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The widespread adoption of the Internet of Things (IoT) partly depends on the
successful design and deployment of IoT nodes that can operate for several
years without any service outage and the need to replace their energy storage
systems (ESSs) (e.g., battery, capacitor, or supercapacitor) when all the stored
energy is depleted or when the cycle life of the ESSs is reached. Replacing
batteries in the case of large-scale IoT networks and nodes located in places that
are hard to reach is very challenging and costly, requiring the design of IoT nodes
that can operate for several years without the need for human intervention. One
such example is the deployment of IoT nodes in large agricultural fields (for
soil or crop monitoring) or a long-distance pipeline (for pipeline monitoring).
In this paper, we investigated the practical implications of imposing energy-
saving thresholds on the energy performance metrics of green IoT nodes.
We propose an energy packet-based model for the evaluation of the energy
performance of a green IoT node with the possibility of switching the node to
energy-saving regimes on the fly when the energy content of the ESS reaches
defined thresholds. Configuring single or multiple thresholds improves the
energy performance of the node significantly (e.g., increases the lifetime of the
node and reduces the probability of service outage and energy wastage), and the
value of the threshold(s) should be carefully chosen. The energy performance
of the IoT node can also be improved by dimensioning the energy harvesting
system to ensure that the node operates for several years without running out of
energy (e.g., maximizing the lifetime of the nodes andminimizing the probability
of service outage and energy wastage).

KEYWORDS

energy performance, green IoT, energy packets, energy efficiency, energy thresholds,
time-dependent analysis

1 Introduction

Thewidespread adoption of the Internet ofThings (IoT) partly depends on the successful
deployment of IoT nodes that can operate for several years without the need for battery
replacement. In most IoT deployments, the IoT sensor/actuator nodes are powered by non-
rechargeable batteries. A significant drawback of using non-rechargeable batteries is that the
lifetime of the IoT network is limited by the finite energy capacity of their batteries (Ku et al.
(2015)). As energy depleted from the battery is not being replenished, the energy stored
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in the battery is eventually depleted, requiring the replacement of
batteries, which is a costly operation and also very challenging in
large-scale IoT networks and nodes located in locations that are hard
to reach. For example, it is very challenging and costly to replace
the batteries of IoT nodes deployed in large agricultural fields (for
soil or crop monitoring) or a long-distance pipeline (for pipeline
monitoring). Thus, there is a severe need to design and deploy IoT
networks in such a way that the nodes can operate for several years
before requiring battery replacements.

There is growing interest in the adoption of green IoT design
as a viable strategy to increase the lifetime of IoT nodes (the time
required to deplete all the energy stored in the energy storage system
of an IoT node), reduce the carbon footprint of IoT networks,
and ensure environmental sustainability of IoT deployments. Green
IoT (Al-Ansi et al. (2021); Sadatdiynov et al. (2023); Alsharif et al.
(2023a)) is an IoT design framework that seeks to minimize the
energy consumption from the manufacturing and operation of
IoT systems with the aim of minimizing the carbon footprint or
pollutants (e.g., CO2, electronic wastes, and other toxic substances)
produced from the manufacturing, deployment, and operation
of IoT systems including other IoT-related infrastructures (e.g.,
edge computing, core networks, cloud computing, and operation,
provisioning, and maintenance systems).

Green IoT design involves the development of strategies to
minimize energy consumption and the use of energy harvesters
to harvest energy from ambient renewable energy sources to
power IoT systems. Some green IoT design mechanisms to
minimize energy consumption include duty cycling, reduction of
packet size, transceiver optimization, energy-ware routing, energy-
efficient sensing (e.g., adaptive sensing), reduction of protocol
overhead, voltage and frequency control (Abdul-Qawy et al. (2020);
Alsharif et al. (2023b)), energy-efficient hardware and software
design (Albreem et al. (2021); Alsharif et al. (2023b)), green IoT
communication technologies (BLE, RFID, NFC, Zigbee, LoRa,
and Sigfox), green IoT architecture design (green cloud, fog, and
virtualization) (Varjovi and Babaie (2020)), sustainable materials,
and integration of renewable energy into IoT systems. In addition,
the energy consumption of the IoT node can be reduced on the fly
during its operation by throttling the speed of the processor clock,
decreasing the operating voltage, or decreasing the transmission
power (and the number of transmission operations).

The challenge in designing IoT nodes that can operate for several
years without the need for battery replacement is the fact that the
availability of ambient energy sources (e.g., light, wind, RF, heat, and
vibration) is random and sporadic, and the energy consumed by the
nodes varies slightly. An approach for dimensioning green IoTnodes
without getting into the technical details of the energy harvesters,
IoT nodes, and energy storage systems (ESSs) is to discretize
energy into energy packets and apply well-known stochastic models
such as Markov models. More details about the energy packet
concept can be found in the study by Gelenbe (2011) and Gelenbe
(2012) and Kuaban et al. (2023a), and we have also presented more
details about it in the next sectionwithin the context of our proposed
modelling framework.

A few studies (Gautam and Dharmaraja (2018); Jones et al.
(2011); Tunc and Akar (2017); Miao et al. (2023)) were conducted

to analyze the energy performance of green IoT networks with
the possibility of reducing the energy consumption of the node
on the fly when the energy content of the ESS goes below the
defined energy thresholds. In the analysis presented in most of these
works, a single energy threshold is considered. Most of these works
mainly focus on performance metrics such as the lifetime of the
node. However, there are other performancemetrics, such as service
outage probability, the mean energy content of the ESS, and the
energy wastage probability.There is also a need for a more extensive
investigation of the impact of the energy threshold on the energy
performance metrics.

The main goal of this paper is to investigate the practical
implications of imposing energy-saving thresholds on the energy
performance metrics of green IoT nodes. We conduct steady-state
and time-dependent analyses of the energy performance of a green
IoT node, considering the impact of switching the node to more
energy-efficient regimes when the defined threshold of the energy
content of their ESS is reached.The main contributions of the paper
include the following:

1. We propose an energy packet-based model for the evaluation
of the energy performance of a green IoT node with the
possibility of switching the node to more efficient regimes on
the fly when the energy content of the ESS reaches defined
thresholds.

2. We present an approach to determine the size of an energy
packet or quantization step that can be used to discretize
or quantize the energy flows (energy harvested, stored, and
consumed) into energy packets. In this way, energy is treated as
the flow of discrete energy units (the so-called energy packets)
rather than continuous flows.

3. We propose a multi-threshold model of the ESS and evaluate
the impact of the value and number of thresholds on the energy
performancemetrics such as the service outage probability (the
probability that all the energy packets stored in the ESS are
depleted), energy wastage probability (the probability that ESS
is full and energy packets that arrive after this time instant are
lost or wasted), the mean number of energy packets in the ESS,
and the lifetime of the ESS.

4. We propose a novel Markov-based approach to model
the performance of ESSs with time-dependent renewable
energy sources (e.g., solar energy sources) similar to the
approach proposed by Kuaban et al. (2024a,b) using diffusion
approximationmodels.Themodel considers the accumulation
of solar energy during the day, which is then consumed
during the night when the solar energy harvester cannot
harvest energy.

2 Model description

In this section, we describe the energy model of a self-
powered green IoT node considered in this paper. We also
describe the energy packet model of the node and then use it
to describe the energy threshold-based model of the ESS, which
is the main focus of this paper.
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2.1 Energy model of the self-powered IoT
node

Consider a typical self-powered IoT node that consists of an IoT
sensor node, an energy harvesting system, and an ESS, as shown in
Figure 1. Energy is harvested from ambient or external sources (e.g.,
solar, artificial light, radio frequency, and vibration) to power the
sensor node directly. Any residual energy is stored in an ESS. The
stored energy is used to power the sensor node when the energy
harvester is not able to generate enough energy to meet the energy
needs of the node due to unfavourable environmental conditions
(e.g., during the night in the case of solar energy harvesters). When
the sensor node is not performing sensing, computing, or processing
operations, it is forced into the sleep mode, where it consumes
negligible amounts of energy. Figure 2 shows a snapshot of the power
profile of an IoT node consisting of two modes: sleep mode (when it
is not performing sensing, computing, or communication functions)
and active mode (when it wakes up to perform sensing, computing,
or communication operations). From the power profile, the average
power consumption of the node is given in Equation 1:

Pnode = D ⋅ Pact + (1−D) ⋅ Psleep, (1)

where the duty cycle ratio is given in Equation 2,

D =
tact

tact + tsleep
. (2)

where tact is the time spent in the active mode and tsleep is the
time spent in the sleep mode. Pact is the power consumption of the
node in the active mode and Psleep is the power consumption of the
node in the sleep mode. The energy consumed during the active
mode is the sum of the energy consumed by the sensing, computing,
communication units, and other auxiliary electronics components of
the node during the active period.

The power profile in Figure 2 illustrates the characteristics of the
IoT energy consumptionmodel, which forms the basis of our energy
packetization or quantizationmodel in the following subsection.The
power profile is obtained using a laboratory testbed that consists of
two IoT nodes positioned 2 m apart along a high-pressure plastic
pipe measuring 12 m in length and with a diameter of 25 mm. In
order to optimize or minimize the energy consumption of the IoT
nodes, the nodes are configured to perform distributed computing
with Kalman filtering (by sharing the computing load), adaptive
sensing (by using an energy-efficient but less accurate accelerometer
sensor and an energy-hungry but more accurate accelerometer
sensor), and duty cycling (forcing the node to enter sleep modes
when it is idle).

Performing energy planning of self-powered IoT nodes requires
an estimate of the energy demand, energy generation, and storage
capacity to ensure a low probability of service outage and a
long lifetime for the node. From the characterization of the
energy harvesting system (e.g., solar cells, piezoelectric, RF, or
thermoelectric energy harvester), the power profile can be obtained.
An empirical power profile of a solar energy harvester for an
IoT node is shown in the study by Kuzman et al. (2019), which
consists of active periods of solar power generation (when there is
enough solar radiation) and a period of no solar power generation
(when there is insufficient solar radiation, notably during the night).

From the energy consumption and generation profile, the mean
energy produced and consumed can be estimated.Themean energy
generated and consumed can be used to determine the number
of energy packets produced and consumed per unit of time, as
discussed in the next section.

2.2 The energy packet model of the node

In order to discretize or quantize energy into energy packets, the
first step is to determine the quantization step, which, in our case, is
the size of the energy packet.We consider an energy packet (inmWh
or mAh) as a pulse of power or current which lasts for a defined
time duration. Assuming that energy is consumed during active
periods when the node wakes up to perform sensing, computing, or
communication (and that a negligible amount of energy is consumed
during the deep sleep period), the size of the energy packet can
be considered to be Ep = Pact ⋅ tact. However, the quantization step
can be set to any arbitrary value but must be kept consistent in
the quantization of the energy harvesting, consumption, and storage
processes, as in the study by Da Silva et al. (2017).

Let CB (measured in mWh) represent the capacity of the ESS,
whichmay be a battery or a supercapacitor.Then, the capacity of the
ESS (in energy packets) is B = CB/Ep; that is, the number of energy
packets that can be stored in the ESS is B, and the energy states of the
ESS are {0,1,2,…,B}. We assume that the node wakes up only when
triggered by a random event (e.g., leakage of fluids from a pipe in
the case of a pipeline monitoring system). In this case, the energy
drawn from the battery per time unit is scattered independently and
uniformly in the sense of a Poison process (Kaj and Konané, 2016).
The energy consumption process becomes Enode = tact ⋅ PactN

(1/ti)
t ,

where Nμ
t denotes a standard Poisson process on the half line with

constant intensity μ. That is, energy is drawn from the battery
in small jumps of energy Ep = tact ⋅ Pact, which occur interspaced
by independent and exponentially distributed waiting times with
expected value ti = tact + tsleep. From the power consumption profile,
the mean number of energy packets drawn from the ESS per time
unit in the time interval [0, ti] is

μ =
tact

tact + tsleep
⋅
Pact
Ep
. (3)

We consider an intermittent energy harvesting source (e.g., the
presence of solar radiation, light, vibration, wind, RF radiation, and
heat). For simplicity, we assume that the energy arrival times of
the energy packets follow a Poisson process with rate λH (Ng et al.,
2013; Wang et al., 2014). This assumption may be realistic in self-
powered IoT nodes that stay in a deep sleep mode for a time that is
exponentially distributed. They wake up to receive or transmit data
packets, harvest wireless RF energy at the same time, and then return
to the sleep mode. From the power generation profile of the energy
harvester, the number of energy packets generated per time unit in
the time interval [0, T] is as follows:

λH =
1

Ep ⋅T
∫
T

0
PH (τ) dτ. (4)

Here, PH(t) is the output energy profile of the energy harvesting
system. If the harvested energy is greater than the energy required
to power the IoT node, the surplus is stored in the battery to be
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FIGURE 1
Architecture of a self-powered green IoT sensor node.

used when the node’s needs are greater than the energy production.
From the energy conservation principle and assuming that there is
no energy leakage from the ESS, themean number of energy packets
delivered to the battery is λ = μ− λH, which also follows a Poisson
process. In this case, the process of delivering energy packets of
the battery is also assumed to follow a Poisson process and from
Equations 3, 4, the mean rate of delivering energy packets to the
battery is λ = λH − μ.

2.3 Markov model of an energy storage
system with multiple energy thresholds

The ESS storage space is partitioned into m non-overlapping
intervals called energy-saving regimes by introducingm− 1 energy-
saving thresholds (or barriers or switches). In themth interval (with
the highest energy content), the IoT node is fully functional and
performs all its functions typically. However, in the subsequent
intervals, some of the functionalities of the node may be limited
or disabled to save energy to prolong the lifetime of the device,
making the node semi-functional. In the first interval (with the
lowest energy content),most of the functionalities (computation and
communication) of the nodes are significantly limited or disabled;

that is, the node is non-functional. Therefore, the node’s mean rate
of energy consumption depends on the energy content of the energy
storage system as shown in Equation 5:

μ (n) =

{{{{{{{{
{{{{{{{{
{

μ1         0 < n ≤ K1,
μ2         K1 < n ≤ K2,
μ3         K2 < n ≤ K3,
⋯         ⋯,
μm         Km < n ≤ B.

(5)

By introducing energy thresholds and reducing energy
consumption at the node as the energy content of the ESS goes below
the various thresholds, the lifetime of the node can be increased.
For specific IoT sensors, energy consumption can be reduced on
the fly by throttling the speed of the processor clock, decreasing
the operating voltage, or decreasing the transmission power. The
drawback of forcing the node to enter into energy-saving modes is
that it may degrade the quality of service of the nodes. This should
only be considered when the energy stored in the ESS is below
certain critical thresholds, and sacrificing some level of performance
is acceptable. Energy modes for some IoT devices may include the
following: run mode (CPU, flash, SRAM, and peripheral on), doze
mode (CPU clock runs slower than peripheral on), idle mode (CPU

Frontiers in Energy Research 04 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1399371
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Kuaban et al. 10.3389/fenrg.2024.1399371

FIGURE 2
Snapshot of the power profile of an IoT node.

off, flash, SRAM, and peripheral on), sleepmode (CPU, flash, SRAM
off, and peripheral on), and deep sleep mode (CPU, flash, SRAM,
and peripheral off) (Evanchuk, 2024).

In the ESS model, we assume that energy is delivered and
consumed by quantum (energy packets). The process resembles
the behaviour of a queueing system. The energy packets are like
customers, and the time it takes to consume one packet corresponds
to the service time.The number of customers in the queueing system
denotes the energy in the ESS. It allows us tomake use of the existing
queueing models. We model the dynamic changes in the number
of energy packets in the ESS as an M/M(n)/1/B queueing Markov
process {N(t)|t ≥ 0} such that p(n, t) = Pr{N(t) = n} is the probability
of having n energy packets in the ESS. In the notation, based on the
study byKendall )53), it is a stationwith Poisson input, exponentially
distributed service time, single server, and limited to B number
of customers inside. M(n) underlines that the parameter μ of the
time to consume an energy packet may depend on the queue length
(number of energy packets in the ESS), μ = μ(n). Themodel consists
of a set of equations (see, e.g., Kleinrock (1975)), as follows:

dp (0, t)
dt
= −λp (0, t) + μ (1)p (1, t) ,

dp (n, t)
dt
= −(λ+ μ1)p (n, t) + λp (n− 1, t) + μ (n)p (n+ 1, t) ,

n = 1,…B− 1,
dp (B, t)

dt
= λp (B− 1, t) − μ (B)p (B, t) . (6)

This system has a well-known solution, both in transient and
steady states, if the parameter μ does not depend on n, but in the
case of μ(n), the solution is limited to a steady state when state
probabilities do not depend on time. Therefore, in Section 3.2, we
analyze its transient state in detail.Themodel can be extended to the
case where the distributions between the time of arrival of energy
packets and the distributions of the time of their consumption
are not exponential but are a linear combination of exponentially
distributed phases that can approximate any distribution. Many
software tools adapt the parameters of such distributions to
the actual measurement data (e.g., Asmussen et al. (1990) and
Bause et al. (2010)), as well as tools to numerically solve the resulting
Markov chain equations (e.g., Prism, Kwiatkowska et al. (2011), or
our Olymp, Pecka et al. (2018)).

3 The energy performance analysis

The equations that are part of the set of Equation 6 are solved
to determine the performance metrics such as the mean number
of energy packets in the ESS, the probability that all the energy
packets stored in the ESS are depleted, the probability that ESS is full
and energy packets that arrive after the ESS is full are lost (energy
wastage probability), and the density of the lifetime of the node.
We perform both the steady-state and transient-state analyses of the
performance of the ESS to provide more insights into the influence
of themean number of energy packets delivered to the ESS, themean
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energy consumption rate, and the energy threshold(s) on the energy
performance of the node.

3.1 Steady-state analysis

In the steady state, when limx→∞p(n, t;n0) = p(n), the
differential equations above become linear equations which can
be easily solved to derive the steady-state distribution of the number
of energy packets in the ESS and the probability p(0) of depleting
all the energy packets stored in the ESS (probability that the ESS
is empty). The steady-state distribution of the number of energy
packets in the ESS is as follows (e.g., Kleinrock, 1975):

p (n) = p (0) λn

μ (1) ⋯ μ (n)
, (7)

and taking normalization ∑Bn=0p(n) = 1, the probability p(0) of
depleting all the energy packets stored in the ESS is as follows:

p (0) = 1

1+∑B
n=1
{λn/

n−1

∏
i=0

μ (i+ 1)}

.

From the Equation 7 above, the steady-state probability p(B)
that the ESS is full can be derived. The energy storage space of
the ESSs (e.g., battery or supercapacitor) for IoT nodes is very
limited (especially for very small and mobile IoT nodes), and
energy packets that arrive when the ESS is full are lost, resulting in
undesirable energy wastage. In addition, when all the energy packets
stored in the ESS are depleted, the node shuts down, interrupting
the service provided by the node. Thus, the probability p(0) is a
critical performancemetric and can be considered the service outage
probability. In the case of a single threshold, K, there are two energy
consumption regimes with μ(u) = μ1 (for n < K) and μ(n) = μ2 (for
n > K), and the performancemetrics are also a function of the energy
threshold K.

3.2 Transient-state analysis

We present the transient-state analysis of the energy
performance of the ESS with energy thresholds. The steady-state
analysis assumes that the mean rate at which energy packets are
delivered to the ESS and the mean rate at which energy packets are
consumed from the ESS are constant. However, the mean number
of energy packets harvested may vary within a 24-h day period
and between various days and months. In the case of solar energy
harvesters, sufficient energy is generated during the solar hour
period of the day, and no energy is generated at night. There are
also fluctuations within the day that may result in fluctuations in the
mean number of energy packets harvested and the mean number of
energy packets delivered to the ESS. These time-dependent changes
in the number of energy packets harvested and delivered to the
ESS make transient analysis of the dynamic changes in the energy
content of the ESS interesting. In the transient-state analysis, the
performance metrics considered in the previous section in the
steady-state analysis become time-dependent.

Transient analysis of M/M/1/B was performed in the study by
Tákacs (1962),Morse (1958), Sharma andGupta (1982), and recently

in the study by Massey et al. (2023). Here, we extend it to the
case of M/M/(n)/1/B, that is, state-dependent parameters μ(n). The
most straightforward approach is to consider Equation 6 in Laplace
domain as shown in the set of equations in Equation 8.

sP (0, s) − p (0,0) = 1− λP (0, s) + μ1P (1, s)

sP (n, s) − p (n,0) = −[λ+ μ (n)]P (n, s) + λP (n− 1, s)

+ μ1P (n+ 1, s)   1 ≤ n < B

sP (B, s) − p (B,0) = λP (B− 1, s) − μBP (B, s)   n = B. (8)

Here,

P (n, s) = Lp (n, t) = ∫∞0 e−stp (n, t)dtand

L{
p (n, t)
dt
} = sP (n, s) − p (n,0) ,

Solve the system Equation 8 for the values of s needed by
the inversion algorithm, and then the originals of P(n, s) are
looked for numerically, for example, with the use of the Stehfest
algorithm (Stehfest, 1970):

p (n, t) = ln 2
t

N

∑
i=1

Vi P(n, s =
ln 2
t

i),

and

Vi = (−1)N/2+i
min(i,N/2)

∑
k=⌊ i+1

2
⌋

kN/2+1 (2k)!
(N/2− k)!k! (k− 1)! (i− k)! (2k− i)!

.

In our numerical computations, we used N = 20.
However, we also present the explicit expressions for P(n, s).

Below, we do it for the case when the buffer is initially empty,
p(0,0) = 1. Similarly, results can be obtained for a ‘mirror’ process
that starts at B and ends at 0.

We assume that μ(n) takes m values specific for m zones, as
defined in Equation 5. Starting from the equations in the first
interval (e.g., 1 ≤ n ≤ K1 − 1),

λ
P (n− 1, s)
P (n, s)

= [(s+ λ+ μ1) − μ1
P (n+ 1, s)
P (n, s)

] . (9)

Dividing both sides of Equation 9 by μ1, we get the following:

λ
μ1

P (n− 1, s)
P (n, s)

= [( s
μ1
+ λ
μ1
+ 1)−

P (n+ 1, s)
P (n, s)

] . (10)

From Equation 9,

P (n+ 1, s)
P (n, s)

= λ

[(s+ λ+ μ1) − μ1
P(n+2,s)
P(n+1,s)
]
. (11)

Substituting (Equation 11) in (Equation 10), we get Equation 12:

λ
μ1

P (n− 1, s)
P (n, s)

= [[

[

( s
μ1
+ λ
μ1
+ 1)− λ

[(s+ λ+ μ1) − μ1
P(n+2,s)
P(n+1,s)
]
]]

]

, (12)
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which can be rearranged as follows:

λ
μ1

P (n− 1, s)
P (n, s)

= [[

[

( s
μ1
+ λ
μ1
+ 1)−

λ
μ1

[( s
μ1
+ λ

μ1
+ 1)− P(n+2,s)

P(n+1,s)
]

]]

]

. (13)

The ratio λ
μ1

P(n−1,s)
P(n,s)

in Equation 13 can be expressed as a
hypergeometric series as follows:

λ
μ1

P (n− 1, s)
P (n, s)

=

[[[[[[[

[

( s
μ1
+ λ
μ1
+ 1)−

λ
μ1

[

[
( s
μ1
+ λ

μ1
+ 1)−

λ
μ1

( s
μ1
+ λ
μ1
+1)−⋯
]

]

]]]]]]]

]

.

(14)

We apply the concepts of hypergeometric functions (Lorentzen
and Waadeland, 1992) and finite continued fractions (Waadeland
and Lorentzen, 2008; Ikenaga, 2022, accessed on 12 February, 2022)
to simplify the hypergeometric series in Equation 14. Let

x =
[[[[[[

[

( s
μ1
+ λ
μ1
+ 1)−

λ
μ1

[( s
μ1
+ λ

μ1
+ 1)−

λ
μ1

( s
μ1
+ λ

μ1
+1)−⋯
]

]]]]]]

]

,

which can also be expressed as follows:

x = (a+ b) − b
(a+ b) − b

(a+b)− b
(a+b)−⋯

,

where a = s
μ1
+ 1 and b = λ

μ1
. As x contains a copy of itself as the

bottom of the first fraction, it can be expressed as follows:

x = (a+ b) − b
x
. (15)

The roots of Equation 15 are as follows:

x =
(a+ b) ±√(a+ b)2 − 4b

2
.

As the fraction is positive,we take the positive root of Equation 16,

x =
(a+ b) +√(a+ b)2 − 4b

2
. (16)

From Equations 14, 16

P (n, s) = 2b

(a+ b) +√(a+ b)2 − 4b
P (n− 1, s) . (17)

Therefore, for 1 ≤ n < K1, the transient state probabilities P(n, s)
are derived from Equation 17

P (n, s) = ( λ
μ1

1
x
)
n
, (18)

where

x =
s+ λ+ μ1 +√(s+ λ+ μ1)

2 − 4λμ1
2μ1

.

Applying the above solution in Equation 18 iteratively for all
intervals, we obtain the transient state probabilities are given in
Equations 19–26:

P (n, s) =

{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{
{

( λ
μ1

1
α1 (s)
)
n
P (0, s) ,   1 ≤ n ≤ K1,

( λ
μ2

1
α2 (s)
)
n
P (0, s) ,   K1 < n ≤ K2,

( λ
μ3

1
α3 (s)
)
n
P (0, s) ,   K2 < n ≤ K3,

⋯ ⋯,

( λ
μm−1

1
αm−1 (s)
)
n
P (0, s) ,   Km−2 < n ≤ Km−1,

( λ
μm

1
αm (s)
)
n
P (0, s) ,   Km−1 < n ≤ B− 1.

(19)

where

αi (s) =
s+ λ+ μi +√(s+ λ+ μi)

2 − 4λμi
2μi

,   i = 1,2,3,⋯m.

From first Equation 8,

(s+ λ)P (0, s) = 1+ μ1P (1, s) ,

we obtain P(0, s).

P (0, s) =
(a+ b) +√(a+ b)2 − 4b

(s+ λ)[(a+ b) +√(a+ b)2 − 4b] − 2λ
, (20)

Equation 20 can be rearranged to obtain the transient
probability of depleting all the energy packets stored in the
ESS given in Equation 21:

P (0, s) =
s+ λ+ μ1 +√(s+ λ+ μ1)

2 − 4λμ1

(s+ λ){s+ λ+ μ1 +√(s+ λ+ μ1)
2 − 4λμ1}− 2λμ1

. (21)

From last Equation 8,

(s+ μm)P (B, s) = λP (B− 1, s) ,

and the transient proability that the ESS is charged to its full
capacity (and additional incoming energy packets are lost), P(B,S)
is given in Equation 22:

P (B, s) = λ
s+ μm
( λ
μm

1
αm (s)
)
B−1

P (0, s) . (22)

We remind that in the case of an M/M/1/B model, the transient
solutions obtained in Sharma and Gupta (1982) for the same
initial condition p(0,0) = 1 and p(n,0) = 0, n = 1,…B is present in
is present in Equation 23

P (n, s) =

(αβ)n [αB−n+1 − βB−n+1]
−(αβ)n+1 [αB−n − βB−n]

s[αB+1 − βB+1]
, (23)

where

α (s) =
s+ λ+ μ+√(s+ λ+ μ)2 − 4λμ

2μ
,
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and

β (s) =
s+ λ+ μ−√(s+ λ+ μ)2 − 4λμ

2μ
.

Similarly,

P (0, s) =
[αB+1 − βB+1] − (αβ)[αB − βB]

s[αB+1 − βB+1]
, (24)

and

P (B, s) =
(αβ)B [α− β]

s[αB+1 − βB+1]
. (25)

For very large values of B, the transient solution reduces to an
M/M/1 model as follows:

lim
B→∞

P (n, s) =
(1− β)ϱn

sαn
, (26)

where ϱ = λ/μ is the energy supply to demand ratio.
For other initial conditions, the system of Equation 8 is solved

numerically.
The mean number of energy packets in the ESS at time t is

E [N (t)] =
B

∑
n=0

np (n.t) . (27)

The Laplace transforms above can be inverted numerically using
the Stehfest algorithm to obtain p(n, t), from which time-dependent
performance metrics such as the service outage probability p(0, t),
energy wastage probability p(B, t), and the mean number of energy
packets in the ESS E[N(t)] can be obtained.

3.3 Modelling the lifetime of the IoT node

We investigate the impact of the threshold energy management
policy on the device’s lifetime. The objective of introducing the
adaptive threshold (or imposing the energy-saving regimes) is
to increase the device’s lifetime. The device’s lifetime is the
time required to deplete all the energy packets stored in the
ESS (Kuaban et al., 2023b; Czachórski et al., 2022). We model the
device’s lifetime as the first passage time of the M/M(n)/1/B model
from any starting state to n = 0.The density of the first passage time,
γi,0(t), of the process that starts atn = i and is absorbed atn = 0 can be
obtained numerically by solving the proposed M/M(n)/1/B model.

We compute the first passage time fromB to zero of the proposed
M/M/(n)/1/B model by making state zero the absorbing one, that is,
modifying the first equation of the system (6) to the following form:

dp (0, t)
dt
= μ (1)p (1, t) .

If the p(1, t) is computed for the chain initiated from state B, the
intensity of entering state 0 in the equation above is the density of
the first passage time from B to 0,

γB,0 (t) = μ (1)p (1, t) . (28)

Similarly, to model the first passage time from 0 to B (the
time required to charge the ESS to its full capacity), we make B

the absorbing state and compute p(B− 1, t)λ in the chain initiated
at state 0.

γ0,B (t) = λp (B− 1, t) . (29)

The performance metrics γB,0 (lifetime of the node) and
γ0,B expressed in Equation 28 and 0; B expressed in Equation
29 can be obtained numerically using a Markov solver
developed in Pecka et al. (2018).

4 Numerical results

In the numerical results presented, we consider a battery with a
charge rating Q = 2100 mAh, depth of discharge DoD = 70%, and
voltage v = 3.7 volts. The energy capacity of the battery is CB =
2100∗0.7∗3.7 = 5439 mWh. We assume that the quantization step
(size of an energy packet) is Ep = 54.39 mWh, and the capacity of
the battery in the energy packets (maximum number of packets
that can be stored in the battery) is B = 5439/54.39 = 100 energy
packets. Assuming that the mean energy delivered to the battery
is 108.78 mWh, then the mean number of packets delivered to the
battery per hour is λ = 108.78/54.39 = 2 energy packets per hour.
Similarly, the mean number of energy packets consumed per hour
is obtained. For each numerical example, we provide the values of
the various parameters under the figure.

4.1 Energy performance of an IoT node
with a non-solar renewable energy source

The steady-state and transient-state analyses presented in
Section 3 above are more applicable to non-solar energy sources.
That is, energy sources that can produce energy both in the day
and in the night (e.g., RF, vibration, and wind). Figures 3–6 present
the results obtained using the analytical models presented in the
previous section.

Figure 3 presents the changes of the service outage probability,
p(0, t), as a function of time until attaining a steady state. The results
compare two cases: one with a threshold and the other without a
threshold. The introduction of a threshold significantly reduces the
probability of service outage, p(0, t).

Figure 4 illustrates the above solution in the case where the
battery volume is B = 100 energy units. The only threshold is placed
at K = 40, the consumption rates are μ(n) = μ1 = 3 energy units per
time unit, n = 1,…K; if μ(n) = μ2 = 5 energy units per time unit, n =
41…B. Depending on the value of harvesting rate λ, the probability
mass of p(n) is concentrating close to 0 (λ < μ1), close to B (λ > μ2),
or aroundK (μ1 < λ < μ2). If λ = μ1.The distribution does not change
in the corresponding interval or λ = μ2.

Figures 5, 6 display the density of the lifetime of the IoT node
γB,0(t) for various values of the threshold K = 20,40,60 and various
values of μ1 = 2.5,3,4; μ2 = 5 is not changing. The densities are
compared with the same density when there is no threshold, and the
unique rate is μ = 5.The impact of the energy saving of the threshold
K and reduced consumption rate μ1 is essential. It influences not only
the mean time to depletion but also the variance of the distribution.

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1399371
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Kuaban et al. 10.3389/fenrg.2024.1399371

FIGURE 3
Comparison of the transient probability of service outage p(0, t) from
the M/M/1/B and M/M(n)/1/B for μ1 = 2, μ2 = 5, λ = 2, K = 40, and B =
100.

FIGURE 4
Influence of λ on the probability of having n energy packets in the
battery for μ1 = 3, μ2 = 5, B = 100, and K = 40.

4.2 Energy performance of an IoT node
with a solar energy source

The energy produced by non-solar energy sources is relatively
small and may be insufficient for some energy-hungry IoT nodes. A
scalable approach to generate sufficient energy to power an IoT node
is the use of solar energy. However, solar energy sources produce
energy during the day and not during the night; that is, when energy
is equally consumed. Thus, the analysis presented in Section 3 is
not sufficient to analyze ESSs that are supplied by energy from solar
energy sources.

As solar energy sources generate energy during the day, part of
which is used to supply the node and the residue is stored to be
consumed during the night, we propose an approach that takes into
consideration the day and night cycles. We assume the interleaving

FIGURE 5
Influence of the proposed energy-saving threshold policy on the
density of the lifetime of the IoT node γB,0(t) for K = 20,60, μ2 = 5, λ = 2,
and B = 100.

FIGURE 6
Influence of μ1 on the density of the lifetime of the IoT node γB,0(t) for
μ2 = 5, λ = 2, B = 100, and K = 40.

of day and night periods of constant duration Td and Tn; Td +Tn =
24 hours.That is, the ESS is charged during the day for a duration of
Td and discharged during the night for a duration of Tn (e.g., Td =
Tn = 12).

In this case, the performance metrics are obtained by
numerically solving differential Equation 6 considering various
initial conditions. During the day, the ESS is charged with a
mean rate of λ = λH − μ(n), and during night, λ = 0 and the ESS
is discharged at a mean rate of μ(n). The energy distribution at the
end of a day makes the initial condition for the next night’s solution,
and vice versa. A few figures below present the numerical solutions
for several consecutive night and day periods until we observe a
repetitive behaviour of the ESS, independent of its state at the very
beginning. In the 24-h cycle, we assume an equal day and night
duration of 12 h. It, of course, may be easily changed.
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FIGURE 7
Dynamic evolution of the mean number of energy packets in the ESS, E[N(t)], considering the cases with initial conditions n0 = 0 (starting zero EPs in
the ESS) and n0 = B (starting with B EPs in the ESS), K = 40.

Figure 7 presents the changes of the mean number of energy
packetsE[N(t)], both for theprimarily empty (n0 = 0)and full (n0 = B)
ESS in case of two input flows λ = 8, λ = 12. After several periods, the
influence of the initial value is not visible.The transientmean number
of energy packets in the ESS is obtained using Equation 27.

Figure 8 refers to a case when the input rate is insufficient to
maintain the performance of the node: in two cycles, the content
of the initially full ESS goes down so that charging during the day
is not sufficient to ensure continuous operation of the device. Two
scenarios are considered: without threshold (K = 0) and with one
threshold (K = 40).The flow is tooweak to ensure good performance
of the ESS even with the threshold; however, its presence increases
the node’s availability (when all the stored EPs are consumed).

Figure 9 illustrates the impact of the threshold position, K =
20,40,80, in case when the input rate is relatively high (λ = 8). The
earlier the device enters into the energy efficient regime, the higher
the number of EPs stored during the cycle.

Figure 10 shows the influence of input rate λ for a given
threshold (K = 40) on the mean energy content during nights and
days. λ = 8,12 provide a safe energy reserve over the entire operating
cycle, whereas lambda = 4 no longer ensures continuous operation.
However, we should remember that the above curves refer to average
energy values; analysis of the probability of a battery being empty or
full as a function of time gives us more specific information.

In Figure 11, the probability of service outage, p(0, t), is
presented if, at the beginning, the ESS is full and the energy input
rate is insufficient λ = 4. During the second night, the probability of
complete depletionmounts sharply, and putting the threshold atK =
40 does not sufficiently improve the situation.

FIGURE 8
Dynamic evolution of the mean number of energy packets in the ESS,
E[N(t)], considering the case without threshold (K = 0) and the case
with threshold (K = 40), λ = 4.

Figures 12, 13 refer to the time-varying probability that the
battery is fully charged and further energy packets delivered are lost.
In the first figure, in the presence of input rate λ = 8, we observe
how lowering the threshold from position K = 80 to K = 40 reduces
the probability of having a full ESS. In the second figure, we see the
impact of increasing the input rate on the probability p(B, t) for a
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FIGURE 9
Influence of the energy threshold K on the dynamic evolution of the
mean number of energy packets in the ESS E[N(t)] for λ = 8.

FIGURE 10
Influence of the mean charging rate λ on the dynamic evolution of the
mean number of energy packets in the ESS E[N(t)] for K = 40.

fixed valueK = 40 of threshold. Only for the highest value λ = 12, the
probability of fully charged ESS at the end of the day is significant.

Finally, Figures 14, 15 refer to the lifetime of the IoT node
showing the density γB,0(t) of the first passage time from B to 0.
The flow λ = 4 is insufficient to maintain the uninterrupted work
of the ESS. With the threshold K = 40, the working time is longer
and may last several periods; we see how nights and days shape the
curve of the density. The second figure displays the same curves on
logarithmic scale to demonstrate that the model is able to predict
very weak probabilities.

5 Conclusion

In this paper, we have investigated the practical implications
of imposing energy-saving thresholds on the energy performance

FIGURE 11
Dynamic evolution of the probability of service outage, p(0, t),
considering the case without threshold (K = 0) and the case with
threshold (K = 40), λ = 4.

FIGURE 12
Influence of the energy threshold K on the probability of energy
wastage, p(B, t), for λ = 8.

metrics of green IoT nodes. We conducted steady-state and time-
dependent analyses of the proposed energy packet-based model of
the node, which consider the impact of switching the node to more
energy-efficient regimes when the defined threshold of the energy
content of the ESS is reached.We conducted numerical experiments
to gain more insight into the extent to which the imposed energy
threshold improves the energy performance of the green IoT node.
We observed that configuring single ormultiple thresholds improves
the energy performance of the node significantly (e.g., increased
lifetime of the node and reduced probability of service outage and
energywastage), and the value of the threshold(s) should be carefully
chosen. In addition, the energy performance of the node can be
improved by implementing energy-savingmechanisms to reduce the
energy consumption rate of the node and to dimension the energy
harvester in such a way that it harvests sufficient energy to meet the
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FIGURE 13
Influence of the mean charging rate λ on the probability of energy
wastage, p(B, t), for K = 40.

FIGURE 14
Density of the lifetime of the node, γB,0(t), considering the case
without threshold (K = 0) and the case with threshold (K = 40), λ = 4.

needs of the node during the day and store sufficient energy that can
sustain the node throughout the night.
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