters. Pk,t is the net power of cluster k
at time t. T is the period of optimization. Similarly, the reactive
power balance index φQ is established as follows:

φQ � 1
Nk
∑Nk

k�1
1 − 1

T
∑T
t�1

Qneed

Qsup
⎛⎝ ⎞⎠, (8)

where Qsup is the maximum value of reactive power supply
within the cluster and Qneed is the value of reactive power demand
within the cluster.
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2.1.3 Nodal size index
A reasonable cluster size will directly impact the complexity of

the subsequent cluster planning, as well as avoid the differences in
the complexity of optimization among different clusters caused by
unbalanced cluster size. In addition, a reasonable cluster size can
avoid the isolated nodes in the planning process. In order to balance
the size of each cluster, a nodal size index is established as follows:

φM � μ i, V i[ ]( )
μ i, V − V i[ ]( ), (9)

μ i, V i[ ]( ) � 1
V i[ ]| | ∑j∈V i[ ]

υij, (10)

μ i, V − V i[ ]( ) � 1
V − V i[ ]| | ∑

j∈V−V i[ ]
υij, (11)

where V[i] is the cluster that node i belongs to. μ(x, y) is the
affiliation degree of node x to cluster y. |V[i]| is the sum of the edge
number in the cluster that node i belongs to. V-V[i] are the clusters
that do not contain node i. |V-V[i]| is the sum of the edge number in
clusters that do not contain cluster V[i].

The indexes shown in Eq 1, (7), (8), and (9) are combined into a
comprehensive cluster partition index ϕ for the DNs, which is
expressed as follows:

ϕ � ω1ρ + ω2φP + ω3φQ + ω4φM, (12)
where ω1, ω2, ω3, and ω4 are the weights of each index. In the process
of cluster partition, different weights can be set for each index
depending on different needs.

2.2 Improved genetic algorithm-based
cluster partition method

To carry out the cluster partition, a hybrid genetic-simulated
annealing (HGSA) algorithm is utilized. The HGSA algorithm uses
the annealing selection as the individual replacement strategy, while
the global information obtained by the genetic algorithm can be
completely used, and the premature convergence of the genetic
algorithm can be avoided. Then, the global convergence of the
algorithm is enhanced. The cluster partition is implemented
as follows:

Step 1: Initial optimization parameters are set: population size n,
initial temperature T0, termination temperature Tend, temperature
cooling factor r, maximum number of genetic generations M, and
objective function for the cluster partitioning index ϕ.

Step 2: The number of temperature updates is set equal to 0.
Considering that the cluster partition is carried out based on the
original network connectivity, this paper uses the unweighted
adjacency matrix Aij to represent the connectivity of the
network, where Aij � 1 indicates that nodes i and j are connected
and Aij � 0 indicates that nodes i and j are not connected. The
clustering partition is randomly modified whenAij = 1. The result of
the modification is 0 or 1, and 0 means that the two nodes are
disconnected from each other, and then, the two nodes belong to
different clusters. In the iteration of the algorithm, in order to ensure
that the result after crossover still satisfies the meaning of the
adjacency matrix, only the upper triangle of the adjacency matrix

is chosen to carry out the crossover. After the crossover step, the
upper triangle of the matrix is symmetrically transferred to the lower
triangle to form the newborn individuals, thus generating the initial
population Pl(k).

Step 3: The individuals that satisfy the cluster constraints are
screened. Considering that the reverse power flow only occurs
within the cluster, the net power within each cluster needs to be
greater than 0 at each moment among the cluster partition. For the
individuals who cannot satisfy the constraint, the population
eliminates these individuals.

Step 4: Eq. (12) is chosen as an indicator to calculate the fitness of
individuals. Considering that the value of fitness intuitively reflects
the superiority or inferiority of cluster partition, the individuals with
greater fitness are replicated to the offspring to form the new
population Pls(k + 1).

Step 5: The crossover and mutation are carried out for
Pls(k + 1) using the traditional genetic algorithm to obtain the
population Plv(k + 1). The mutated populations are limited to
accepting bad solutions by the simulated annealing algorithm to
form new populations Plz(k + 1).

Step 6: Pl(k) � Plz(k + 1) is set. If the genetic algebra
accumulates to the maximum number M, then step 7 is repeated;
otherwise, step 3 is repeated.

Step 7: The temperature is updated, i.e., Tl =rT0, k = 0,
Pl+1(k + 1) � Pl(k). If the convergence condition Tl < Tend, then
the computation to output the optimal solution is terminated.
Otherwise, the temperature reduction operation is performed,
i.e., Tl+1 = rTl, and step 3 is repeated.

3 Cluster partition-based two-layer
expansion planning method

In this paper, a cluster partition-based two-layer expansion
planning model is proposed, which involves the uncertainty of
PVs and loads. In the upper layer, a line planning model is
established with the objective of minimizing the line investment
and network loss costs. In the lower layer, a source-storage planning
model is proposed for PVs and ESs with the objective function of
minimizing source-storage investment and operation costs within a
cluster. Meanwhile, the box-type uncertainty set is utilized to
characterize the uncertainty of PVs and loads in the lower layer,
and an uncertainty parameter is used to control the range of
uncertainty sets, which can reduce the conservatism of the
optimization.

3.1 Upper-layer line planning model

In the upper layer, the objective function of the line planning
model is established as follows:

minf � ∑
i,j∈Ωs

CL ∑
j∈φi

Dijxij
χ 1 + χ( )β
1 + χ( )β − 1

⎡⎢⎢⎣ ⎤⎥⎥⎦ + Ce∑T
t�1
∑Nk

k�1
∑Νn,k

i�1
∑
j∈φi

1
2
xijεijiij,t,

(13)
where Ωs is the node set of the branch network. φi is the child node
set of node i. CL is the investment cost parameter of lines. Dij is the
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line length of line i–j. xij is the 0–1 variable, where xij = 1 means that
the line is installed and xij = 0 means that the line is not installed. χ is
the bank rate. β is the payback period. Ce is the electricity price. Nn,k

is the node numbers of cluster k. εij is the resistance of the line i–j.
iij,t is the squared value of the current in the line i–j at time t. The
constraints include a power flow constraint and a penetration rate
constraint of PVs in the clusters.

(1) Power flow constraint

The power flow containing line variables is constrained by
second-order conic relaxation (SOCR) (Shaker et al., 2023)
as follows:

∑
i∈Ψj

Pij,t − εijiij,t( ) − xijP
L
j,t + ηPCH

j,t − PDS
j,t

η
+ PPV

j,t + PPVf
j,t � ∑

c∈φj

Pjc,t,

(14)∑
i∈Ψj

Qij,t − δijiij,t( ) − xijQ
L
j,t + QPV

j,t + QPVf
j,t � ∑

c∈φj

Qjc,t, (15)

∑
j∈φi

xij � 1, (16)

vj,t � vi,t
′ − 2 εijPij,t + δijQij,t( ) + ε2ij + δ2ij( )iij,t, (17)

0≤ ]i,t′ ≤Wxij, (18)
W 1 − xij( ) + ]i,t ≤ ]i,t′ ≤ ]i,t, (19)

2Pij,t 2Qij,t iij,t − ]i,t
���� ����2≤ iij,t + ]i,t, (20)

xijv
min ≤ ]i,t ≤ xijv

max, (21)
0≤ iij,t ≤ xij Imax( )2, (22)

where ψj is the upstream node set of node j. δij is the reactance of line
i–j. Pij,t and Qij,t are the active and reactive power through line i–j at
time t, respectively. η is the ES charging and discharging efficiency.
PCH
j,t and PDS

j,t are the charging and discharging power of ES at node j
at time t, respectively. PL

j,t and QL
j,t are the active and reactive power

of loads at node j at time t, respectively. PPV
j,t is the actual active

power generated by the PV at node j at time t. PPVf
j,t is the additional

active power required to be generated by the PV at node j at time t. φj
is the downstream node set of node j. QPV

j,t is the actual reactive
power generated by the PV inverter at node j at time t. QPVf

j,t is the
additional reactive power required to be generated by the PV
inverter at node j at time t. vi,t is the square of the voltage at
node i at time t. vi,t′ is the square of the voltage at node i that is
constrained by the line variable xij. W is a large constant. vmin and
vmax are the upper and lower voltage limits, respectively. Imax is the
maximum current limit.

(2) Penetration rate constraint of PVs

Many isolated nodes exist in the DN that need to be connected to
the system, and the penetration rate of PVs should be constrained
when carrying out line planning to access these isolated nodes,
which is defined as follows:

∑Νn,k

j�1
SPVj ≤∑Νn,k

j�1
SLj , (23)

where SPVj is the planed capacity of the PV of node j in the cluster
and SLj is the load apparent power of node j in the cluster.

3.2 Lower-layer PV and ES planning model

In the lower layer, the PV and ES planning model is established
to identify the “worst scenario " of the uncertain variables, and based
on the worst scenario, the proposed model minimizes the
investment and operation costs of source storage within the
cluster. Therefore, the objective function for the PV and ES
planning model within the cluster is established as

minF � F1 − F2 + F3, (24)

F1 � ∑Nn,k

j�1,j ∈ Πk

CPVSPV,fj

χ 1 + χ( )β
1 + χ( )β − 1

+ COMPV SPVj + SPV,fj( )⎡⎣ ⎤⎦, (25)

F4 � Csell + Csub( )∑T
t�1

∑Nn,k

j�1,j ∈ Πk

ωPV
t SPVj + SPV,fj( ) − PL

j,t[ ], (26)

F5 � ∑Νn,k

j�1,j ∈ Πk

ρ 1 + ρ( )r
1 + ρ( )r − 1

cbatPbatt
j[ ], (27)

where F1 is the annual investment and operation costs of PVs in
cluster k. F2 is the annual revenue of PVs in cluster k. F3 is the annual
investment costs of ESs in cluster k.CPV is the investment cost parameter
of PVs. COMPV is the annual fixed maintenance cost parameter of PVs.
Uk is the node set of cluster k. SPVj is the original installed PV capacity of
node j in cluster k. SPV,fj is the planned PV capacity of node j in cluster k.
Csell and Csub are the feed-in tariff and subsidized tariff of the PVs,
respectively. ωPV

t is the output limit of PVs per megawatt for a given
sunshine condition at time t. ρ is the discount rate. r is the discounted
number of years. cbat is the investment cost parameter of ESs. Pbatt,j is the
allocated capacity of ES at node j. The constraints include uncertainty
constraints for PVs and loads, PV and ES capacity constraints, and
power flow constraints.

(1) Uncertainty constraints for PVs and loads

The box uncertainty set is utilized to characterize the uncertainty
range of active load power, reactive load power, and PV outputs.
Meanwhile, an uncertainty parameter is utilized that can be set to
adjust the conservativeness of the optimal solution. The larger the
uncertainty parameter, the more conservative the solution. The
specific formula is as follows:

U � {u � PL
j,t, Q

L
j,t, P

PV
j,t[ ]T ∣∣∣∣∣∣PL

j,t ∈ PL,F
j,t − ΔPL

j,t , P
L,F
j,t + ΔPL

j,t[ ],∑Na

j�1

PL
j,t − PL,F

j,t

∣∣∣∣∣ ∣∣∣∣∣
ΔPL

j,t

≤ ΓPL;

QL
j,t ∈ QL,F

j,t − ΔQL
j,t, Q

L,F
j,t + ΔQL

j,t[ ],∑Nb

j�1

QL
j,t − QL,F

j,t

∣∣∣∣∣ ∣∣∣∣∣
ΔQL

j,t

≤ ΓQL;

PPV
j,t ∈ PPV,F

j,t − ΔPPV
j,t , P

PV,F
j,t + ΔPPV

j,t[ ],∑Ne

e�1

PPV
j,t − PPV,F

j,t

∣∣∣∣∣ ∣∣∣∣∣
ΔPPV

j,t

≤ ΓPV;
⎫⎪⎬⎪⎭,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(28)

where U represents the boxed uncertainty set. PL,F
j,t , Q

L,F
j,t , and PPV,F

j,t

are the predicted values of active load power, reactive load power,
and PV outputs of node j at time t in cluster k, respectively. ΔPL

j,t,
ΔQL

j,t, and ΔPPV
j,t are the fluctuation deviations of active load power,
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reactive load power, and PV output of node j at time t in cluster k,
respectively. Na, Nb, and Ne are the total number of active load
nodes, the total number of reactive load nodes, and the total number
of PV nodes in cluster k, respectively. ΓPL, ΓQL, and ΓPV are the
uncertain adjustment parameters for active load power, reactive load
power, and PV output S, respectively, which are integers from 0 to
Na, 0 toNb, and 0 toNe, respectively. The decision-maker can choose
a variety of uncertainty regulation parameters to adjust the scheme
flexibly; the larger the value of each uncertainty regulation
parameter, the more conservative the resulting planning scheme.

(2) PV and ES constraints

TES
k � �t1, (29)

∑
j∈Πk

ηPCH
j,t − ∑

j∈Πk

PDS
j,t

η
− ∑

j∈Πk

PPV
j,t − ∑

j∈Πk

PPVf
j,t + ∑

j∈Πk

PL
j,t � 0, t ∈ TES

k ,

(30)
socminPbatt

j ≤ socj,t ≤ socmaxPbatt
j , j ∈ Πk, t ∈ TES

k , (31)

socj,t � socj,t−1 +
ηPCH

j,t − PDS
j,t

η

Pbatt
j

, j ∈ Πk, t ∈ TES
k , (32)

0≤ ηPCH
j,t ≤PCH,max, j ∈ Πk, t ∈ TES

k , (33)

0≤
PDS
j,t

η
≤PDS,max, j ∈ Πk, t ∈ TES

k , (34)

0≤PPV
j,t ≤P

L,max
j , (35)

SPVfj � max PPVf
j,t( ), j ∈ Π, t ∈ TES

k , (36a)

whereTES
k is the simulated operating time of the ESs in cluster k. t1 is

the annual PV generation time. socj,t is the state of charge of ES at node j
in cluster k at time t. socmin and socmax are the minimum and maximum
charge states of ES, respectively. PCH,max and PDS,max are the maximum
power limits for charging and discharging power of ES, respectively.
PL,max
j is the maximum load demand of node j in the cluster.

(3) Power flow constraints

Eqs (14), (15), and (17) are referred to for the power flow
constraints.

3.3 Iterative solving process

In this paper, an iterative solution method is utilized to solve the
proposed planning models. For the upper layer, the planning model
can be expressed by a specific form as follows:

min
x

cTx + α

s.t. Px � W
α≥ kTyl
Bx + Cyl ≤D
Rxu*

l � Oyl
S*uyl ≤V
Gyl
���� ����≤HTyl
∀l≤ k,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(36b)

where x is the optimization vectors. c is the coefficient matrices
corresponding to the objective functions. P, k, B, C, Rx, S* u, G, and

H are the coefficient matrices corresponding to the variables under
the constraints. α,D, O, V, andW are the constant column vectors. l
is the current number of iterations. k is the maximum iteration. yl is
the variable at the lth iteration. u* l is the value of the uncertain
variable u in the “worst” scenario after the lth iteration.

The specific form of the lower-layer model is

max
u∈U

min
y∈Ω x,u( )

dTy

s.t. Bx* + Cy ≤D
R*
uu � Oy

Suy ≤V
Gy
���� ����≤HTy,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(37)

where y is the optimization vectors. Ω(x, u) is the feasible
domain of y under the given x and u. x* is the optimization
vectors obtained from the upper layer. d is the coefficient
matrices corresponding to the objective functions. Su and R* u
are the coefficient matrices corresponding to the variables under the
constraints. Given a set of u, the inner min. problem becomes a
second-order cone programming problem, which can be
transformed into a “max” form by the duality theory:

max
u∈U,γ,],π,μ,μ1

D − Bx*( )Tγ + Rxu( )T] + uTπ

s.t. CTγ + OTπ + Su
T] +∑

i

Giμi +H iμ1 i( )≤ d

μi
���� ����2≤ μ1 i,∀i � 1, 2, ..., j
γ, π, ]≥ 0, u ∈ U,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(38)

where[γ,],π,μ,μ1 ] are the dual variables in the lower-layer model.
After the above transformation, the proposed model can be

solved by the iterative solution method as follows:
Step 1: Given a set of u values as the initial worst-case scenario, a

lower bound is set on the operating cost LB = -∞, an upper bound
UB = +∞, and the number of iterations l = 1.

Step 2: The upper model is solved based on the worst-case
scenario ul to obtain the optimal solution x* l and α* l. The value of
α* l is used as the new lower bound LB = max(LB, α* l).

Step 3: The lower layer is optimized based on the optimization
results of the upper layer, and the optimized results fl (x* l) and the
worst-case scenario x* l are obtained. The upper bound is updated as
UB = min(UB, fl (x* l)).

Step 4: If UB-LB < ε, where ε is a threshold of convergence, then,
the optimal solutions can be obtained, and the iteration is stopped.
Otherwise, the variable yl+1 and the following constraints are added:

α≥ kTyl+1

Bx + Cyl+1 ≤D
Rxul+1* � Oyl+1
S* l+1u yl+1 ≤V
Gyl+1
���� ����≤HTyl+1.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (39)

Let l = l + 1, and step 2 is repeated until the algorithm converges.

4 Case study

4.1 Case study system

In order to verify the effectiveness of the proposed method, an
actual 35 kV/10 kV DN in China is utilized for analysis. The total
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loads in this DN are 7.3 MVA, and the total capacity of PVs in this
DN is 4 MW. The installed PV capacity is shown in Table 1. The
topology of this system is shown in Figure 1, the lines to be planned
are shown in Table 2, and the line parameters of the network are
shown in Table 3.

The simulated genetic annealing algorithm used in this paper
sets the population size n = 40, the initial temperature T0 = 100°C,
the termination temperature Tend = 1°C, the temperature cooling
factor r = 0.8, the maximum number of genetic generations N = 500,
the crossover probability pc = 0.4, and the variation probability pm =
0.2. This paper uses MATLAB version 2019 to program
the algorithm.

4.2 Analysis of cluster partition

In order to illustrate the superiority of the proposed cluster
partition index in this paper, the modularity function used by Wang
et al. (2021) is selected to compare with the proposed cluster
partition index. The weights of the proposed cluster partition

index in this paper are taken as ω1 = ω2 = ω3 = ω4 = 0.25. The
cluster partition results under the proposed cluster partition index
are shown in Figure 2, and the cluster partitioning results under the
modularity function are shown in Figure 3.

Figure 2 and Figure 3 show that the size difference among sub-
networks attained by the proposed cluster partition index is smaller
than that attained by the modularity function, and isolated nodes
forming separate clusters (cluster 3 and cluster 6) occur in
modularity function. In addition, there are PVs in each cluster
attained by the proposed method, while no PVs exist in cluster
1 attained by the modularity function. The differences between the
two methods prove that the cluster partition index can result in a
more reasonable cluster partition for the subsequent cluster control
and operation.

In order to illustrate the superiority of the proposed cluster
partitioning algorithm, the traditional genetic algorithm is selected
to be compared. The comparison of cluster partition results obtained
by the two algorithms is shown in Table 4. Table 4 shows that the
optimization results of each cluster partitioning index of the
proposed algorithm are greater than those of the traditional

TABLE 1 Installed capacity of photovoltaics (PVs).

Node location Installed
capacity (kW)

Node
location

Installed
capacity (kW)

Node
location

Installed
capacity (kW)

7 500 16 500 21 500

9 500 17 500 27 1,500

FIGURE 1
Physical topology of the system.

TABLE 2 Lines to be planned.

Lines Distance/km Line Distance/km Line Distance/km

7–11 15.64 30–27 17.62 16–27 23.64

9–11 22.37 14–21 6.50 23–21 5.30
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genetic algorithm, which indicates that the proposed cluster
partitioning algorithm has better optimization performance.

Different combinations of partition index weights are given
in Table 5. As shown in Table 5, when increasing the weight of
the modularity index, the nodes within the cluster are better
connected, but the cluster power complementarity decreases.

When increasing the weight of the active and reactive power
balance index, the cluster power complementarity
characteristics improve, but the nodes within the cluster are
significantly less connected. When increasing the weight of the
nodal size index, the number of clusters changes. When
increasing the weight of the nodal size index, the number of

TABLE 3 Line parameters of the network.

Start node Final node Line impedance (Ω/km) Start node Final node Line impedance (Ω/km)

1 2 0.192 + 20.533 j 4 29 0.515 + 0 j

1 3 0.192 + 0 j 4 30 0.13 + 0 j

1 7 0.192 + 13.200 j 5 22 0.13 + 6.482 j

1 8 0.61 + 1.820 j 7 11 0.299 + 0.823 j

1 20 4.681 + 8.314 j 9 11 0.12 + 0.471 j

1 32 7.686 + 14.750 j 14 21 0.186 + 0.261 j

2 6 1.084 + 3.236 j 15 16 0.21 + 0.730 j

2 9 2.132 + 3.786 j 16 27 0.9 + 0.804 j

2 10 1.703 + 4.690 j 16 31 0.731 + 1.298 j

2 12 0.13 + 10.323 j 23 21 3.773 + 5.297 j

2 13 0.238 + 16.259 j 24 29 1.24 + 2.662 j

2 18 0.238 + 0 j 28 29 2.388 + 4.242 j

3 4 5.628 + 16.797 j 28 30 0.515 + 29.563 j

3 5 5.616 + 9.975 j 30 27 2.495 + 4.432 j

3 14 0.238 + 10.209 j 33 29 4.231 + 3.621 j

3 15 0.476 + 0 j 34 30 3.681 + 9.235 j

3 17 4.456 + 7.915 j 35 3 7.214 + 3.751 j

3 19 2.7 + 3.790 j 4 28 4.396 + 6.172 j

3 24 0.64 + 1.290 j

FIGURE 2
Partition results under the proposed cluster partition index.
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clusters changes, and the cluster partition is more focused on the
change in cluster size.

4.3 Analysis of the proposed
planning strategy

In order to verify the flexibility of the proposed two-layer
expansion planning model, three sets of uncertain regulation
parameters are selected and compared in terms of network
connection, planned capacity of PVs and ESs, and total planning
costs. Three sets of uncertain regulation parameters are set
as follows:

Case 1: ΓPL = ΓQL = ΓPV = 0 is set, and in this case, the active load
power, reactive load power, and PV output are all equal to the
predicted values.

Case 2: ΓPL = ΓQL = 16 and ΓPV = 4 are set, and in this case, the active
and reactive load power of 16 nodes is taken to the minimum value

of the prediction interval, while the PV outputs of 4 nodes are taken
to the maximum value of the prediction interval.

Case 3: ΓPL = ΓQL = 27 and ΓPV = 6 are set. In this case, the active and
reactive load power of 27 nodes is taken to the minimum value of the
prediction interval, while the PV outputs of 4 nodes are taken to the
maximum value of the prediction interval, which is the
worst scenario.

The comparisons of the three cases in planned PV capacity and
ES capacity are shown in Figure 4 and Figure 4, and the planning
results and total planning costs are shown in Table 6 and Table 7,
respectively.

Figure 4 shows that with the increase in uncertainty regulation
parameters, the planned PV capacity decreases. The reason is that
the scenario becomes increasingly severe, and to maintain the safe
operation of the cluster, the corresponding PVs are reduced.

As shown in Table 6, with the increase in uncertainty regulation
parameters, the connection of nodes 21 and 27 is different under the
three cases. The reason is that as the operating scenario becomes
more severe, and the load power increases, the planning results tend
to favor a reduction in the power supply range.

As shown in Figure 5, as the conservatism of the planning
increases, the ES installed capacity also increases. The reason is that
the active power and reactive power of the load in cases 2 and 3 are
smaller than those of case 1, and the PV outputs are larger; hence,
more ESs are needed to mitigate the uncertainty of PVs and loads.

In addition, Table 7 shows that as the uncertainty regulation
parameter increases, although the annual investment and operation

FIGURE 3
Partition results under the modularity function.

TABLE 4 Comparison of cluster partition results obtained by different
algorithms.

Result ρm φP φQ φM

Proposed algorithm 0.6953 0.8639 0.6866 0.7233

Traditional genetic algorithms 0.6132 0.8071 0.6120 0.6982

TABLE 5 Influence of different weights on cluster partition.

Combination ϖ1 ϖ2 ϖ3 ϖ4 ρm φP φQ φM Number of clusters

1 0.1 0.4 0.4 0.1 0.632 1 0.896 4 0.711 7 0.701 6 7

2 0.2 0.3 0.3 0.2 0.677 9 0.889 1 0.679 3 0.708 3 6

3 0.3 0.2 0.2 0.3 0.742 4 0.833 0 0.657 1 0.739 3 6

4 0.4 0.1 0.1 0.4 0.789 1 0.798 3 0.625 3 0.756 1 5
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costs of PVs correspondingly decrease, the annual income of PVs
decreases, and the annual investment costs of networks, network
losses, and the annual investment costs of ESs correspondingly

increase. The reason is that the more uncertainty of DNs considered
in the planning process, the more conservative the resulting solution
becomes, and the corresponding total cost increases.

FIGURE 4
Planned photovoltaic (PV) capacity under different cases.

TABLE 6 Planning results of different schemes.

Case Line connection results Cluster planning results

Connectivity Disconnection

1 7–11 9–11 Cluster 1 (7,8,11,20,32); cluster 2 (2,6,9,10,12,13,18)

23–21 14–21 Cluster 3 (3,14,17,19,24,26,35); cluster 4 (5,21,22,23,25)

30–27 16–27 Cluster 5 (15,16,31); cluster 6 (4,27,28,29,30,33,34)

2 7–11 9–11 Cluster 1 (7,8,11,20,32); cluster 2 (2,6,9,10, 12,13,18)

14–21 23–21 Cluster 3 (3,14,17,19,21,24,26,35); cluster 4 (5, 22,23,25)

30–27 16–27 Cluster 5 (15,16,31); cluster 6 (4,27,28,29,30,33,34)

3 7–11 9–11 Cluster 1 (7,8,11,20,32); cluster 2 (2,6,9,10,12,13,18)

14–21 23–21 Cluster 3 (3,14,17,19,21,24,26,35); cluster 4 (5,22,23,25)

16–27 30–27 Cluster 5 (15,16,27,31); cluster 6 (4,28,29,30,33,34)

TABLE 7 Planning costs in different cases.

Comparison item Case 1 Case 2 Case 3

Annual investment costs of photovoltaics (PVs) 587.54 $ 553.48 $ 528.22 $

Annual operation costs of PVs 414.93 $ 232.90 $ 187.04 $

Annual income of PVs 240.43 $ 247.92 $ 285.45 $

Annual investment costs of lines 622.98 $ 856.43 $ 914.28 $

Network losses 139.82 $ 154.68 $ 185.82 $

Annual investment costs of energy storages (ESs) 1,062.34 $ 1,579.61 $ 1,726.73 $

Frontiers in Energy Research frontiersin.org10

Yang et al. 10.3389/fenrg.2024.1390073

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1390073


In order to further illustrate the superiority of the proposed
planning method, the centralized planning method is selected to
compare with the proposed planning method. The uncertain
regulation parameters in this comparison are set as ΓPL = ΓQL =
12 and ΓPV = 3, and in this case, the active and reactive load power of
12 nodes is taken to the minimum value of the prediction interval,
while the PV outputs of 3 nodes are taken to the maximum value of
the prediction interval. The network connection of the two methods
is shown in Figure 6 and Figure 7. The comparison of the calculation
time and total planning cost of the two methods is shown in Table 6.

Figure 6 and Figure 7 show that the connection of node 11 and
node 27 under the proposed method is different from the centralized
planning scheme. The length of the power supply lines for node
11 and node 27 under the proposed method has been reduced by
6.73 km and 6.02 km, respectively; the power supply range is greatly

shortened, which can effectively reduce the line investment costs and
network loss costs, as well as improve the economic efficiency of the
planning scheme.

The calculation method for the difference rate given in Table 8 is
to subtract the results of the proposed method from those of the
centralized planning method and divide them by the results of the
centralized planning method. As shown in Table 8, in the proposed
method, the annual PV investment costs and PV operation costs, as
well as the annual income of PVs, increased by 5.3% and 14.1%,
respectively, compared to the centralized planning method, and the
annual investment costs of lines, network losses, and annual
investment costs of ESs decreased by 13.5%, 25.7%, and 15.5%,
respectively. These different rates indicate that the proposed method
can improve the overall economic efficiency of the planning, as well
as reduce the costs of planning. In addition, the calculation time of

FIGURE 5
Planned energy storage (ES) capacity under different cases.

FIGURE 6
Planning results based on the proposed method.
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the proposed method is 20.41 s, but that of the centralized planning
method is 43.62 s. Owing to the fact that the centralized planning
method requires a whole optimization process, the huge variables
complex the optimization. However, the proposed method can
partition the complex network into smaller sub-networks, and
the complex problem is divided into several relatively simple sub-
problems that can be solved rapidly and easily by a parallel
computing way. Therefore, the computing time can be greatly
shortened. The optimization speed of the proposed method is
improved by 53.2% compared to centralized planning methods,
which indicates that proposed method is more suitable for DN
planning with large-scale PVs.

5 Conclusion

In this paper, a cluster partition-based two-layer expansion
planning for DNs is proposed, and an actual 35 kV/10 kV DN in
China is utilized for analysis. The results show that

1) To deal with poor power balance and unbalanced cluster size
in existing cluster partition, a comprehensive cluster partition
index is proposed in this paper, which includes the modularity
index, power balance index, and nodal size index, and in order

to avoid the cluster partition falling into local optimum, an
improved genetic algorithm is utilized to carry out the network
partition. The differences in cluster size among the clusters
attained by the proposed cluster partition are smaller, and
every cluster has PVs.

2) To deal with complex models in centralized planning methods, a
cluster partition-based two-layer expansion planning model is
established for the DNs, which decomposes the complex
centralized planning model into cluster planning. The proposed
method can improve the overall economic efficiency of the
planning, as well as reduce the costs of planning. Meanwhile,
the optimization speed is also improved.

3) To reduce the conservatism of traditional robust optimization,
a box uncertainty set is utilized to characterize the uncertainty
of loads and PVs, and an uncertainty regulation parameter is
used to control the range of uncertainty sets, which can reduce
the conservatism of the optimization, as well as simplify the
calculation process.

In the actual operation, the PV outputs are uncontrollable and may
exceed the worst scenario set in the planning stage. Then, the PV outputs
within the cluster may not be fully absorbed. In future research, a cluster
partition-based schedulingmethod forDNs should be further researched
to enhance the source-load complementarity of the DNs.

FIGURE 7
Planning results based on the centralized planning method.

TABLE 8 Comparison between the proposed method and centralized planning method.

Comparison item Proposed method Centralized planning method Difference rate (%)

Annual investment costs of photovoltaics (PVs) 569.86 $ 541.11 $ −5.3

Annual operation costs of PVs 293.10 $ 239.87 $ −14.1

Annual income of PVs 240.43 $ 277.97 $ 13.5

Annual investment costs of lines 692.89 $ 932.30 $ 25.7

Network losses 150.14 $ 177.58 $ 15.5

Annual investment costs of energy storages (ESs) 1,360.22 $ 1,689.09 $ 10.3

Calculation time 20.41 s 43.62 s 53.2
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