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The stability of smart grids is crucial for ensuring reliable and efficient power
distribution in modern energy systems. This paper presents an optimized
Long Short-Term Memory model for predicting smart grid stability, leveraging
the Novel Guide-Waterwheel Plant Algorithm (Guide-WWPA) for enhanced
performance. Traditional methods often struggle with the complexity and
dynamic nature of smart grids, necessitating advanced approaches for accurate
predictions. The proposed LSTM model, optimized using Guide-WWPA,
addresses these challenges by effectively capturing temporal dependencies
and nonlinear relationships in the data. The proposed approach involves
a comprehensive preprocessing pipeline to handle data heterogeneity and
noise, followed by the implementation of the LSTM model optimized
through Guide-WWPA. The Guide-WWPA combines the strength of the
WWPA with a novel guidance mechanism, ensuring efficient exploration and
exploitation of the search space. The optimized LSTM is evaluated on a real-
world smart grid dataset, demonstrating superior performance compared to
traditional optimization techniques. Experimental Results indicate significant
improvements in prediction accuracy and computational efficiency, highlighting
the potential of the Guide-WWPA optimized LSTM for real-time smart grid
stability prediction. This work contributes to the development of intelligent
energy management systems, offering a robust tool for maintaining grid
stability and enhancing overall energy reliability. On the other hand, statistical
evaluations were carried out to prove the stability and difference of the
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proposed methodology. The results of the experiments demonstrate that the
Guide-WWPA + LSTM strategy is superior to the other machine learning
approaches.

KEYWORDS

Guide Waterwheel plant algorithm, machine learning, Long Short-TermMemory, Smart
Grid, optimization methods

1 Introduction

Both traditional grids, which consisted of small generation
centers that supplied energy to customers, and renewable energy
came into existence as a result of the expansion in population across
the world, which led to an increase in the amount of power that
was used. The proliferation of renewable energy, on the other hand,
has resulted in the emergence of a hybrid of these two that is
known as ”prosumers,” which both provide and consume energy
(Siddiqui et al., 2017). These prosumers, on the other hand, require
the flow of energy in a grid to be in both directions. The delivery,
generation, and use of energy are all more complicated for these
prosumers, as well. In light of this, the financial implications that
are associated with prosumers and renewable energy have grown
increasingly difficult to manage, particularly with regard to the
decision of whether or not to purchase energy at a cost that is
already known (Bajaj and Singh, 2020). Furthermore, this research
on the stability of smart grids has received a substantial amount
of attention (Panda et al., 2022). To facilitate the development of a
system that is capable of efficiently distributing power, smart grids
can collect data pertaining to users. The deployment of additional
power plants for the purpose of dissipating electricity is reduced as
a result of the implementation of smart grids (Kumar et al., 2016;
Mahmud et al., 2020; Kumar et al., 2022). Additionally, smart grids
make use of renewable energy resources in order to become secure
when they are hooked into a grid in order to get an additional source
of electricity.The use of smart grids has the potential to significantly
lower the cost of power and simultaneously lower pollution levels.
These grids then obtain a cost value for the power and convey this
cost information to the clients so that they may make decisions
regarding their usage. After receiving information from consumers,
these grids assess the information with regard to the current supply
information. The capacity to forecast the stability of a smart grid is
one of the most important requirements for such systems. This is
because the process is reliant on the passage of time.

Deep neural networks (Alazab and Tang, 2019;
Vinayakumar et al., 2019; Irshad et al., 2020) and machine learning
(Shafiq et al., 2018; Iwendi et al., 2020) are two examples of artificial
intelligence applications that have brought about a revolution in the
process of energy generation and distribution. In addition to this, it
was a crucial factor in the forecast of the stability of the smart grid
for residential loads (Hong et al., 2020). Recurrent neural networks,
have been suggested as a promisingmethod for precisely forecasting
the stability of smart grids (Adil et al., 2020). The problem of low
accuracy is effectively addressed by feed-forward neural networks,
which develop and implement effective solutions. Image processing
(Szegedy et al., 2014) and speech recognition (Yu and Deng, 2015)
are two examples of applications that have already demonstrated the
feasibility of these neural networks. Additionally, they are relevant

for forecasting the stability of smart grids. It is abundantly evident
that numerous interactions take place between power sources,
distribution stations, and a variety of entities, including smart
cities, electric cars, industries, and smart buildings (Alazab et al.,
2020Alazab et al., 2020). The research suggests that smart grids
make use of a wide variety of artificial intelligence approaches,
including deep learning, machine learning, and artificial neural
networks, in order to implement energy consumption strategies
that are more efficient. There were a number of different deep
learning algorithms that were presented in (Jindal et al., 2016)
for the purpose of predicting electricity demands for a smart
grid. The focus of the writers is on the employment of a variety
of deep learning technologies for load prediction in smart grids.
Additionally, they compared the accuracy results for the developed
applications in terms of the mean absolute error and the root-mean-
square error. Based on the results that were obtained, they concluded
that CNN with the k-means algorithm had a significant percentage
of minimizing the RMSE during the process.

The cost of electricity greatly impacts the stability of the electrical
networks.The stability parameter of smart grids is also affected by the
reaction times of power consumers and providers. Wood provided
a mathematical model for DSGC systems in (Razavi et al., 2019),
which correlates the cost of power to changes in the frequency of
grids based on time measurements of a few seconds. The purpose
of this model was to show the demand control of smart grids. We
simulated thepowerdemand-sideproductionandconsumptionbased
on analog time gauges, we created a machine learning technique that
corresponded to the data, and we determined that the variables that
were employed were independent. When training the algorithm with
massive amounts of data that change their dimensions, the accuracy
of the algorithm is reduced.Through the use of a principal component
analysis technique (Pham et al., 2020), Chen suggested a machine
learning algorithm in (Kotb et al., 2019) with the goal of reducing the
dimensionsof thedata that isemployedinorder to improvethestability
of smart grids.Anumberof artificial intelligence algorithmshavebeen
developed for the purpose of predicting the stability of smart grids. In
the article (Iwendi et al., 2021), the authors suggested a classification
and regression treesmethod for the purpose of predicting the stability
of smart grid operation. An overall accuracy of 80% was reached by
the authors through the utilization of a four-node star topology for a
simulated DSGC system. A decision tree method with a significantly
simplified design was given by the authors in (Din et al., 2019) for the
purpose of predicting the stability of smart grid power systems. This
method was implemented on the power system that consisted of 39
buses.Using six different samples from the dataset, it was able to attain
an accuracy rate of 83%.

Anaccuracyof89.22%wasattainedbytheCNNthatwaspresented
by the authors in (Ahmed et al., 2019) for the purpose of predicting
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the stability of a smart grid. The CNN was tested on the IEEE 118-
bus and 145-bus systems. Several different assessment measures were
utilized in order to assess the quality of this work. Using the Bayesian
rate algorithm, the authors of (Xiang et al., 2023) devised a method
for predicting the stability of smart grid operation. However, this
approach required an excessive amount of computing time for the
training procedure, despite the fact that it was also applied to the
IEEE 39-bus test system and achieved an accuracy of 91.6%. For
the purpose of predicting the stability of a smart grid with a high
number of data features, the authors of (Ghorbanian et al., 2019)
presented an XGBoost algorithm that used inertial sensors. This
method was utilized on a power system consisting of 39 buses, and
it achieved an accuracy rate of 97%. For the purpose of assessing the
effectiveness of the algorithm that was constructed, however, just one
assessment parameter, specifically accuracy,was applied.Additionally,
real-time modeling of power systems may be utilized for a variety of
smart grid models (Zhang et al., 2018; Moldovan and Salomie, 2019;
Syed et al., 2020; Jin et al., 2023; Shrivastava and Yadav, 2023). A lot
of research projects have attempted to construct an accurate neural
network for smart grid stability prediction; nevertheless, there are still
improvements that need to be attained, according to the literature
that has been examined. This is something that may be argued. With
the ultimate goal of raising or improving the forecast accuracy of
the neural network through the use of a hyperparameter tuning
approach, a neural network is presented in this research as a means of
predicting the resilienceof smart grids.On thedataset that is accessible
through the Kaggle repository, the neural network is practiced and
evaluated (Bassamzadeh and Ghanem, 2017).

Through the classification of the smart grid dataset obtained
from the UCImachine learning repository, a novel optimized LSTM
model is proposed in this article. The model’s purpose is to predict
the stability of smart grids. The findings of the experiments are then
contrasted with more contemporary machine learning algorithms
and optimization methods. The main contributions of this work are
listed in the following:

• A novel optimization algorithm is proposed based on a novel
modification denoted by Guide-WWPA.
• The proposed Guide-WWPA is used to optimize SMOTE for
better selection of the synthetic samples to boost the overall
performance of the prediction of smart grid stability.
• The proposed Guide-WWPA is binarized and denoted by
(bGuide-WWPA) to solve the problem of feature selection
applied to the adopted dataset.
• In order to evaluate the effectiveness of the bGuide-WWPA
method that has been presented for feature selection, the
implementation of a set of computational analytic measures
is realized.
• The continuous version of the Guide-WWPA is used to
optimize the parameters of the LSTMmodel for improving the
prediction accuracy of smart grid stability.

The remainder of the manuscript is structured as follows: The
research that has been done before on the smart grid stability
prediction is discussed in Section 2. More information on the
methodology that has been proposed is found in Section 3. In
Section 4, the experimental process that was used to evaluate the
proposed method is presented and discussed. Section 5 presents the

conclusion of this work as well as a view on its potential future
directions.

2 Literature Review

With the potential to directly reduce the availability and
safety measures of a smart grid, a covert data integrity attack
on a communications network might potentially be dangerous
(Hafeez et al., 2020a; Hafeez et al., 2020b; Hafeez et al., 2021). It
is possible for this attack to challenge the integrity of the data
and to cause a false evaluation of the status, both of which
would have a devastating impact on the entire power system
process. This attack is carefully deployed in order to escape the
typical bad data detectors that are found in power control stations
(Hafeez et al., 2020c; Hafeez et al., 2020d; Nawaz et al., 2020). An
intelligent system is developed by the authors of (Ahmed et al.,
2019) to identify stability in smart grids by making use of non-
labeled data. This system is based on an unsupervised machine-
learning application. To construct the smart grid, numerous
information and communication technologies are utilized, which
results in enormous amounts of data coming from a variety of
sources. It is possible to overcome the difficulty of processing and
managing the enormous volume of data by utilizing intelligent
systems and big data analysis (Xiang et al., 2023) in smart grid
systems. The article (Ghorbanian et al., 2019) highlights a number
of difficulties that are linked to the utilization of big data analysis in
smart grids.

In light of the fact that the information used for the verification
of membership may result in instabilities in the grid, the assessment
of the stability of the smart grid is a research challenge that is
particularly difficult to solve. This allows for setups to be governed
in such a way that the grid remains stable regardless of any
irregularities that may occur. Using feature extraction as a basis,
the authors of (Moldovan and Salomie, 2019) investigate the use
of a machine learning method for the purpose of forecasting the
stability of smart grids. For the feature selection process, the authors
of this paper make use of three different methods: Multivariate
Adaptive Regression Splines, Binary Kangaroo Mob optimization
Features Selection, and Binary Particle Swarmoptimization Features
Selection. Classifiers such as Logistic Regression, Random Forest,
Gradient Boosted Trees, and Multilayer Perceptron Classifier
are utilized in order to predict the stability of the grid that
is accurate.

In the past, electrical grids consisted of communication that only
went in one direction between the infrastructure and the end users.
Despite the fact that these grids were installed all over the world,
there remained a large amount of worry over the effectiveness of
power management. The evolution of smart grids, which include
communication in both directions between the grid and the
customer, was motivated by the need to address this difficulty. The
development of this smart grid was primarily motivated by the
desire to properly forecast the kinds of energy that a particular
population will consume. For the purpose of making forecasts,
machine learning algorithms are implemented with the use of
information such as historical weather, load, and energy generation
data (Jin et al., 2023). The researchers also built two models, which
are referred to as the deep neural network model and the linear
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regression model (Shrivastava and Yadav, 2023). The root mean
squared error was used to evaluate these models, and the results
showed that the deep neural network models performed better than
the linear regression models when it came to predicting the amount
of load and energy output in a specifically designated area. Within
the context of the smart grid, energy load prediction refers to the
process of anticipating the electrical power requirements in order
to satisfy dynamic demands. In order to assist electrical services in
monitoring their energy generation and process, there is an urgent
requirement to incorporate predictive accuracy for load. At the
moment, the majority of the prediction in any system is carried
out by means of machine learning algorithms in order to attain the
highest possible level of effectiveness. For the purpose of predicting
the energy demand, large data frameworks such as Apache Spark
and Apache Hadoop (Syed et al., 2020; Almetwally and Meraou,
2022) have been offered as available options. Other regression
approaches, such as linear regression, modified linear regression,
decision tree, random forest, and gradient-boosted trees, are
evaluated by the authors usingMLib to determine how accurate their
predictions are.

The implementation of power systems that are able to regulate
the dissipation of energy effectively is now being driven by the
trend of smart grids.The utilization of artificially intelligent systems
is helpful in simplifying the process of deploying a smart grid
network, which is notoriously difficult owing to the enormous
amount of data that is being produced. Learning techniques
such as DL, reinforcement learning, and deep reinforcement
learning have been made possible as a result of the progress
that has been made in the evolution of intelligent systems. For
the purpose of enabling future academics to do more study,
the difficulties that need to be overcome in order to implement
these technologies in smart grids are mentioned (Zhang et al.,
2018; Muhammed and Almetwally, 2024). The fluctuating energy
consumption of home appliances is a significant issue that has to
be addressed in order to ensure the sustainability and effectiveness
of the construction of smart cities. The development of Internet
of Things technology has made it possible to use additional
energy management strategies in order to deal with the ever-
changing energy consumption. When it comes to consumption
prediction in occupied buildings, the authors of (Bassamzadeh
and Ghanem, 2017) propose the deployment of a probabilistic
data-driven prognostic approach. The system is able to discover
dependency links among the contributing variables thanks to
the utilization of a Bayesian Network architecture, which is
utilized by this approach. Using the datasets that were provided
by Pacific Northwest National Lab and that were compiled
through a pilot Smart Grid project, the authors evaluate the
proposed method.

The issues that smart grids face and the requirements that they
will have in the future have prompted a consortium to be formed by a
number of large corporations. Artificial Neural Networks, Machine
Learning, and DL are some of the Artificial Intelligence techniques
that smart grids employ in order to achieve efficient energy usage.
With regard to the smart grid, (Almalaq and Edwards, 2017)
proposes a variety of different DL algorithms for load prediction
problems. Within the context of the smart grid network, the
authors concentrate on the utilization of various applications of deep
learning for load prediction. In addition, the authors examine the

accuracy results of Root Mean Square Error and Mean Absolute
Error for the applications that were investigated. Based on their
findings, they conclude that the utilization of a convolutional neural
network in conjunction with the k-means method resulted in a
significant reduction in the root mean square error proportion.
When it comes to the stability of distributed power networks, the
price of electricity has a considerable influence. Many other factors
affect the stability factor, such as the cost sensitivity and reaction
times of power providers and consumers. By connecting the price
of electricity to fluctuations in grid frequency over a time scale of
a few seconds, authors in (Wood, 2020) proposed a model that is
referred to as DSGC. This approach is intended to deliver demand-
side control of distributed power grids. On similar time gauges,
the authors performed a simulation of the power demand-side
consumption and production. For the purpose of achieving dynamic
grid stability for the simulation based on its independent variables,
the authors additionally designed an improved data-matching
machine-learning technique known as the transparent, open box
learning network. When training a machine learning model with a
large amount of data that has fluctuations in the dimensionality, the
efficacy of themodel is reduced accordingly. In order to decrease the
number of dimensions of the data, the authors of (Chen, 2019) devise
a secondary principal component analysis technique (Reddy et al.,
2020). Increasing the stability of grid systems is accomplished by
the application of this approach, which is used to regulate machine
learning techniques. According to this review, it can be noted
that there is no approach that is completely meet the stability
difficulties in a smart grid network andpredict its stability accurately.
Therefore, in this research a novel approach is proposed to boost
the prediction accuracy of smart grid stability using metaheuristic
optimization.

3 The Proposed Methodology

This section describes the methodology proposed to boost the
prediction accuracy of smart grid stability. The proposed method
is based mainly on a novel modification to the WWPA algorithm,
denoted by Guide-WWPA. This algorithm is used for feature
selection and optimization of the LSTM hyperparameters. In the
first step of the proposed methodology, the dataset about the
electrical system that is compiled from the various power-generating
units is completed. Normalization of the dataset is then performed
using the min-max normalization method. The maximum and
minimum values of the data are acquired and then substituted
by applying Equation 1.

L̂ =
l−min (X)

max (X) −min (X)
∗ (new_min (X) − new_max (X))

+ new_min (X)

(1)

where min(X) and max(X) are notations that indicate the
minimum and maximum values of the attributes in the provided
dataset, respectively. In this context, X stands for an attribute that is
an element of the dataset. Newmax(X) and newmin(X) describe the
upper and lower boundary values in the provided range, respectively.
L represents the updated value of each item in a dataset, while
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l relates to the values that were present in the dataset before.
In addition, the dataset is balanced using the synthetic minority
oversampling technique (SMOTE) which is optimized based on
the proposed optimization methodology which is presented in the
next section.

On the other hand, the machine learning algorithms are unable
to handle the category values that are contained in the dataset.
Label encoding is a technique that turns the category values in the
dataset into numerical values that are appropriate for processing
by machine learning algorithms. This is the reason why it is used.
In the subsequent stage, the dataset comprising the smart grid
is trained using the optimized LSTM technique that has been
described. Several measures such as accuracy, precision, recall, and
F1-score are used to evaluate the performance of the proposed
model in comparison to other models, including classic LSTM,
SVM, KNN, DT, MLP, and RF models. Detailed explanations of
these models are provided in the following paragraphs. The coming
sections present more details about the key steps of the proposed
methodology.

3.1 Synthetic Minority Oversampling
Technique (SMOTE)

The SMOTE method is a strategy that is used to oversample
the minority classes in order to get a balanced dataset as proposed
by authors in (Chawla et al., 2002). Through the process of
interpolation and the selection of a neighbour from a minority
class, the primary objective is to bring about freshminority samples.
Instead of only copying samples from minority classes, this method
is able to generate synthetic sample data through its use. Because
of this, the overfitting problem may be avoided with this strategy.
This is how the SMOTE algorithm is supposed to be described. At
the beginning of the process, a point x is chosen at random from
the minority class sample, and then its k nearest neighbours are
obtained from other minority samples. Next, select one minority
class sample from each of the k neighbours andmultiply it by one. A
new synthetic sample, denoted by xnew, is generated in the vector
that lies between x and x1 by the utilisation of an interpolation
technique during the last step. After careful consideration, one can
reach the conclusion that the mathematical formulation of SMOTE
is represented by Equation 2:

Xnew = X+ (X̂−X) × rand (0,1) (2)

A random integer between 0 and 1 is denoted by the expression
rand(0,1). In order to enhance the total number of minority class
samples, the process described above is then repeated based on the
beginning of the set of oversampling rates. Additionally, the SMOTE
method is used to add a new minority class sample to the initial
training samples. When viewed from a geometric point of view,
this approach may be seen as an interpolation between two samples
of minority classes. The classifier is able to generate more accurate
predictions for samples of unknown minority classes as a result of
this expansion of the decision space for the minority class. It is
possible to prevent overfitting issues by using the SMOTE approach,
which is both effective and straightforward in the generation of
synthetic samples. Our databases contain a very small number

FIGURE 1
The schematic of SMOTE algorithm.

of positive samples. The SMOTE technique was carried out after
the five-fold cross-division in order to increase the number of
positive samples in the training dataset. The final step is to feed the
newly acquired training dataset into the classifier for the purpose
of classification, and then to retrieve the results of the prediction.
An illustration of the SMOTE method is shown in Figure 1. In
this figure, the red circles represents the minority class samples
and the dashed squares represents the majority class samples. The
target of SMOTE is to increase the samples of the minority class
to be equal to the number of samples in the majority class. This
can be achieved by synthesizing the new class samples, small
green circles.

In this work, the synthetic samples generated by the SMOTE
algorithmare optimized using the proposed optimization algorithm.
This optimization enables generating the best set of samples that
balance the dataset with boosting the overall performance of
prediction process.

3.2 Long Short-Term Memory (LSTM)

The LSTM network has emerged as one of the most prominent
strategies for overcoming this difficulty, according to an analysis
of current research (Sutskever et al., 2014). A chain structure that
contains many neural network modules is a characteristic of LSTM.
An illustration of the architecture of LSTMmay be found in Figure 2.
This architecture is comprised of several gates, such as an input
gate, an output gate, and a forget gate. The information that is being
transmitted via the network is selected and rejected by these gates.
Input gate i(t) is made up of tanh, which is an activation function
that ranges from −1 to 1. Processing requires the current input x(t),
as well as the parameters C(t− 1) and h(t− 1). It is important to
remember that the activation function of gate f(t) is a sigmoid and
tanh. The forget gate is responsible for determining the amount of
information that must be kept from the output that came before it.
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FIGURE 2
The structure of a typical LSTM model.

In the event that the value is 1, the data will be translated into the
network; yet, in the event that the value is 0, the data will not be
sent through the network.The activation function of the output gate
o(t) is denoted by the sigmoid function, which ranges from −1 to 1.
Equations 3-5 are utilized in order to compute i(t), o(t), and f(t) at
each timestamp.

i(t) = σ(Wi [C(t−1),h(t−1),x(t)] + bi) (3)

o(t) = σ(Wo [C(t−1),h(t−1),x(t)] + bi) (4)

f(t) = σ(W f [C(t−1),h(t−1),x(t)] + bi) (5)

In this work, One LSTM is utilized for scanning in the upward
and downward directions, while the second LSTM is used for
scanning in the right and left directions. While traditional LSTM
operates in both directions, this research makes use of two LSTMs.
Specifically, the input of the second LSTM is a summation of the
input of the first LSTM.

3.3 Waterwheel Plant Algorithm (WWPA)

WWPA is a novel approach to stochastic optimization that was
conceived of in (Abdelhamid et al., 2023) and drew inspiration from
the functioning of natural systems. A core concept that has been
established for the Guide-WWPA is based on the assumption that
it is possible to model the natural behavior of the waterwheel plant
when it is engaged in the process of hunting. As the major source
of inspiration for the core concept of Guide-WWPA, the approach
that waterwheel plants use to detect their insect prey, catch it, and
then transfer it to a more accessible spot before digesting it served
as the key source of inspiration. We will talk about the concepts
that led to the development of the algorithm in the next part,

as well as the mathematical model that was used to describe the
program’s methods.

3.3.1 The WWPA Inspiration
Small, translucent structures that resemble flytraps are seen

on the broad petiole of the Waterwheel plant, which is formally
referred to as Aldrovanda vesiculosa. As a means of preventing
damage or unintentional activation, these traps, which measure
around one-twelfth of an inch in size, are surrounded by bristle-
like hairs. When the trap is closed around its victim, the hook-
shaped teeth that are located on the outside edges of the trap
interlock with one another, just like the teeth that are found on
a flytrap. Around forty elongated trigger hairs, which are similar
to those seen in Venus’s flytraps, are located inside the trap.
These trigger hairs are responsible for causing the trap to close
automatically. An additional feature of the plant is the presence
of glands that secrete acid, which facilitates digestion. Once the
unfortunate victim has been seized, it is successfully trapped and
directed toward the base of the trap at the hinge by means of
interlocking teeth and a mucus sealant. This process is repeated
until the prey is completely trapped. The majority of the nutrients
that are contained in the prey are absorbed by the trap when it
digests the residual water. Similar to a flytrap, an Aldrovanda trap
can collect and devour anywhere from two to four meals before it
shuts down.

3.3.2 The Mathematical Model of WWPA
The WWPA algorithm is an iterative approach that calls for a

population of persons to search for an optimal solution within the
huge space of potential solutions. This search is carried out in order
to get the best feasible solution. Particular values are assigned to
the problem variables for every individual member of the WWPA
population, which is symbolized by a waterwheel. The location
of the waterwheel determines these values within the search area.
Consequently, each waterwheel functions as a vector-based solution

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1399464
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Karim et al. 10.3389/fenrg.2024.1399464

inside the system. It is the collection of waterwheels that theWWPA
is represented by Equations 6, 7.

P =

[[[[[[[[[[

[

P1
⋮

Pi
⋮

PN

]]]]]]]]]]

]

=

[[[[[[[[[[

[

p1,1 ⋯ p1,j ⋯ p1,m
⋮ ⋱ ⋮ ⋰ ⋮

pi,1 ⋯ pi,j ⋯ pi,m
⋮ ⋰ ⋮ ⋱ ⋮

pN,1 ⋯ pN,j ⋯ pN,M

]]]]]]]]]]

]

(6)

pi,j = lbj + ri,j. (ubj − lbj) , i = 1,2,…,N, j = 1,2,…,m (7)

The number of waterwheels is denoted by the letter N in this
context, whereas the number of variables is denoted by the letterm.
The random number that corresponds to the value ri,j is a number
that falls anywhere between 0 and 1. The lowest and highest bounds
of the j-th variable in the problem are denoted by the symbols lbj
and ubj, respectively. The population matrix, which includes the
addresses of the waterwheels, is denoted by the letter P. The value
of the j-th variable for the i-th waterwheel is denoted by the formula
pi,j, and each row Pi in the matrix indicates a potential solution to
the problem. It is feasible to evaluate the objective function of each
waterwheel since each one of them is regarded to be a potential
solution to the problem.A vectormay be used to effectively represent
the values that make up the objective function of the issue, as was
established by previous research as being possible to use. Guide-
WWPA population, which is a matrix of ten. A method that is given
in the following equation is used to randomly decide the placements
of the waterwheels in the search space. This is done in order to start
the process.

F =

[[[[[[[[[[

[

F1
⋮

Fi
⋮

FN

]]]]]]]]]]

]

=

[[[[[[[[[[

[

F (X1)

⋮

F(Xi)

⋮

F (XN)

]]]]]]]]]]

]

(8)

Using vector F in Equation 8, which includes all of the values
of the objective function, we are able to estimate the value of the
i-th waterwheel. Objective functions are evaluated and analyzed
to determine which solutions are the best. Based on this, the
candidate solution that is considered to be the best is linked to the
greatest value of the objective function, while the member that is
considered to be the worst is linked to the lowest value. The ideal
solution is subject to change with each iteration due to the fact
that the waterwheels move around the search area at varying rates.
Waterwheels have a highly developed sense of smell, which enables
them to successfully track and find pests they encounter throughout
the process of exploration. This gives them a strong instinct to
hunt. When a bug comes into the region of the waterwheel, it
immediately begins to attack and then continues to pursue the target
by precisely determining where it is located. In order to represent
the first step of its population update process, the WWPA models
this behavioral pattern of hunting.Through the incorporation of the
waterwheel’s attack on the insect, theWWPAmakes it more capable
of exploring the ideal zone and avoiding becoming stuck in the local
optimal region. As a consequence of this modeling methodology,

major positional adjustments take place inside the search space. It
is necessary to employ an equation in conjunction with a simulation
of the waterwheel’s approach to the insect in order to compute the
new location of the waterwheel using this method. By doing so, it is
possible to ascertain the new position. Suppose the value of the goal
function is increased by shifting the waterwheel to this new position.
In that case, the location that was previously mentioned will no
longer be employed in favor of the one that has been presentedmore
straightforwardly, as represented by Equations 9, 10.

W⃗ = ⃗r1. (P⃗ (t) + 2K) (9)

P⃗ (t+ 1) = P⃗ (t) + W⃗. (2K+ ⃗r2) (10)

Using Equation 11, one is able to make adjustments to the
location of the waterwheel in the case that the result does not
improve after three iterations in a row.

P⃗ (t+ 1) = Gaussian(μP,σ) + ⃗r1(
P⃗ (t) + 2K

W⃗
) (11)

With values ranging from 0 to 2 and 0 to 1, respectively,
the variables ⃗r1 and ⃗r2 are examples of random variables that are
included in this context. Furthermore, K is a variable that has values
that range from 0 to 1, making it an exponential variable. The
waterwheel plant will examine possible promising regions inside
a circle that has a diameter of W⃗, which serves as the vector for
the circle.

As part of the process of exploitation, the population is updated
in WWPA, which is modeled by the way waterwheels capture and
transport insects to a feeding tube based on their behavior. As a
result of this simulated behavior, the exploitation capacity ofWWPA
is improved during the local search. This makes it possible for the
algorithm to converge on better solutions that are relatively near
to those that have been identified in the past. The placement of
the waterwheel inside the search space is subject to certain minute
alterations as a consequence of modeling the process of transferring
the insect to the appropriate tube. The architects of the WWPA
first choose a fresh, arbitrary position for each waterwheel in the
population. This process is done in order to imitate the natural
behavior of waterwheels. A ”good position for consuming insects”
is what this particular place is referred to be. Following that, the
waterwheel is moved to this new location, which replaces the
previous location, in accordance with Equations 12, 13 if the value
of the goal function is higher at this new location.

W⃗ = ⃗r3. (KP⃗best (t) + r3P⃗ (t)) (12)

P⃗ (t+ 1) = P⃗ (t) +KW⃗ (13)

A random variable with values ranging from 0 to 2 is denoted
by the variable ⃗r3 in this scenario. The current solution at iteration
t is denoted by the symbol P⃗(t), whereas the best solution that has
been produced up to this point is written as P best. In a manner
analogous to the exploration phase that was discussed before, the
following modification represented by Equation 14 is implemented
in the event that the solution does not improve for three iterations
in a row. This is done to guarantee that local minimum solutions
are avoided.

P (t+ 1) = (r1 +K) sin(
F
C
θ) (14)
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where the values of F and C are independent random variables
that range from -5 to 5 each. However, in order to illustrate the
exponential decline of K, Equation 15 might be utilized:

K = (1+ 2 ∗ t
2

Tmax
+ F) (15)

The WWPA is provided as a method that may be carried out
again and time again. The third and final stage of the WWPA
implementation process involves adjusting the placements of all
waterwheels. This phase comes after the previous two stages have
been completed. Following the comparison of the values of the
target function, the candidate for the best solution is improved.
In the subsequent iteration, the locations of the waterwheels are
modified, and this process continues until the algorithm reaches its
last iteration to complete the process. WWPA offers the best feasible
candidate answer that it has been storing when a sufficient number
of iterations have been completed.

3.4 The Proposed Guide WWPA

There is a modified version of the originalWWPA that is known
as the Guide-WWPA and its steps are presented in Algorithm 1. It is
possible to avoid the drawbacks of this technique by substituting the
search strategy for a single random whale with a more sophisticated
approach that can move the waterwheel plants fast in the direction
of the most advantageous solution or prey. Within the framework
of the original WWPA, the following equation is responsible for the
random movement of waterwheel plants, which is analogous to the
global search. When using the improvedWWPA, also known as the
Guide-WWPA, a whale is able to follow three random waterwheel
plants rather than just one in order to improve its exploration
performance. In order to prevent whales from being influenced by
the leader position, Equation 16may be substituted, whichwill drive
whales to engage in more exploration.

P⃗ (t+ 1) = ( ⃗r1 ∗ P⃗1) + (Z+ ⃗r2 ∗ (P⃗2 − P⃗3))

+ ((1−Z) ∗ ⃗r3 ∗ (P⃗best − ⃗Pr1))
(16)

where P⃗1, P⃗2, and P⃗3 are three random solutions, and
P⃗best is the global best solution. Z decreases exponentially to
change between exploitation and exploration smoothly and is
calculated using Equation 17:

Z = t−( 2
Tmax
)
2

(17)

3.4.1 Binarization of the guide-WWPA
An updated version of the algorithm has been developed

to optimize solutions in a discrete solution space. This was
accomplished by merging the capability of the Guide-WWPA with
numerous additional operators. As a result of the first phase, which
is the definition of transformation functions, the process of solution
representation andoptimization can be converted froma continuous
to a discrete type.

This is necessary for the new technique to address issues that are
directly related to feature selection. The modification of the fitness

1: Initialize waterwheel plants’ positions

   Pi(i = 1,2,…,n) for n plants, objective function

   fn, iterations t,Tmax, parameters of r,r1,r2,r3,

   f,c, and K

2: Binarize the solution space

3: Calculate fitness of fn for each position Pi

4: Find best plant position Pbest

5: Sett = 1

6: whilet ≤ Tmaxdo

7:  Select three random search agents P⃗1, P⃗2,

    and P⃗3

8:  UpdateZ by the exponential form of:

    Z = t− ( 2

Tmax
)
2

9:  for(i = 1:i < n+1)do

10:   if(r < 0.5)then

11:    Explore the waterwheel plant search space:

       P⃗(t+1) = (r⃗1 ∗ P⃗1) + (Z+ r⃗2 ∗ (P⃗2 − P⃗3))

       + ((1−Z) ∗ r⃗3 ∗ (P⃗best − ⃗Pr1))

12:    if Solution does not change for three

        iterations then

         W⃗ = r⃗1.(P⃗(t) +2K) P⃗(t+1) =

         Gaussian(μP,σ) + r⃗1 (
P⃗(t)+2K

W⃗
)

13:    end if

14:   else

15:    Exploit the current solutions to get best

       solution using:

       P⃗(t+1) = (r⃗1 ∗ P⃗1) + (Z+ r⃗2 ∗ (P⃗2 − P⃗3))

16:    if Solution does not change for three

        iterations then

        P⃗(t+1) = (r⃗1 +K)sin(
F

C
θ)

17:    end if

18:   end if

19:  end for

20:  Decrease the value of K exponentially using:

      K = (1+ 2∗t2

(Tmax)3
+ f)

21:  Update r, r⃗1, r⃗2, r⃗3, f,c

22:  Calculate objective function fn for each

      position P⃗i

23:  Find the best position P⃗best

24:  Set t = t+1

25: end while

26: Return best solution, cost of best solution

Algorithm 1. The proposed Guide-WWPA algorithm.

function is the second method that has been modeled in order
to accomplish the new variety of bGuide-WWPA being achieved.
Finding the response that is best for the situation as a whole requires
assessing the appropriateness of all of the potential choices. We
present a specification of the fitness function in order to handle
the particulars of the particular circumstance that is now taking
place. In addition to this, the algorithmic structure of the bGuide-
WWPA is being demonstrated and investigated, and a schematic
of its functioning is also being presented. Equation 18 is a sigmoid
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function that is used to transform the continuous solution that
is obtained from the Guide-WWPA method into binary. The Sbest
variable represents the best continuous solution that was recovered
by the continuous Guide-WWPA approach.

Binary =
{
{
{

1 ifSigmoid(Sbest) ≥ 0.5

0 otherwise
,

Sigmoid(SBest) =
1

1+ e−10(SBest−0.5)

(18)

3.4.2 Fitness and Cost Functions
The implementation of a proposed strategy that took into

account both the evaluation of fitness functions and the evaluation
of cost functions was necessary in order to arrive at the most
efficient solution to the feature selection problem. The solution is
evaluated depending on how well it performs when employing the
classifier cl f. This evaluation is based on the application of the
control parameter Ω and a subset of the dataset X[:1indi] when the
tuning parameter is in effect. Equation 19 illustrates this evaluation.
Within the equation, the notation 1indi is responsible for determining
the total amount of 1’s that are present in the array, which stands for
the indi components.

fit =Ω ∗ (1− cl f (X[:1indi])) +((1−Ω)
|F|
D
) (19)

Based on the results of the fitness function, the cost function
is evaluated by subtracting the value that was returned by the fit
function from the value of 1, as demonstrated in the equation that
follows. The fitness and cost function values are used to do a visual
analysis and interpretation of each optimum solution for a particular
dataset, as represented by Equation 20.

Cost = 1− fit (20)

3.5 Feature Selection

When a classifier is applied to a subset of the dataset,
the amount of the dataset that is used in the calculation of
the fitness and cost functions is determined by the accuracy
of the classifier. As the basic classifier, KNN algorithm is
utilized. In this study, we analyze the influence that a large
number of well-known classifiers have on the problem of
feature selection and describe the findings. It is possible
to compute the number of selected features for a certain
person indi by employing Equation 21. In this equation,
D represents the dimension of the feature size in the
dataset, and 1ind

k
i represents the number of feature locations

that include 1s.

fsi =
∑D

k=0
(1ind

k
i )

D
(21)

In order to locate groupings of items that are connected, KNN
model is utilized. This allows the categorization problem to be
resolved. By trying k-fold values of 5, 3, and 2, we were able to
identify the circumstances that were the most successful. When
applying the bGuide-WWPA method, we discovered that a k-fold

of 5 produced the best results across the bulk of the datasets that we
evaluated. On the other hand, a k-fold of 2 produced the greatest
results for the Iris and Lung datasets. In the next part, we will go
into further detail about the experimental settings and computer
infrastructure that were deployed in order to assess this technique.

4 Experimental Setup

In order to determine whether or not the Guide-WWPA +
LSTM algorithm is superior and beneficial, a thorough testing
procedure was carried out. Working on an Intel(R) Core(TM)
i5 CPU working at 3.00 GHz, the tests were carried out on a
machine that was running Windows 10 and Python 3.9. In the
context of a case study, the experiments were carried out with the
primary purpose of contrasting the results obtained from theGuide-
WWPA + LSTM approach with the results obtained from other
models that were based on the LSTM technique. Other optimization
strategies included in the conducted experiments, such as binary
PSO (Awange et al., 2018; Martínez-Rodríguez et al., 2023), binary
WOA (Mirjalili and Lewis, 2016), binary GWO (Mirjalili et al.,
2014; Liu et al., 2023), binary MVO (Mirjalili et al., 2016), and
binary SBO (Samareh Moosavi and Khatibi Bardsiri, 2017), binary
FA (Fister et al., 2013), binary GA (Immanuel and Chakraborty,
2019). In the next sections, the experiments were performed after
splitting the dataset into training set (80%) and testing set (20%).
This splitting is performed randomly after balancing the dataset
using the optimized SMOTE.

4.1 Dataset

For the purpose of demonstrating the smart distribution grid
stability control, it was developed by Vadim Arzamasov, and the
dataset was obtained from the machine learning repository at the
University of California, Irvine. In this context, one of the input
components that is taken into consideration is the total energy
balance, which refers to the quantity of energy that is estimated
to be created or utilized in each grid region. The reaction time
for participants to alter their consumption and/or production in
response to changes in price is referred to as the response time
energy price rise. Other considerations include the proportion of
price variations and the response time for participants to adapt their
consumption and/or output. There are a total of 10,000 records that
are included in the database, and each of those entries has 12 feature
properties. There are a number of features that can be predicted,
such as the response time of the power producer, consumer-1,
consumer-2, and consumer-3, the energy balance of the power
producer, consumer-1, consumer-2, and consumer-3, as well as the
price efficiency and flexibility of the power producer, consumer-
1, consumer-2, and consumer-3. In this particular instance, the
response or target variable is categorical, which means that it can
be either stable or unstable depending on the state of the grid.
In accordance with the grid, the output variable is assigned a
value of 0 for stable and a value of 1 for unstable. Following the
completion of an exhaustive investigation, it was found that the
dataset is significantly uneven, with 3620 records coming from
stable. The fundamentally unstable nature of the grid is exemplified
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FIGURE 3
The correlation matrix of the dataset features.

by the remaining 6380 samples, which are considered to be typical
of the unbalanced data ratio. Verifying the correlation between
each numerical characteristic and the dependent variable, as well
as the correlation among numerical features that might lead to
undesirable collinearity, is a key step in the process. A summary
of the association between the dependent variable (’stabf ’) and
the 12 numerical characteristics are presented in the heatmap that
can be seen in Figure 3. ’stab’ is an alternative dependent variable
that has been included in this analysis for the sole purpose of
indicating the degree to which it is connected with ’stabf.’ Because
this connection is significant (-0.83), as it should be, the choice to
delete it is strengthened by the fact that it is substantial. Additionally,
the correlation between ’p1’ and its constituents ’p2’, ’p3’, and ’p4’ is
considerably higher than average, as was anticipated; nonetheless, it
is not sufficiently high to warrant any removal.

4.2 Data Balancing Evaluation

Figure 4 shows the results of the proposed approach compared to
both the standard SMOTE and the GWO-SMOTE, the residual plot
of the Guide-waterwheel plant optimization algorithm-optimized
SMOTE demonstrates a significant increase in model fit. Through
the process of distributing residuals randomly over the horizontal
axis, guide-waterwheel plant optimization has successfully reduced
the amount of bias in model prediction. A more accurate predictor-
response link is demonstrated here, which contributes to an
increase in model confidence. Unbiased predictions are displayed
on the residual plot of Optimised SMOTE, which also reflects the
capacity of the Guide-waterwheel plant optimization algorithm to
capture complex data connections successfully. The plot dispersion
of the residuals demonstrates the algorithm’s ability to handle
intricate patterns and nuances, which in turn makes the model
more durable and sophisticated. When compared to standard
SMOTE and GWO-SMOTE, homoscedasticity plots for optimized
SMOTE, which is based on the use of the Guide-waterwheel
plant optimization method, exhibit a substantially lower level of

heteroscedasticity. In order to demonstrate the effectiveness of
the algorithm in resolving unequal variation, the consistency of
the residual variance across predicted values is established. The
presence of homoscedasticity enhances the model’s dependability
and stability, making it more suitable for producing predictions that
are consistent across all of the predictor variables. Furthermore,
the improved homoscedasticity of the Guide-waterwheel plant
optimization method demonstrates its capacity to distribute
defects uniformly.

The Guide-waterwheel plant optimization algorithm-optimized
SMOTE QQ plot demonstrates considerably better residual
normally than both the standard SMOTE and the GWO-SMOTE
plots. Based on the fact that the plot points are aligned with the
diagonal line, it would suggest that residuals are more usual.
The purpose of this normalization is to ensure that the Guide-
waterwheel plant optimization approach has rectified any model
error deviations from normality, hence confirming the validity of
statistical inferences. The accomplishment of the Guide-waterwheel
plant optimizationmethod through the construction of a statistically
sound model is demonstrated by the QQ plot, which indicates
greater normality. The capability of this technique to normalize
residuals has the effect of improving statistical tests as well as the
assumptions of many statistical studies, which in turn increases
the validity of the model. A summary of the performance statistics
for the Guide-waterwheel plant optimization algorithm-optimized
SMOTE, standard SMOTE, and GWO-SMOTEmodels is presented
in the heatmap graphic. The Guide-waterwheel plant optimization
method surpasses SMOTE and GWO-SMOTE in terms of accuracy,
precision, recall, and F1-score, as demonstrated by color-coded
metrics.The visual representation of the heatmap graphic shows the
overall performance of the Guide-waterwheel plant optimization
method, hence praising its superiority. The algorithm’s consistent
outperformance across a number of criteria provides insight into the
existence of amodel that is both comprehensive and reliable. If those
in charge of making decisions want to have a better understanding
of how the algorithm influences the performance of the model, this
visualization is beneficial.
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FIGURE 4
The Residual, homoscedasticity, QQ, and heatmap plots of the prediction results based on the SMOTE approach.

With SMOTE, without SMOTE (W/O SMOTE), and with
optimized SMOTE in accordance with the Guide-WWPA algorithm
(Guide-WWPA SMOTE) are the three preprocessing options that
are considered. An accuracy of 90.5% is achieved by beginning
with the LSTM model that does not include SMOTE. While the
specificity (76%) emphasizes its capacity to minimize false positives,
the sensitivity (95.4%), which indicates its potential to identify
instances of grid instability efficiently, demonstrates that it is able
to do so. The F1 score of 94.2% highlights the model’s balanced
performance due to its high level of accuracy. As a result of the
influence that oversampling has had on the minority class, the
accuracy has increased to 91.3%. An increase in the capacity to
recognize unstable grid circumstances is indicated by the sensitivity,
which has significantly improved to 96.8%. The model continues to
be effective in reducing the number of false positives, as evidenced by
the fact that the specificity (77.6%) remains unaffected. The overall
improvement in prediction accuracy is confirmed by the fact that the
F1 score reaches 95.5% (Table 1).

In order to prove the efficacy of the Guide-WWPA algorithm in
theprocess of fine-tuning the SMOTEprocedure, this configuration
achieves a boosted accuracy of 93.7%. The model’s greater ability
to identify both stable and unstable grid situations is shown by
the fact that both the sensitivity (97.1% of the time) and the
specificity (83.4% of the time) indicate improvement. The F1 score
achieves an impressive 96.2%, which highlights the influence that

theoptimizedSMOTEhason the achievementof apredictivemodel
that is both well-balanced and very accurate when it comes to
prediction. Both the major role that SMOTE plays and the extra
benefits that are brought about by the Guide-WWPA algorithm
are brought to light by the comparison of the performance of
the LSTM model under various preprocessing approaches. For
the purpose of achieving improved accuracy, sensitivity, specificity,
and overall predictive performance, the optimized SMOTE, which
is directed by the Guide-WWPA algorithm, emerges as the most
successful preprocessing strategy. In addition to highlighting the
potential of improved preprocessing approaches in improving the
reliability of predictive models, this illustrates the significance of
resolving class imbalance in the context of smart grid stability
prediction. When dealing with unbalanced datasets in the context
of smart grid stability prediction, researchers and practitioners
may make use of these insights to determine how to optimize
their method.

ANOVA test results show the importance of the proposedmodel
for smart grid stability prediction under multiple preprocessing
methods: without SMOTE, with SMOTE, and with optimized
SMOTE using the Guide-WWPA algorithm. ANOVA tables
have Treatment, Residual, and Total components. The Treatment
component shows how much each preprocessing approach affects
model prediction accuracy. The Treatment sum of squares (SS)
is 0.00187, with 4 DF and 0.0005 MS. The F-statistic (F (4, 20)
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TABLE 1 Evaluation of the prediction results based on the standard SMOTE, optimized SMOTE and without SMOTE.

LSTM Accuracy Sensitivity Specification Pvalue Nvalue F1-score

W/O SMOTE 0.905 0.954 0.760 0.930 0.823 0.942

With SMOTE 0.913 0.968 0.776 0.943 0.851 0.955

Guide-WWPA SMOTE 0.937 0.971 0.834 0.954 0.880 0.962

TABLE 2 Analysis of variance (ANOVA) test applied to the prediction
results using the optimized SMOTE approach.

ANOVA SS DF MS F (DFn,
DFd)

P-value

Treatment 0.00187 4 0.0005 F (4, 20) = 137.2 P< 0.0001

Residual 0.00007 20 0.000003

Total 0.00194 24

= 137.2) shows a significant difference (P < 0.0001) between
preprocessing approaches (Table 2). This suggests that at least
one preprocessing strategy significantly impacts model prediction.
The residual component indicates each preprocessing method’s
unexplained variability or mistake. Differences between observed
and projected values. With 20 degrees of freedom and an MS
of 0.000003, the Residual SS is 0.00007. The Residual component
assesses data variability not caused by preprocessing processes,
indicating data variability or model inadequacies. The total
component shows the model’s predicted performance variability.
It combines Treatment and Residual. Total SS is 0.00194, with
24 degrees of freedom. The Total SS shows how much variability
pretreatment methods explain relative to data variability. The
ANOVA test results indicate that the proposed smart grid
stability prediction model performs significantly differently under
different preprocessing procedures. The Treatment component,
which represents preprocessing procedure variability, greatly affects
model performance. These findings emphasize the significance of
preprocessing, with the optimized SMOTE employing the Guide-
WWPA algorithm possibly improving predictive performance
the most. These findings can help researchers and practitioners
improve smart grid stability prediction models and preprocessing
procedures.

The proposed model for smart grid stability prediction
uses several optimization strategies applied to SMOTE, and
statistical analysis provides useful insights into performance
variances between approaches. Optimization strategies include
PSO-SMOTE, GWO-SMOTE, WWPA-SMOTE, and Guide-
WWPA SMOTE. Examine and expand each method’s summary
data. SMOTE: SMOTE alone is the comparative baseline. The
analysis shows a mean accuracy of 0.9129 and a standard
deviation of 0.0018 for accuracy values from 0.9101 to 0.9151.
The sample mean estimate is precise, with a standard error of
0.0008. PSO-SMOTE, GWO-SMOTE, and WWPA-SMOTE: These
optimization approaches make SMOTE accuracy distributions

smaller than baseline SMOTE. Each approach improves mean
accuracy compared to SMOTE alone; however, range and standard
deviation vary, indicating optimization strategy efficacy. The
proposed Guide-WWPA SMOTE has the greatest mean accuracy
(0.9369) among all approaches, demonstrating its predictive
performance improvement. A lower range and standard deviation
indicate a more consistent and exact accuracy distribution
(Table 3). A deeper statistical summary analysis is possible
with the comment extension. Guide-WWPA SMOTE’s shorter
range and lower standard deviation indicate stronger predictive
performance consistency and stability than other optimization
approaches. The reduced standard error of the mean supports this
increased precision and provides a more accurate population mean
estimate. Comparing percentiles across optimization strategies
reveals accuracy distributions. Guide-WWPA SMOTE has greater
median and percentile accuracy across the spectrum. Guide-
WWPA SMOTE increases the smart grid stability prediction
model’s predictive capabilities, yielding more accurate findings than
previous optimization approaches. The statistical research shows
that Guide-WWPASMOTE improves smart grid stability prediction
model performance. Higher mean accuracy, decreased variability,
and increased consistency make it a suitable optimization technique
for unbalanced data in smart grid stability prediction tasks.
Researchers and practitioners may use these insights to optimize
preprocessing and improve the smart grid prediction model’s
dependability.

4.3 Evaluating Machine Learning Models

A complete comparison of several algorithms is shown in the
findings of the smart grid stability prediction models. The results
show that LSTM emerges as the model that is used due to its
superior performance. The following metrics will be taken into
consideration: accuracy, sensitivity, specificity, Pvalue, Nvalue, and
F1-score. Let’s go into the study of each pair of measures. To begin,
it exhibits a remarkable accuracy of 81.0%, with a high sensitivity of
89.7%, which indicates that it is proficient in properly recognizing
instances of grid stability. This is demonstrated by SVM. On the
other hand, the rate of false positives is greater because of the
comparatively poor specificity of 62.0%. In situations when accuracy
and memory are of the utmost importance, it is essential to strike
a balance between sensitivity and specificity. Following that, KNN
model gets an accuracy of 82.3% while doing exceptionally well
in terms of sensitivity, which is 90.9%. However, in a manner
comparable to that of SVM, its specificity is significantly lower,
coming in at 72.5%. There is a possibility that KNN has a greater
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TABLE 3 Statistical analysis of the data balancing results.

SMOTE PSO-SMOTE GWO-SMOTE WWPA-SMOTE Guide-WWPA SMOTE

Number of values 5 5 5 5 5

Minimum 0.9101 0.9155 0.9204 0.9239 0.9367

25% Percentile 0.9116 0.9160 0.9209 0.9269 0.9367

Median 0.9131 0.9165 0.9214 0.9299 0.9367

75% Percentile 0.9141 0.9170 0.9234 0.9309 0.9372

Maximum 0.9151 0.9175 0.9254 0.9320 0.9377

Range 0.0050 0.0020 0.0050 0.0081 0.0011

Mean 0.9129 0.9165 0.9220 0.9291 0.9369

Std. Deviation 0.0018 0.0007 0.0019 0.0031 0.0005

Std. Error of Mean 0.0008 0.0003 0.0009 0.0014 0.0002

TABLE 4 Evaluation of various machine learning models.

Models Acc Sens Spec Pvalue Nvalue F1-
score

SVM 0.810 0.897 0.620 0.843 0.721 0.869

KNN 0.823 0.909 0.625 0.855 0.732 0.881

DT 0.834 0.917 0.627 0.866 0.735 0.891

MLP 0.843 0.920 0.648 0.875 0.745 0.897

RF 0.874 0.935 0.718 0.900 0.797 0.917

LSTM 0.892 0.944 0.760 0.917 0.823 0.930

probability of false positives despite the fact that it is quite good
at recognizing stable grid conditions. A high level of sensitivity of
91.7% and an accuracy of 83.4% are both features of DT model,
which operates well. When it comes to accurately detecting unstable
grid states, however, the specificity is still very low at 62.7%, which
indicates that there is space for improvement. As we go on to MLP
model, we find that it exhibits a high level of sensitivity of 92.0%
and an accuracy of 84.3%. A better balance between accurately
categorizing stable and unstable circumstances is proposed by the
fact that the specificity has improved to 64.8% with this adjustment.
In the comparison, the Random Forest (RF) model is one of the
models that performs very well since it has an excellent accuracy
of 87.4%. It demonstrates its capacity to differentiate between stable
and unstable states by virtue of its high sensitivity (93.5%), as
well as its high specificity (71.8%). As a result of achieving the
maximum accuracy of 89.2%, LSTM model is ultimately selected
as the model to be implemented. The sensitivity of this model is
94.4%, which indicates that it is exceedingly capable of identifying

FIGURE 5
The average error of the prediction results based on the feature
selection methods.

grid configurations that are both stable and unstable. Furthermore,
the specificity of 76.0 percent reveals a powerful capability to
minimize false positives, which makes it more reliable in terms
of predicting the stability of smart grids (Table 4). In terms of
accuracy, sensitivity, specificity, and overall predictive performance,
LSTM model appears to be superior to other algorithms, as
demonstrated by the thorough metrics study. This is a promising
choice for real-world applications in electrical grid management,
which is why LSTM model was chosen as the adopted model. Its
greater capacity to reliably anticipate smart grid stability is the
reason for this choice.

4.4 Feature Selection Evaluation

The feature selection results from several optimization
approaches applied to the smart grid stability dataset show how well
different strategies find significant features. Binary bGuide-WWPA,
Binary bWWPA, Binary bGWO, Binary bPSO, Binary bBA, Binary
bWAO, Binary bBBO, Binary bMVO, Binary bSBO, Binary bFA,
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FIGURE 6
Analysis Plots of the feature selection results.

TABLE 5 Evaluation of the feature selection results.

bGuide-
WWPA

bWWPA bGWO bPSO bBA bWAO bBBO bMVO bSBO bFA bGA

Average error 0.796 0.820 0.882 0.877 0.886 0.877 0.845 0.854 0.885 0.875 0.857

Average Select size 0.779 0.979 1.112 0.979 1.118 1.142 1.142 1.075 1.149 1.013 0.921

Average Fitness 0.889 0.905 0.914 0.904 0.927 0.911 0.909 0.933 0.943 0.956 0.917

Best Fitness 0.791 0.826 0.867 0.884 0.816 0.876 0.899 0.859 0.886 0.874 0.820

Worst Fitness 0.889 0.892 0.977 0.952 0.918 0.952 0.986 0.977 0.966 0.972 0.935

Std. Fitness 0.711 0.716 0.734 0.715 0.725 0.718 0.760 0.766 0.776 0.752 0.718

TABLE 6 ANOVA test applied to the feature selection results.

ANOVA SS DF MS F (DFn,
DFd)

P-value

Treatment 0.080 10 0.008008 F (10, 99) =
115.4

P< 0.0001

Residual 0.007 99 0.00006942

Total 0.087 109

and Binary bGA: This measure indicates feature selection accuracy.
Lower numbers indicate better performance.The proposed bGuide-
WWPA technique has the lowest average error of 0.796, suggesting
its efficacy in picking important features (Figures 5, 6). This shows
that bGuide-WWPA feature selection is more accurate than other
techniques (Table 5). Average Select Size: Each technique selects
an average amount of features. Here, bGuide-WWPA has a lower
average select size than other approaches, showing it can find a
more compact and informative subset of features. This can simplify
computation and improve model interpretation. Average Fitness,
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TABLE 7 Wilcoxon signed rank test applied to the feature selection results.

bGuide-
WWPA

bWWPA bGWO bPSO bBA bWAO bBBO bMVO bSBO bFA bGA

Theoretical
median

0 0 0 0 0 0 0 0 0 0 0

Actual median 0.796 0.820 0.882 0.877 0.887 0.877 0.845 0.854 0.885 0.875 0.857

Number of
values

10 10 10 10 10 10 10 10 10 10 10

Sum of signed
ranks

55 55 55 55 55 55 55 55 55 55 55

Sum of positive
ranks

55 55 55 55 55 55 55 55 55 55 55

Sum of negative
ranks

0 0 0 0 0 0 0 0 0 0 0

P-value (two
tailed)

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Discrepancy 0.796 0.820 0.882 0.877 0.887 0.877 0.845 0.854 0.885 0.875 0.857

FIGURE 7
The histogram of the prediction accuracy.

FIGURE 8
The accuracy of the prediction results achieved by various prediction
algorithms.

Best Fitness, Worst Fitness, Std. Fitness: These measures show
feature subset quality and variability. With high average fitness,
best fitness, and low standard deviation of fitness data, bGuide-
WWPA performs well. This indicates that bGuide-WWPA’s feature
subsets are accurate, consistent, and robust. The proposed bGuide-
WWPA successfully selects key features for smart grid stability
prediction. Its decreased average error, small subset of features,
and high fitness values make it preferable to other feature selection
approaches. These findings can help researchers and practitioners
enhance smart grid management forecasting models and
feature selection.

ANOVA test on smart grid stability prediction feature selection
results using bGuide-WWPA, bWWPA, bGWO, bPSO, bBA, bWAO,
bBBO, bMVO, bSBO, bFA, and bGA shows how these methods
affect predictive performance. Treatment: The Treatment component
indicates howmuch each feature selection approach affects predicted
accuracy.TheTreatment SS is 0.080,with 10DFand0.008008MS.The
F-statistic(F(10,99)=115.4)showsasignificantdifference(P<0.0001)
across feature selection approaches (Table 6).This suggests that at least
one feature selection approach significantly affects model prediction.
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FIGURE 9
Analysis plots of results of the smart grid stability prediction.

FIGURE 10
The ROC cCurve between Guide-WWPA + LSTM and WWPA + LSTM.

Residual: Each feature selection method’s unexplained variability or
inaccuracy is the residual component. Differences between observed
and projected values are included.With 99 degrees of freedom and an
MS of 0.00006942, the Residual SS is 0.007. The Residual component
assesses data variability not caused by feature selection techniques,
indicating data variability or model shortcomings. Total: The Total
component indicates model prediction performance variability. It
combines Treatment and Residual. The Total SS is 0.087 with 109
degrees of freedom.The Total SS shows how much variability feature

selection strategies explain relative to data variability. The ANOVA
test findings indicate that smart grid stability prediction feature
selection approaches function differently.The Treatment component,
which reflects feature selection process variability, is critical to model
performance. These findings emphasize the relevance of feature
selection, which may improve smart grid management prediction
model accuracyanddependability.Thesefindingscanhelp researchers
and practitioners improve smart grid stability prediction predictive
models and feature selection procedures.

The Wilcoxon signed-rank test helps determine the relevance of
smart grid stability prediction technique differences betweenmatched
feature selection approaches. The medians of the differences between
the paired feature selection approaches are compared to a theoretical
median of zero. Examine and expand on the important results.
Theoretical and Actual Medians: The theoretical median is zero,
suggestingnopredicteddifferencebetweenthepaired feature selection
approaches. Actual median values show method discrepancies. The
median for bGuide-WWPA is 0.796, bWWPA is 0.820, etc. These
values indicate the main procedure differences. Each feature selection
techniqueismatchedwiththeothers,creating10pairings.Theabsolute
differences between paired feature selection approaches are summed
according to signed rankings. All pairings have 55 signed rankings,
indicatingconsistencyinrankingdiscrepanciesacrossapproaches.The
sum of positive rankings reflects ranks given to positive differences
(where the first technique has a higher median than the second).
In contrast, the total of negative ranks represents ranks assigned to
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TABLE 8 Prediction results based on various optimization methods.

Models Accuracy Sensitivity Specification Pvalue Nvalue F1-score

LSTM 0.949 0.974 0.853 0.958 0.897 0.966

WAO + LSTM 0.953 0.982 0.873 0.966 0.916 0.974

BBO + LSTM 0.958 0.988 0.876 0.968 0.931 0.978

MVO + LSTM 0.965 0.990 0.895 0.973 0.940 0.982

GWO + LSTM 0.969 0.993 0.908 0.975 0.954 0.984

GA + LSTM 0.974 0.996 0.922 0.979 0.962 0.987

PSO + LSTM 0.981 0.999 0.939 0.985 0.971 0.992

WWPA + LSTM 0.988 0.999 0.966 0.992 0.980 0.996

Guide-WWPA + LSTM 0.997 0.996 0.996 0.999 0.989 0.997

TABLE 9 ANOVA test results of the prediction results.

ANOVA SS DF MS F (DFn,
DFd)

P-value

Treatment 0.0207 8 0.0026 F (8, 81) = 383.6 P< 0.0001

Residual 0.0005 81 0.00001

Total 0.02123 89

negative differences. All differences are positive in this test; thus,
positive and negative ranks are equal. Two-Tailed P-Value: The P
number reflects the chance of seeing the findings (or more extreme)
under the null hypothesis of no difference between the matched
feature selection procedures. For all couples, the P value is 0.002,
strongly rejecting the null hypothesis (Table 7). This suggests that
feature selection approaches varied greatly. The discrepancy column
shows variations between the matched feature selection approaches.
These medians reveal technique differences in direction and size.
TheWilcoxon signed-rank test shows substantial differences amongst
smart grid stability prediction paired feature selection approaches.
Choosing the right feature selection approach is important since the
constant sum of signed rankings and low P values indicate strong
findings across all pairings. These findings can help researchers and
practitioners choose the best feature selection method for smart
grid stability prediction.

4.5 Smart Grid Stability Prediction
Evaluation

When compared to earlier methods of feature selection, the
Smart Grid Stability Prediction that makes use of the optimized
Guide-WWPA + LSTMmodel distinguishes itself by displaying the
prediction performance of the model. It has been demonstrated
that Guide-WWPA + LSTM is more accurate than other LSTM

models such as PSO + LSTM, GA + LSTM, GWO + LSTM, MVO
+ LSTM, BBO + LSTM, WOA + LSTM, and the standard LSTM
model. A more concentrated and smaller accuracy distribution
in the histogram is indicative of predictive performance that is
of a higher quality. In order to increase the accuracy of smart
grid stability forecasts, Guide-WWPA is able to detect significant
factors that optimize the LSTM model. In terms of accuracy and
prediction error variance, the accuracy histogram demonstrates that
the Guide-WWPA + LSTM model works better than other feature
selection techniques. With the enhanced Guide-WWPA method,
the model’s capacity to generalize to new data is improved, resulting
in more consistent and predictable performance (Figures 7–9). This
is accomplished by effectively traversing across feature space and
detecting variables that have significance. When it comes to smart
grids, having credible stability forecasts is necessary for ensuring the
safety and effectiveness of the network.The Guide-WWPA provides
a higher level of accuracy when compared to other classification
methods such as PSO + LSTM, GA + LSTM, GWO + LSTM, MVO
+ LSTM, BBO + LSTM, WOA + LSTM, and the standard LSTM.

The capability of the algorithm to recognize important features
and effectively collaborate with the LSTM model contributes to an
increase in the predictive capacity of the hybrid model. The Guide-
WWPA+ LSTMmodel may perform better than other techniques if
it is essential to have intelligent grid stability forecasts that are precise
and reliable. Other feature selection methods are outperformed
by the Smart Grid Stability Prediction accuracy histogram, which
makes use of the improved Guide-WWPA + LSTM model. A
demonstration of the LSTM model’s expanded predictive capacity
is provided by Guide-WWPA’s enhanced and consistent accuracy
distribution as well as its reduced prediction errors. Under real-
world applications, this hybrid technique for predicting the stability
of smart grids appears to have a lot of potential. It may even surpass
other feature selectionmethods that are now under implementation.

When comparing the Guide-WWPA + LSTM model to the
WWPA + LSTM model for the purpose of predicting the stability
of smart grids, the ROC curve is an essential visual tool, as
depicted in Figure 10. In order to demonstrate that themodels are able
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TABLE 10 Wilcoxon signed rank test applied to the prediction results.

LSTM WAO +
LSTM

BBO +
LSTM

MVO +
LSTM

GWO +
LSTM

GA +
LSTM

PSO +
LSTM

WWPA
+ LSTM

Guide-WWPA
+ LSTM

Theoretical
median

0 0 0 0 0 0 0 0 0

Actual
median

0.949 0.953 0.959 0.965 0.969 0.974 0.981 0.988 0.997

Number of
values

10 10 10 10 10 10 10 10 10

Sum of
signed
ranks

55 55 55 55 55 55 55 55 55

Sum of
positive
ranks

55 55 55 55 55 55 55 55 55

Sum of
negative
ranks

0 0 0 0 0 0 0 0 0

P-value
(two tailed)

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Discrepancy 0.949 0.953 0.959 0.965 0.969 0.974 0.981 0.988 0.997

to differentiate between stable and unstable circumstances, the ROC
curve illustrates the compromise that exists between the true positive
rate and the false positive rate. By having a greater area under the
curve(AUC),whichindicatesbetterdiscriminationandprediction,the
recommended Guide-WWPA + LSTM model surpasses the WWPA
+ LSTM model in this comparison. In the Guide-WWPA + LSTM
model, the ROC curve gets steeper and more convex as it is studied
more carefully. This indicates that the model has greater sensitivity
and specificity across all classification thresholds.With the help of the
Guide-WWPAalgorithm, the feature selectionprocesswasoptimized,
which in turn enabled the LSTM model to generate predictions
that were precise and reliable. For the purpose of managing energy
proactively and efficiently, achieving smart grid stability prediction
requires an expanded discriminating power to recognize prospective
instability occurrences. In addition to that, the comment investigates
the use of ROC curve comparison in the real world. It is possible that
the Guide-WWPA + LSTMmodel, which has superior performance,
would lower the number of false positives and negatives that are
associated with smart grid stability prediction. This will reduce the
risk of ineffective actions or the occurrence of key instability events.
Byensuring thedependabilityandrobustnessof smartgrids thismakes
it easier to make decisions on the management of electrical networks.
With regard to discriminatory power and predictive performance, the
Guide-WWPA + LSTM model is superior to the WWPA + LSTM
model. This conclusion is based on the results of ROC curve analysis
conducted on the findings of smart grid stability prediction. In order
to improve the accuracy and dependability of the LSTM model, the
Guide-WWPA approach optimizes the selection of features. Exact
stability projections are necessary for smart grid operations in order
to guarantee the long-term reliability and effectiveness of the electrical
framework. Using the Guide-WWPA + LSTM model for smart grid

stability prediction, energy management and grid reliability may
both be improved over time.

Both Guide-WWPA + LSTM and WWPA+LSTM models
have AUCs of 0.99, which is high. This suggests that Guide-
WWPA + LSTM and WWPA + LSTM models may accurately
categorize cases due to their strong discriminatory strength.
Standard Error: Measures AUC estimate variability or precision. We
have a tiny standard error of 0.01616 around the AUC estimate.
95% Confidence Interval: The 95% confidence interval gives us a
reasonable estimate of the real AUC value. The CI is 0.9583–1.000,
showing good AUC estimate confidence. A P-value reflects the
statistical significance of the performance difference between the
two models. The P-value is 0.0002, below the significance level of
0.05. This shows that Guide-WWPA + LSTM outperforms WWPA
+ LSTM statistically. Data: The data summary lists the number of
controls (LSTM model-classified as normal stability) and patients
(LSTM-classified as unstable) utilized in the analysis. Both models
were tested with 10 controls and 10 patients, and no data was
missing. The ROC curve shows that Guide-WWPA + LSTM and
WWPA + LSTM models predict smart grid stability effectively.
Guide-WWPA + LSTMmay have a modest performance advantage
over WWPA + LSTM, as seen by the low P-value. For reliable
smart grid stability prediction, optimizationmethods such asGuide-
WWPA and LSTMmodels work well (Table 8).

The ANOVA test findings, in Table 9, show that smart grid
stability prediction approaches function differently. The treatment
component shows significant variability between prediction
approaches, with an SS of 0.02069 and a high F-statistic of
383.6 (with 8 and 81 degrees of freedom), resulting in a low P-
value (<0.0001). This shows that at least one prediction approach
significantly affects model prediction. An SS of 0.000546 and an MS
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TABLE 11 Statistical analysis of the prediction results.

LSTM WAO +
LSTM

BBO +
LSTM

MVO +
LSTM

GWO +
LSTM

GA +
LSTM

PSO +
LSTM

WWPA +
LSTM

Guide-WWPA
+ LSTM

Number of
values

10 10 10 10 10 10 10 10 10

Minimum 0.947 0.950 0.951 0.961 0.959 0.970 0.973 0.980 0.997

25%
Percentile

0.949 0.953 0.959 0.964 0.969 0.974 0.981 0.988 0.997

Median 0.949 0.953 0.959 0.965 0.969 0.974 0.981 0.988 0.997

75%
Percentile

0.949 0.954 0.959 0.965 0.969 0.978 0.981 0.989 0.997

Maximum 0.952 0.960 0.964 0.970 0.974 0.979 0.983 0.992 0.998

Range 0.005 0.010 0.013 0.009 0.015 0.009 0.010 0.011 0.001

10%
Percentile

0.947 0.951 0.952 0.961 0.960 0.971 0.974 0.981 0.997

90%
Percentile

0.952 0.960 0.963 0.969 0.973 0.979 0.983 0.992 0.998

Actual
confidence
level

0.979 0.979 0.979 0.979 0.979 0.979 0.979 0.979 0.979

Lower
confidence
limit

0.949 0.953 0.959 0.961 0.969 0.974 0.981 0.988 0.997

Upper
confidence
limit

0.950 0.955 0.960 0.965 0.969 0.978 0.981 0.989 0.997

Mean 0.949 0.954 0.958 0.964 0.969 0.975 0.980 0.988 0.997

Std.
Deviation

0.001 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.000

Std. Error of
Mean

0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000

Lower 95%
CI of mean

0.948 0.952 0.956 0.963 0.966 0.973 0.978 0.986 0.997

Upper 95%
CI of mean

0.950 0.956 0.961 0.966 0.971 0.977 0.982 0.990 0.997

Coefficient
of variation

0.001 0.003 0.003 0.003 0.004 0.003 0.003 0.003 0.000

Geometric
mean

0.949 0.954 0.958 0.964 0.969 0.975 0.980 0.988 0.997

Lower 95%
CI of geo.
mean

0.948 0.952 0.956 0.963 0.966 0.973 0.978 0.986 0.997

Upper 95%
CI of geo.
mean

0.950 0.956 0.961 0.966 0.971 0.977 0.982 0.990 0.997

Harmonic
mean

0.949 0.954 0.958 0.964 0.969 0.975 0.980 0.988 0.997

(Continued on the following page)
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TABLE 11 (Continued) Statistical analysis of the prediction results.

LSTM WAO +
LSTM

BBO +
LSTM

MVO +
LSTM

GWO +
LSTM

GA +
LSTM

PSO +
LSTM

WWPA +
LSTM

Guide-WWPA
+ LSTM

Lower 95%
CI of harm.
mean

0.948 0.952 0.956 0.963 0.966 0.973 0.978 0.986 0.997

Upper 95%
CI of harm.
mean

0.950 0.956 0.961 0.966 0.971 0.977 0.982 0.990 0.997

Quadratic
mean

0.949 0.954 0.958 0.964 0.969 0.975 0.980 0.988 0.997

Skewness 0.885 1.930 −1.172 0.102 −1.939 0.093 −2.684 −2.217 2.802

Kurtosis 3.822 5.330 4.891 1.730 6.396 −0.027 8.263 6.873 8.647

Sum 9.491 9.538 9.584 9.644 9.685 9.753 9.803 9.880 9.972

of 0.000006741 indicate a tiny residual component, which accounts
for unexplained variability or error in each prediction technique.
This suggests that predicted performance variability is mostly due
to technique variations rather than random variability within each
method. A total SS of 0.02123 (89 degrees of freedom) shows model
prediction performance variability. The large ANOVA difference
emphasizes the importance of choosing the right prediction
approach, which may improve the accuracy and dependability of
smart grid stability prediction models.

The Wilcoxon signed-rank test shows that Guide-WWPA
+ LSTM outperforms alternative smart grid stability prediction
approaches as presented in Table 10. The theoretical median for all
approaches is zero, showing no performance difference fromGuide-
WWPA + LSTM. However, each method’s median results, ranging
from 0.949 to 0.997, show significant performance differences from
Guide-WWPA + LSTM. The sum of signed rankings appears to
rank performance differences consistently across all approaches,
supporting this disagreement. Each technique performs significantly
better than Guide-WWPA + LSTM (P-value 0.002, two-tailed).
This strongly contradicts the null hypothesis that Guide-WWPA +
LSTM performs similarly to the other approaches. The Wilcoxon
signed-rank test findings show that Guide-WWPA + LSTM
outperforms alternative smart grid stability prediction approaches.
This emphasizes the significance of choosing the best approach, with
Guide-WWPA + LSTM performing best.

The statistical test of smart grid stability prediction using LSTM,
WAO + LSTM, BBO + LSTM, MVO + LSTM, GWO + LSTM, GA +
LSTM, PSO + LSTM,WWPA + LSTM, and Guide-WWPA + LSTM
shows their performance and variability. Analysis of the statistics
reveals each method’s predictive power as presented in Table 11.
Central tendency measurements like the mean, median, and
quartiles help us comprehend each method’s usual performance.
Guide-WWPA + LSTM has a mean smart grid stability prediction
accuracy of 0.997. Range and standard deviation show predicted
performance metrics’ distribution around the mean. A lower range
and standard deviation indicate less performance variability across
experiments or observations. Guide-WWPA + LSTM has the
lowest standard deviation of 0.000, showing consistent performance

across assessments. Mean confidence intervals also show the
accuracy of estimated performance levels. Guide-WWPA + LSTM
’ s narrow confidence intervals suggest strong mean performance
value confidence. Skewness and kurtosis assess performance value
distribution shape.Thedistribution is skewed to the right for positive
skewness, suggesting lower performance values, and to the left for
negative skewness, indicating greater performance values. Kurtosis
indicates distribution peaking. Understanding these measurements
helps evaluate each method’s performance value distribution. By
revealing the performance characteristics of the tested approaches,
statistical analysis allows stakeholders to choose them for smart grid
stability prediction.

5 Conclusion

This paper proposed a novel Guide-WWPA+LSTM model
for boosting the prediction accuracy of smart grid stability. On
the smart grid dataset that is available from the UCI Machine
Learning Repository, the proposed model is demonstrated through
experimentation. The effectiveness of Guide-WWPA+LSTM is
evaluated in comparison to that of various optimization methods
and conventional machine learning models such as LSTM, SVM,
DT, and MLP. Regarding accuracy, precision, loss, and ROC
curve metrics, the comparison study demonstrates that the
proposed model is superior to the other models. In comparison
to other conventional models, the proposed model attained
an accuracy of 99.7%. In addition, the proposed model has a
sensitivity, specificity, Pvalue, Nvalue and F1-score as 97.6%,
99.6%, 99.9% and 99.7%. The ROC curve is another indicator
that demonstrates how successful the proposed model should be.
The model that was presented accomplishes an ROC of 99.00%,
which is superior to the performance of the other models. It
is possible to implement a context-aware model as part of the
work that will be done in the future in order to meet the ever-
changing demands for electricity and enhance the dependability of
smart grids.

Frontiers in Energy Research 20 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1399464
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Karim et al. 10.3389/fenrg.2024.1399464

Data availability statement

Theoriginal contributions presented in the study are included in
the article/SupplementaryMaterial, further inquiries can be directed
to the corresponding authors.

Author contributions

KF: Writing–original draft, Writing–review & editing. DK:
Writing–original draft, Writing–review & editing. E-SE-k:
Writing–original draft, Writing–review & editing. Marwa Eid:
Writing–original draft, Writing–review & editing. Abdelhameed
Ibrahim: Writing–original draft, Writing–review & editing. LA:
Writing–original draft,Writing–review& editing. NimaKhodadadi:
Writing–original draft, Writing–review & editing. Abdelaziz
Abdelhamid: Writing–original draft, Writing–review & editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2024R 300), Princess Nourah
bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may
be evaluated in this article, or claim that may be made
by its manufacturer, is not guaranteed or endorsed by
the publisher.

References

Abdelhamid, A. A., Towfek, S. K., Khodadadi, N., Alhussan, A. A., Khafaga, D. S., Eid,
M. M., et al. (2023). Waterwheel plant algorithm: a novel metaheuristic optimization
method. Processes 11, 1502. doi:10.3390/pr11051502

Adil, M., Javaid, N., Qasim, U., Ullah, I., Shafiq, M., and Choi, J. G. (2020). LSTM
and bat-based RUSBoost approach for electricity theft detection. Appl. Sci. 10, 4378.
doi:10.3390/app10124378

Ahmed, S., Lee, Y., Hyun, S. H., and Koo, I. (2019). Unsupervised machine learning-
based detection of covert data integrity assault in smart grid networks utilizing isolation
forest. IEEE Trans. Inf. Forensics Secur. 14, 2765–2777. doi:10.1109/TIFS.2019.2902822

Alazab, M., Khan, S., Krishnan, S. S. R., Pham, Q. V., Reddy, M. P. K., and Gadekallu,
T. R. (2020). Amultidirectional LSTMmodel for predicting the stability of a smart grid.
IEEE Access 8, 85454–85463. doi:10.1109/ACCESS.2020.2991067

Alazab, M., and Tang, M. (2019). Deep learning Applications for cyber security.
Advanced sciences and technologies for security applications (Cham: Springer
International Publishing). doi:10.1007/978-3-030-13057-2

Almalaq, A., and Edwards, G. (2017). “A review of deep learning methods applied on
load forecasting,” in USA, 18-21 Dec. 2017, 511–516. doi:10.1109/ICMLA.2017.0-110

Almetwally, E. M., and Meraou, M. (2022). Application of environmental data with
new extension of nadarajah-haghighi distribution. Comput. J. Math. Stat. Sci. 1, 26–41.
doi:10.21608/cjmss.2022.271186

Awange, J. L., Swarm Optimization, P., Awange, J. L., Paláncz, B., Lewis, R. H., and
Völgyesi, L. (2018).Mathematical geosciences: hybrid symbolic-numericmethods (Cham:
Springer International Publishing), 167–184. doi:10.1007/978-3-319-67371-4_6

Bajaj, M., and Singh, A. K. (2020). Grid integrated renewable DG systems: a review of
power quality challenges and state-of-the-art mitigation techniques. Int. J. Energy Res.
44, 26–69. doi:10.1002/er.4847

Bassamzadeh, N., and Ghanem, R. (2017). Multiscale stochastic prediction of
electricity demand in smart grids using Bayesian networks. Appl. Energy 193, 369–380.
doi:10.1016/j.apenergy.2017.01.017

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002).
SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357.
doi:10.1613/jair.953

Chen, K. (2019). Indirect PCA dimensionality reduction based machine learning
algorithms for power system transient stability assessment. 2019 IEEE Innov. Smart
Grid Technol. - Asia (ISGTAsia) (Chengdu, China IEEE), 4175–4179. doi:10.1109/ISGT-
Asia.2019.8881370

Din, I. U., Guizani, M., Rodrigues, J. J., Hassan, S., and Korotaev, V. V.
(2019). Machine learning in the Internet of Things: designed techniques for

smart cities. Future Gener. Comput. Syst. 100, 826–843. doi:10.1016/j.future.
2019.04.017

Fister, I., Fister, I., Yang, X. S., and Brest, J. (2013). A comprehensive review of firefly
algorithms. Swarm Evol. Comput. 13, 34–46. doi:10.1016/j.swevo.2013.06.001

Ghorbanian,M., Dolatabadi, S. H., and Siano, P. (2019). Big data issues in smart grids:
a survey. IEEE Syst. J. 13, 4158–4168. doi:10.1109/JSYST.2019.2931879

Hafeez, G., Alimgeer, K. S., and Khan, I. (2020a). Electric load forecasting based on
deep learning and optimized by heuristic algorithm in smart grid. Appl. Energy 269,
114915. doi:10.1016/j.apenergy.2020.114915

Hafeez, G., Alimgeer, K. S., Qazi, A. B., Khan, I., Usman, M., Khan, F. A., et al.
(2020b). A hybrid approach for energy consumption forecasting with a new feature
engineering and optimization framework in smart grid. IEEE Access 8, 96210–96226.
doi:10.1109/ACCESS.2020.2985732

Hafeez, G., Alimgeer, K. S., Wadud, Z., Shafiq, Z., Ali Khan, M. U., Khan, I.,
et al. (2020c). A novel accurate and fast converging deep learning-based model
for electrical energy consumption forecasting in a smart grid. Energies 13, 2244.
doi:10.3390/en13092244

Hafeez, G., Javaid, N., Riaz, M., Ali, A., Umar, K., and Iqbal, Z. (2020d). “Day ahead
electric load forecasting by an intelligent hybrid model based on deep learning for
smart grid,” in Complex, intelligent, and software intensive systems. Editors L. Barolli,
F. K. Hussain, and M. Ikeda (Cham: Springer International Publishing), 993, 36–49.
doi:10.1007/978-3-030-22354-0_4

Hafeez, G., Khan, I., Jan, S., Shah, I. A., Khan, F. A., and Derhab, A.
(2021). A novel hybrid load forecasting framework with intelligent feature
engineering and optimization algorithm in smart grid. Appl. Energy 299, 117178.
doi:10.1016/j.apenergy.2021.117178

Hong, Y., Zhou, Y., Li, Q., Xu, W., and Zheng, X. (2020). A deep learning method
for short-term residential load forecasting in smart grid. IEEE Access 8, 55785–55797.
doi:10.1109/ACCESS.2020.2981817

Immanuel, S. D., and Chakraborty, U. K. (2019). “Genetic algorithm: an
approach on optimization,” in 2019 International Conference on Communication
and Electronics Systems (ICCES), China, 17-19 July 2019, 701–708.
doi:10.1109/ICCES45898.2019.9002372

Irshad, O., Khan, M. U. G., Iqbal, R., Basheer, S., and Bashir, A. K. (2020).
Performance optimization of IoT based biological systems using deep learning.Comput.
Commun. 155, 24–31. doi:10.1016/j.comcom.2020.02.059

Iwendi, C., Khan, S., Anajemba, J. H., Bashir, A. K., and Noor, F. (2020). Realizing an
efficient IoMT-assisted patient diet recommendation system throughmachine learning
model. IEEE Access 8, 28462–28474. doi:10.1109/ACCESS.2020.2968537

Frontiers in Energy Research 21 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1399464
https://doi.org/10.3390/pr11051502
https://doi.org/10.3390/app10124378
https://doi.org/10.1109/TIFS.2019.2902822
https://doi.org/10.1109/ACCESS.2020.2991067
https://doi.org/10.1007/978-3-030-13057-2
https://doi.org/10.1109/ICMLA.2017.0-110
https://doi.org/10.21608/cjmss.2022.271186
https://doi.org/10.1007/978-3-319-67371-4_6
https://doi.org/10.1002/er.4847
https://doi.org/10.1016/j.apenergy.2017.01.017
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/ISGT-Asia.2019.8881370
https://doi.org/10.1109/ISGT-Asia.2019.8881370
https://doi.org/10.1016/j.future.2019.04.017
https://doi.org/10.1016/j.future.2019.04.017
https://doi.org/10.1016/j.swevo.2013.06.001
https://doi.org/10.1109/JSYST.2019.2931879
https://doi.org/10.1016/j.apenergy.2020.114915
https://doi.org/10.1109/ACCESS.2020.2985732
https://doi.org/10.3390/en13092244
https://doi.org/10.1007/978-3-030-22354-0_4
https://doi.org/10.1016/j.apenergy.2021.117178
https://doi.org/10.1109/ACCESS.2020.2981817
https://doi.org/10.1109/ICCES45898.2019.9002372
https://doi.org/10.1016/j.comcom.2020.02.059
https://doi.org/10.1109/ACCESS.2020.2968537
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Karim et al. 10.3389/fenrg.2024.1399464

Iwendi, C., Maddikunta, P. K. R., Gadekallu, T. R., Lakshmanna, K., Bashir, A. K., and
Piran, M. J. (2021). A metaheuristic optimization approach for energy efficiency in the
IoT networks. Softw. Pract. Exp. 51, 2558–2571. doi:10.1002/spe.2797

Jin, L., Fuggle, A., Roberts, H., and Armstrong, C. P. (2023). Using machine learning
to predict shear wave velocity. Geo-congress 2023. Los Angeles, California: American
Society of Civil Engineers, 142–152. doi:10.1061/9780784484678.015

Jindal, A., Dua, A., Kaur, K., Singh, M., Kumar, N., and Mishra, S. (2016). Decision
tree and SVM-based data analytics for theft detection in smart grid. IEEE Trans.
Industrial Inf. 12, 1005–1016. doi:10.1109/TII.2016.2543145

Kotb, Y., Al Ridhawi, I., Aloqaily, M., Baker, T., Jararweh, Y., and Tawfik, H. (2019).
Cloud-based multi-agent cooperation for IoT devices using workflow-nets. J. Grid
Comput. 17, 625–650. doi:10.1007/s10723-019-09485-z

Kumar, N., Zeadally, S., and Rodrigues, J. J. (2016). Vehicular delay-tolerant networks
for smart grid datamanagement usingmobile edge computing. IEEECommun.Mag. 54,
60–66. doi:10.1109/MCOM.2016.7588230

Kumar, S., K, Y. H., Kumar Sharma, N., Bajaj, M., Naithani, D., and
Maindola, M. (2022). “Classical secondary control techniques in microgrid
systems – a review,” in 2022 2nd International Conference on Innovative
Sustainable Computational Technologies (CISCT), China, 23-24 Dec. 2022, 1–6.
doi:10.1109/CISCT55310.2022.10046557

Liu, Y., Jiang, Y., Zhang, X., Pan, Y., and Wang, J. (2023). An improved grey wolf
optimizer algorithm for identification and location of gas emission. J. Loss Prev. Process
Industries 82, 105003. doi:10.1016/j.jlp.2023.105003

Mahmud, K., Sahoo, A. K., Fernandez, E., Sanjeevikumar, P., and Holm-
Nielsen, J. B. (2020). Computational tools for modeling and analysis of power
generation and transmission systems of the smart grid. IEEE Syst. J. 14, 3641–3652.
doi:10.1109/JSYST.2020.2964436

Martínez-Rodríguez, D., Novella, R., Bracho, G., Gomez-Soriano, J., Fernandes, C.,
Lucchini, T., et al. (2023). A particle swarm optimization algorithm with novelty search
for combustion systems with ultra-low emissions and minimum fuel consumption.
Appl. Soft Comput. 143, 110401. doi:10.1016/j.asoc.2023.110401

Mirjalili, S., and Lewis, A. (2016).Thewhale optimization algorithm.Adv. Eng. Softw.
95, 51–67. doi:10.1016/j.advengsoft.2016.01.008

Mirjalili, S., Mirjalili, S. M., and Hatamlou, A. (2016). Multi-verse optimizer: a
nature-inspired algorithm for global optimization. Neural Comput. Appl. 27, 495–513.
doi:10.1007/s00521-015-1870-7

Mirjalili, S., Mirjalili, S. M., and Lewis, A. (2014). Grey wolf optimizer. Adv. Eng.
Softw. 69, 46–61. doi:10.1016/j.advengsoft.2013.12.007

Moldovan, D., and Salomie, I. (2019). “Detection of sources of instability in smart
grids using machine learning techniques,” in 2019 IEEE 15th International Conference
on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca,
Romania, 5-7 Sept. 2019 (IEEE), 175–182. doi:10.1109/ICCP48234.2019.8959649

Muhammed,H. Z., andAlmetwally, E. (2024). Bayesian and non-bayesian estimation
for the shape parameters of new versions of bivariate inverse weibull distribution
based on progressive type II censoring. Comput. J. Math. Stat. Sci. 3, 85–111.
doi:10.21608/cjmss.2023.250678.1028

Nawaz, A., Hafeez, G., Khan, I., Jan, K. U., Li, H., Khan, S. A., et al. (2020). An
intelligent integrated approach for efficient demand side management with forecaster
and advanced metering infrastructure frameworks in smart grid. IEEE Access 8,
132551–132581. doi:10.1109/ACCESS.2020.3007095

Panda, S., Mohanty, S., Rout, P. K., Sahu, B. K., Bajaj, M., Zawbaa, H.
M., et al. (2022). Residential Demand Side Management model, optimization
and future perspective: a review. Energy Rep. 8, 3727–3766. doi:10.1016/j.egyr.
2022.02.300

Pham, Q. V., Fang, F., Ha, V. N., Piran, M. J., Le, M., Le, L. B., et al. (2020).
A survey of multi-access edge computing in 5G and beyond: fundamentals,
technology integration, and state-of-the-art. IEEE Access 8, 116974–117017.
doi:10.1109/ACCESS.2020.3001277

Razavi, R., Gharipour, A., Fleury, M., and Akpan, I. J. (2019). A practical feature-
engineering framework for electricity theft detection in smart grids. Appl. Energy 238,
481–494. doi:10.1016/j.apenergy.2019.01.076

Reddy, G. T., Reddy,M. P. K., Lakshmanna, K., Kaluri, R., Rajput, D. S., Srivastava, G.,
et al. (2020). Analysis of dimensionality reduction techniques on big data. IEEE Access
8, 54776–54788. doi:10.1109/ACCESS.2020.2980942

Samareh Moosavi, S. H., and Khatibi Bardsiri, V. (2017). Satin bowerbird
optimizer: a new optimization algorithm to optimize anfis for software development
effort estimation. Eng. Appl. Artif. Intell. 60, 1–15. doi:10.1016/j.engappai.
2017.01.006

Shafiq, M., Yu, X., Bashir, A. K., Chaudhry, H. N., and Wang, D. (2018). A machine
learning approach for feature selection traffic classification using security analysis. J.
Supercomput. 74, 4867–4892. doi:10.1007/s11227-018-2263-3

Shrivastava, P., and Yadav, R. (2023). Deep learning approach for intelligent intrusion
detection system. SSRN Electron. J. doi:10.2139/ssrn.4386519

Siddiqui, I. F., Lee, S. U. J., Abbas, A., and Bashir, A. K. (2017). Optimizing lifespan
and energy consumption by smart meters in green-cloud-based smart grids. IEEE
Access 5, 20934–20945. doi:10.1109/ACCESS.2017.2752242

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to sequence learning with neural
networks (2014). doi:10.48550/arXiv.1409.3215

Syed, D., Refaat, S. S., andAbu-Rub, H. (2020). Performance evaluation of distributed
machine learning for load forecasting in smart grids.Cybern. Inf. (K&I) (VelkeKarlovice,
Czech Repub. IEEE) 2020, 1–6. doi:10.1109/KI48306.2020.9039797

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. Going deeper
with convolutions (2014). doi:10.48550/arXiv.1409.4842

Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., and Venkatraman,
S. (2019). Robust intelligent malware detection using deep learning. IEEE Access 7,
46717–46738. doi:10.1109/ACCESS.2019.2906934

Wood, D. A. (2020). Predicting stability of a decentralized power grid linking
electricity price formulation to grid frequency applying an optimized data-matching
learning network to simulated data. Technol. Econ. Smart Grids Sustain. Energy 5, 3.
doi:10.1007/s40866-019-0074-0

Xiang, H., Zou, Q., Nawaz, M. A., Huang, X., Zhang, F., and Yu, H. (2023).
Deep learning for image inpainting: a survey. Pattern Recognit. 134, 109046.
doi:10.1016/j.patcog.2022.109046

Yu, D., and Deng, L. (2015). Automatic speech recognition: a deep learning approach.
Signals and communication technology. London: Springer. doi:10.1007/978-1-4471-
5779-3

Zhang, D., Han, X., and Deng, C. (2018). Review on the research and practice of
deep learning and reinforcement learning in smart grids. CSEE J. Power Energy Syst. 4,
362–370. doi:10.17775/CSEEJPES.2018.00520

Frontiers in Energy Research 22 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1399464
https://doi.org/10.1002/spe.2797
https://doi.org/10.1061/9780784484678.015
https://doi.org/10.1109/TII.2016.2543145
https://doi.org/10.1007/s10723-019-09485-z
https://doi.org/10.1109/MCOM.2016.7588230
https://doi.org/10.1109/CISCT55310.2022.10046557
https://doi.org/10.1016/j.jlp.2023.105003
https://doi.org/10.1109/JSYST.2020.2964436
https://doi.org/10.1016/j.asoc.2023.110401
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1109/ICCP48234.2019.8959649
https://doi.org/10.21608/cjmss.2023.250678.1028
https://doi.org/10.1109/ACCESS.2020.3007095
https://doi.org/10.1016/j.egyr.2022.02.300
https://doi.org/10.1016/j.egyr.2022.02.300
https://doi.org/10.1109/ACCESS.2020.3001277
https://doi.org/10.1016/j.apenergy.2019.01.076
https://doi.org/10.1109/ACCESS.2020.2980942
https://doi.org/10.1016/j.engappai.2017.01.006
https://doi.org/10.1016/j.engappai.2017.01.006
https://doi.org/10.1007/s11227-018-2263-3
https://doi.org/10.2139/ssrn.4386519
https://doi.org/10.1109/ACCESS.2017.2752242
https://doi.org/10.48550/arXiv.1409.3215
https://doi.org/10.1109/KI48306.2020.9039797
https://doi.org/10.48550/arXiv.1409.4842
https://doi.org/10.1109/ACCESS.2019.2906934
https://doi.org/10.1007/s40866-019-0074-0
https://doi.org/10.1016/j.patcog.2022.109046
https://doi.org/10.1007/978-1-4471-5779-3
https://doi.org/10.1007/978-1-4471-5779-3
https://doi.org/10.17775/CSEEJPES.2018.00520
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Karim et al. 10.3389/fenrg.2024.1399464

Nomenclature

ANOVA Analysis of variance

BA Bat Algorithm

BBO Biogeography-Based Optimization

CNN Convolutional Neural Network

DL Deep Learning

DSGC Decentralized Smart Grid Control

DT Decision Tree

FA Firefly Algorithm

GA Genetic Algorithm

Guide-WWPA Guide Waterwheel Plant Algorithm

GWO Grey Wolf Optimization

KNN K-Nearest Neighbors

LSTM Long Short-Term Memory

MLP Multi-layer perceptron

MVO Multiverse Optimization

Nvalue Negative Predictive Value

PSO Particle Swarm Optimization

Pvalue Positive Predictive Value

QQ Quartile-Quartile

RF Random Forest

SBO Satin Bowerbird Optimizer

SMOTE Synthetic Minority Oversampling Technique

SS Sum of Squares

SVM Support Vector Machines

WOA Whale Optimization Algorithm

WWPA Waterwheel Plant Algorithm
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