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Introduction: With the installation of advanced metering infrastructures, the
operation data of EVs in the distribution networks can be obtained with time
intervals of seconds and minutes. Based on these operation data, the impacts of
integrating EVs into the distribution networks can be calculated and discussed.

Methods: In this paper, an improved clustering algorithm with a new distance
index for the daily curves of different types of EVs was proposed. The different
types of EVs can be classified into several typical groups and the required number
of operation scenarios can be reduced. After reducing the large-scale database to
typical clusters, research can be conducted on the characteristics of EVs specific
to certain scenarios.

Results and discussion: In this way, the capability of integrating different types of
EVs into the distribution network, such as fast EV charging stations, slow EV
charging stations, and EV bus charging stations, is assessed from the perspective
of load capacity size. The proposed clustering algorithm was verified with
practical operation data.
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1 Introduction

With the development of power electronics technology and advanced metering
infrastructures, the ability of controlling and monitoring the loads in power systems
was increasing in the past years. In addition, with the significant progress of
communication technology, power system operators can collect a large amount of data
which covers load curves, power demand, and user satisfy data to facilitate optimizing the
operation schedule of the power systems (Si et al., 2021). The collected load data and the
process of these data can help operators to analyze the characteristics of daily load curves,
customer demand types, achieve more accurate load forecasting, and adjust the operation
schedule in advanced (Chicco et al., 2004; Lang et al., 2019).

The electric vehicle (EV) has been regarded a kind of controllable loads and operation
resources in power systems. The rapid growth in the number and capacity of EVs exerts a
significant influence on power system operations, with the potential to affect grid stability,
voltage regulation, and overall system reliability (Geth et al., 2012; Yao et al., 2014; Tu et al.,
2019). The batteries installed on the EVs provide energy storage systems for the power
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systems. In this way, the EVs parking at the charging stations could
provide operation flexibility by charging and discharging energy
with power systems. When EVs are parked at charging stations, they
can charge from or discharge into the power system, depending on
the grid’s requirements. This bidirectional energy exchange can help
balance supply and demand, improve grid resilience, and enhance
the integration of renewable energy sources (Chen et al., 2018). The
power and energy capacity for the batteries installed on the EVs

varies a lot by different kinds of EVs and charging stations. As a
consequence, identifying the types of EVs and charging stations is
essential to determine the operation characteristics for EVs in the
daily load curves. Furthermore, the precise types and numbers of
EVs that will be parked at charging stations and connected to the
power system at any given time are difficult to predict with complete
accuracy (Moghaddam et al., 2018). In summary, the installation of
EV charging stations introduces both opportunities and challenges
for power systems. By understanding the characteristics of different
EV types and charging stations, and by utilizing advanced metering
and control technologies, grid operators can better manage the
impact of EV charging on the power grid, ensuring efficient and
reliable electricity service.

However, the analysis with large amount of data from the power
systems were complex and difficult tasks. Such data were collected
from various kinds of sensors in-stalled on the smart grid. On each
bus in power systems, all the different types of loads are connected
together and the behaviors of them will take effects on the load curve
of the bus. In this way, the features captured from the load curves
were consisted of different kinds of physical loads.

In order to capture the features of the EVs with various kinds of
load curves, a lot of researchers have developed methods for data
mining. Among these methods, clustering algorithm is a technology
that can effectively achieve data mining. Deeply exploring and
analyzing the characteristics of load data can effectively supports
load forecasting and demand side response in the field of smart
grids. In this way, the clustering algorithms in the power system can
help to address the impacts of electric vehicle loads on both supply
and demand sides of the grid. Based on a large amount of data,
clustering algorithms can be used to explore different patterns of EV
users (Dyke et al., 2010), improve the accuracy of load forecasting
(Teeraratkul et al., 2018), and support demand-side response
(Labeeuw et al., 2015; Alvarez et al., 2020). In various subclass
algorithms of clustering algorithms, Euclidean distance is commonly
used to define the similarity between different scenarios of daily load

FIGURE 1
Flowchart of hierarchical clustering algorithm.

FIGURE 2
Three typical electric vehicle loads.
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curves. However, a significant drawback of Euclidean distance is that
it cannot recognize the relationships between curves of
different shapes.

The daily load curves of different types of EV show different
characteristics and indicate different potentials for demand
response. In this way, classifying the types of EV with the daily
load curves is an important task for power systems. A similarity

definition that considers the weight proportion of two load
characteristic parameters on the basis of Euclidean distance was
proposed in this paper. The impacts of several typical electric vehicle
charging loads superimposed on different loads by the clustering
algorithm results were also discussed in this paper.

The primary contribution of this paper is proposing an
improved clustering algorithm with a novel distance index for
the study of power system loads. Compared to the commonly
used distance definitions in clustering algorithms, this novel
distance definition takes into account the differences of two
inherent data characteristics in power systems.

2 Clustering algorithm

Advanced power metering technology increases the sampling
rate and data accuracy of power systems. A large number of
databases with different kinds of operating units have been
generated in the recent years for power systems. The demand for
processing a large number of databases, identifying outlier, and
classifying and extracting useful data is increasing, clustering
algorithms are widely used to solve power system problems
(Figueiredo et al., 2005). proposed a data mining model that
combines unsupervised learning and supervised learning to
classify load curves (Kwac et al., 2014). has subdivided the types
of electricity users using clustering algorithms, enhancing the ability
to understand individuals and consumer groups (Chicco et al.,
2006). compared the results of hierarchical clustering algorithm,
k-means algorithm, and fuzzy k-means algorithm (Chicco et al.,
2003a). Studied the clustering of load patterns to adapt to different
types of load patterns (Chicco et al., 2003b). used unsupervised
clustering algorithms and self-organizing maps to group customers
with similar electrical behaviors (Gerbec et al., 2003). used
hierarchical clustering algorithm and fuzzy logic to classify
consumer load conditions (Gerbec et al., 2005). used probabilistic

FIGURE 3
Flowchart of hierarchical clustering algorithm.

FIGURE 4
Scenarios of Daily Loads curves on different buses.
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neural networks and clustering algorithms to predict typical load
curves (Ryu et al., 2020). used clustering algorithms to capture the
annual load characteristics of users and clearly displayed them
through load images. In recent years, multiple studies have
verified the feasibility of resolution technology in dimensionality
reduction, reasonable profile selection and classification, and
stability of typical daily load data (Li et al., 2016; Lin et al.,
2019). In (Chicco et al., 2013), an original electric mode ant
colony clustering algorithm based on k-means algorithm was
proposed and applied to classify typical loads of non residential
users. The k-means algorithm needs to determine cluster results
(C1,C2, ...,Cn) and their initial centroid which is usually determined
by experience and common sense before calculating. Then calculate
the distances between each centroid and each instance x, then find
the smallest distance. New centroid in Ck which contain m instances
can be calculated with Eq. 1.

1
m
∑m

i�1Xi, Xi ∈ Ck (1)

However, the above literature all used traditional distance
definitions and did not consider the possible impact of grid
connected to electric vehicle charging loads on clustering
algorithm results.

Clustering algorithms can aggregate a large amount of scattered
data into a small amount of data through a series of operations. The
idea of clustering algorithm is to minimize the similarity between
different instances belonging to the same clusters and maximize the
similarity between different instances belonging to different clusters.
On this basis, in order to cope with different scenarios and handle
databases of different types, dimensions, and quantities, many
different clustering algorithms have been de-signed. There are
five main categories of algorithms applied to smart grid:
hierarchical, density-based, partition-based, grid-based, and
model-based (Tsekouras et al., 2007). In terms of clustering
methodologies, the existing algorithms applied to power systems
are predominantly based on the K-means algorithm, whose

effectiveness is contingent upon the initial setting of cluster
centroids. This necessitates the involvement of more experienced
engineering personnel to design specific clustering schemes. In
contrast, the hierarchical clustering algorithm utilized in this
paper facilitates comparison among datasets, enabling even
inexperienced engineers or those encountering this type of data
for the first time to achieve satisfactory clustering outcomes. However,
the downside of hierarchical clustering algorithms, as compared to
K-means clustering, is quite evident; due to the requirement for a
greater number of computations in each clustering iteration, the
computational process becomes more complex. Regarding the
definition of distance, this paper introduces a novel distance metric
that incorporates two data characteristics specific to power systems:
load rate and peak valley difference. Currently, a widely used
definition of distance is Euclidean distance (Yu, 1996), it is defined
as the result when p equals 2 at the Minkowski Distance, which can be
represented by Eq. 2

Dp � ∑dim
i�1

xdi − ydi

∣∣∣∣ ∣∣∣∣p⎛⎝ ⎞⎠ 1
p (2)

Manhattan distance is Minkowski Distance when p equals to 1,
the expression of Manhattan distance is shown in Eq. 3.

D1 � ∑dim

i�1 xdi − ydi

∣∣∣∣ ∣∣∣∣ (3)

Canberra distance is an improvement on Manhattan distance,
the expression of it is shown in Eq. 4.

Dcanb � ∑dim

i�1
xdi − ydi

∣∣∣∣ ∣∣∣∣
xdi| | + ydi

∣∣∣∣ ∣∣∣∣ (4)

It is obvious that these formulas only consider the differences in
various dimensions of the instance and does not consider the
similarity of the shape. In order to overcome the drawbacks, this
paper considers the other two commonly used load characteristics in
power systems, load rate and the difference of the valley and peak

FIGURE 5
Clustering algorithm results without electric vehicle load.
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load difference, in the definition of the criterion for distinguishing
different clusters is the distance between the clusters. The load rate is
defined as the percentage of the ratio of the average load to the

maximum load during a specified period of time, used to measure
the changes in load during a specified period, and to evaluate the
utilization of electrical equipment. The difference of the valley and
peak load difference is defined by the difference between the valley
value and peak value of the daily loads in a day time. It indicates the
variations of power demand of users at different periods.

In order to clustering the daily loads with different based values
of power systems, the daily load curves, the load rate, the valley peak
difference need to be scaled to the per unit value. This paper selects
the practical load data of EV from some system buses in China, and
chooses the maximum load of each bus as its base line value. The
three weights α1, α2, α3 reflect the importance of load size, valley
peak difference, and load rate at each time period in distance we
defined. The deviation in load size at each time point is widely
applied in the study of various clustering algorithms, representing
the deviation of the dataset in details, while valley peak difference
and load rate are unique parameters in the power system,
representing the deviation of the dataset in the overall profile.
Load curves can be easily categorized based on their overall
profile, but a comparison of detailed differences is required to
reflect the subtle variations between loads. Therefore, in the
selection of weights, the proportion of the weight assigned to the
size of each time interval of the load will be larger, while the
proportions of the other two weights will be smaller. In this way,
the distance between the bus x and the bus y can be calculated by Eq. 5.

D � α1

�������������∑24
i�1

xdi

xmax
− ydi

ymax

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣2
√√

+ α2
xave

xmax
− yave

ymax

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣
+ α3

xpeak − xval

xmax
− ypeak − yval

ymax

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (5)

where xave, xmax, xpeak, xval respectively represent the average load,
the maximum load, the peak value of load and the valley value of
load of bus x. In the same way, yave, ymax, ypeak, yval represent the
values for bus y.

In each cluster, there are at least two instances. Each instance can
be imported to calculate the value of D during each iteration. The
average linkage was applied to determine the value of linkage
criterion for the cluster. The comparison between the instances
in two clusters refers to the average distance.

For two clusters Cm,Cn which respectively contains m instances
and n instances, there are usually three types of distance definitions,
that is maximum distance, minimum distance, and average distance.
The expressions are shown in Eqs 6–8. In this paper, the average
distance was chosen for calculating the distance between two clusters.

max
x∈Cm,y ∈ Cm

Dxy (6)
min

x∈Cm,y ∈ Cm

Dxy (7)
1
mn

∑
x∈Cm,y ∈ Cm

Dxy (8)

There are two different methods of hierarchical clustering
algorithms. The first method is to divide one large cluster into
several small clusters, so called divisive algorithm as follows, A
dataset M can be divided into n disjoint clusters C1,C2,/,Cn, the
distance between them is denoted as Dij(i, j ∈ n, i ≠ j), and the
result should satisfy the Eq. 9, which is shown as follow:

TABLE 1 The statistical information of 29 daily load curves.

The index
of load
curves

Mean Maximum Minimum V-P
difference

1 0.784472 0.943265 0.529707 0.413558

2 0.756679 0.96249 0.493122 0.469368

3 0.765773 0.967322 0.520851 0.44647

4 0.769068 0.946988 0.500642 0.446346

5 0.781263 0.93936 0.52498 0.41438

6 0.78946 0.959945 0.55884 0.401104

7 0.862831 0.950667 0.665415 0.285252

8 0.76909 0.948608 0.50221 0.446398

9 0.75618 0.95947 0.479616 0.479855

10 0.770503 0.969795 0.506729 0.463066

11 0.819047 0.953253 0.646982 0.306271

12 0.833066 0.930901 0.660375 0.270526

13 0.847454 0.956715 0.676162 0.280552

14 0.797772 0.946232 0.554332 0.3919

15 0.746171 0.94958 0.475666 0.473914

16 0.801024 0.955064 0.586076 0.368988

17 0.453676 0.802027 −0.04153 0.843559

18 0.709833 0.884934 0.423091 0.461843

19 0.85288 0.96492 0.710642 0.254278

20 0.78338 0.941433 0.561602 0.379831

21 0.783854 0.951793 0.526643 0.42515

22 0.750036 0.939052 0.487885 0.451167

23 0.898275 0.963019 0.780324 0.182696

24 0.78043 0.949388 0.527369 0.422019

25 0.881553 0.967295 0.751221 0.216074

26 0.74754 0.895298 0.520341 0.374957

27 0.794579 0.959775 0.571794 0.387981

28 0.79491 0.9688 0.59419 0.374611

29 0.453103 0.688312 0.329048 0.359264

TABLE 2 The parameter for the clustering algorithm.

Termination conditions

iterations 25

Minimum distance 1

Distance change rate ( Dn
Dn+1) 1.25
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M � ⋃ n
i�1Ci (9)

The core rule of clustering algorithms is to minimize the whole
distance, the detail is shown in Eq. 10.

min∑n
i�1
j�1
i ≠ j( )

Dij (10)

The secondmethod is to combine several small clusters to a large
cluster, so called agglomerative algorithm. The proposed clustering
method in this paper belongs to the second one, and the iteration
process is described as follows.

1) Divide all EV loads from different charging stations into (n+1-
k) classes, where n is the initial total number of charging
stations and k is the number of iterations

2) Calculate the distance between each clustering and generate a
distance matrix D(n+1−k)×(n−k).

3) Compare distances and combine the two clusters with the
smallest distance into a new cluster.

4) Stop iterating when the minimum distance in the matrix is
larger than the threshold, otherwise return to the first step

The flowchart is shown in Figure 1 as follows.

3 Analysis of electric vehicle integration
into daily load

Three typical loads with per unit value curves collected from
electric vehicle charging stations in China in 2021 are shown in
Figure 2, which include the EV charging load in mixed residential

FIGURE 6
Electric vehicle charging loads and k values.

FIGURE 7
The k value to three types of electric vehicle charging loads, load rate and valley peak difference of the first category of initial classification.
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and industrial areas, the EV charging load in commercial areas
and the EV charging load in residential areas. Users in residential
areas predominantly charge their EVs during the late night and
early morning hours when electricity prices are lower, leading to
peak charging loads during these times, while the number of
chargers during the day is negligible. The EV charging load in
commercial areas exhibits greater randomness, primarily
concentrated in the afternoon and early evening hours, with
occasional charging in the early morning and late night, but less
than the previously mentioned periods. The EV charging load in
mixed residential and industrial areas is similar to that of
residential areas, peaking at night, but differs in that some
users choose to charge during the midday hours. Based on the
observation, many actual charging station loads can be
categorized into the aforementioned three types or a
combination.

In this paper, the results of combining the daily load curves of
these types of EV loads with different daily load curves were studied.
With different percentage of EV loads to the daily load curves, the
shapes of daily load curves can be changed and the impacts on power
systems will be different. These three typical electric vehicle loads
were combined with other daily load curves to generate new daily
load curves. The combining method can be described as Eq. 11,

Pcom,t � K · PEV,t + PDL,t (11)
where Pcom represents the combined power of time t, PEV,t

represents the EV power at time t, represents the power of daily
load at time t, PDL,t represents the multi coefficient of EV. By
adjusting the penetration level of three typical EV loads, the
clustering results will be different. In this way, the impacts of
integrating the EVs to the power systems can be studied. If the
new clustering results take the same effects on the power systems as
the previous results without electric loads, it indicates that the EV
loads takes little effects on the clustering result yet, and increase the
penetration level of the EV loads. When the clustering results was
changed, the penetration level of the selected EV loads was recorded.
The iteration process is described as follows:

1) Select the load bus to add the selected EV loads on
2) The starting penetration level of EV is selected as K = 0.01,

such coefficient is multiplied by the characteristic curve of the
selected EV loads from the typical loads. In this paper, there
are three types of EV loads for selection.

3) Start the clustering algorithm and output the results of the
clustering algorithm

4) Compare the clustering results, and if the results are the same,
increase the value of k and return to the second step; if the
results are different, record the current k value and proceed to
the next step

5) Check whether all suitable buses to add the EV loads have been
calculated. If not, return to the first step.

The flowchart is shown in Figure 3.

4 Case studies

4.1 Clustering results

In this paper, the historical daily operation data from different
system buses were selected for the case studies. These curves were
shown in Figure 4. The weight coefficients α1 , α2 and α3 in Eq. 5
were set to 0.8, 0.1, 0.1 for the case studies. The clustering results
obtained with the proposed method in the second section were
shown in Figure 5. Firstly, because of the termination condition of
iteration and the significant difference among some buses, the
algorithm did not classify some buses into any category. These
daily curves were shown in the last sub graph on Figure 5. Secondly,
all the 29 operation curves participating in clustering, they are
divided into six categories based on their similarity with the
proposed definition of distance. The statistical information is
listed in Table 1 as follows,

The result in Figure 5 indicates that the curves under these five
categories have significant differences, proving that considering load
rate and peak to valley difference can provide reference for the

FIGURE 8
Electric vehicle charging loads and k values with different coefficients.
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overall shape of the daily load curve. The sixth category includes all
the remaining curves. Meanwhile the Euclidean distance with
relatively high weights separates stations with similar shapes for
subtle differences in specific load curves. The clustering results
indicate the three factors in Eq. 5 could classify the combined
daily load curves effectively. The parameters for the case studies
were listed in Table 2 as follows.

4.2 Superimposition of electric vehicle
charging loads

Due to the large number of clustering results obtained from the
integration of three types of electric vehicle (EV) charging loads at
25 sites, it is not feasible to present all of them. Therefore, this paper
only illustrates the peak loads of EVs that are significant enough to
affect the clustering outcomes in Figure 6. Figure 6 reflects the peak
sizes of the three types of EV loads that 25 daily load curves can
accommodate, where the magnitude of the load peak corresponds to
the K coefficient in Eq. 11 discussed earlier. The results indicate that
for a specific bus, it either exhibits sensitivity to all types of charging
loads (with a small k value, meaning that the addition of a small
amount of EV load leads to changes in clustering results) or can
withstand a larger charging load (with a larger k value, even with the
addition of a significant amount of EV load, the clustering results
remain consistent with the initial state). As depicted in Figure 6,
compared to the other two types of electric vehicle (EV) loads, the
first type of EV load has a lesser impact on the daily load of all system
buses. However, certain specific loads on bus 17 can accommodate a
substantial amount of the second and third types of EV loads.

This numerical result also compared the different performances
of electric vehicle charging loads superimposed on the daily loads on
different buses in the same cluster, as shown in the following
Figure 7. In order to highlight the difference for the same bus
with other indices, their load rate and the valley and peak difference
are also shown in Figure 7.

The study indicates that the effects of the peak to valley
difference and load rate on the K value are entirely opposite,
while the change in k value is positively correlated with the
valley peak difference, which indicates that daily load curves with
smaller valley peak difference and larger load rate are more
susceptible to the impact of electric vehicle charging loads, and
their clustering results are more likely to be affected when they are
super-imposed with very small electric vehicle loads. On the
contrary, daily load curves with larger valley peak difference or
smaller load rate are more resistant to the impact of electric vehicle
charging loads.

5 Discussions

Figure 5 indicates that the new weight definition of similarity
considering load rate and valley peak difference purposed in this
paper can contribute to a load clustering result that divide load
curves according to different curve shapes.

Figure 6 and Figure 7 indicate that the result of electric vehicle
load superposition is influenced by the load rate and valley peak
difference of the original load, as well as the type of electric vehicle

load. The clustering result after superimposing electric vehicle
charging loads indicates that an electric vehicle load should be
connected to suitable station without affecting the overall
clustering of station data, thus facilitating the management and
operation of power system operators.

By changing the weight coefficient to 0.4, 0.3, and 0.3 for the
weight coefficients α1 , α2 and α3 in Eq. 5, the results of values of
thresholds were also changed as shown in Figure 8

By reducing the weight of coefficient for the distance in the daily
load curves, the values of the thresholds change a lot as shown in
Figure 8. For the daily loads on the bus 1, the value of threshold
increases more than ten times than the result in Figure 6. The
average level of the thresholds in Figure 8 is larger than Figure 6. The
factor of the distances with the coefficient α1 determines the general
shape of the load curves. In this way, smaller value of α1 indicates
that the value of threshold could be larger. The coefficient factors, α1,
α2 , and α3 will take great effects on the clustering results with the
same base daily load curves.

After adjusting the time intervals, the proposed clustering
algorithm remains effective because the adjustment of time
interval will not affect Eq. 5. However, due to the inherently
larger computational load of hierarchical clustering algorithms,
this may lead to a decrease in clustering speed. Nevertheless, this
does not affect the results of the clustering. It is important to note
that with changes in the time intervals, the number of the size of the
load curves will increase. This may result in a change in the
magnitude of the three weights in distance D, necessitating an
adjustment of the weights.

When the resulting clusters differ from the typical cluster results
(for example, as seen in the sixth graph in Figure 5), we consider this
a potential direction of research for the future. The actual load of
electric vehicle charging stations in reality may not closely follow a
typical curve, and it could also be a combination of loads from
multiple typical curves. Therefore, we believe that complex
distributions constructed based on Poisson and mixed Gaussian
distributions using other artificial intelligence algorithms could be
used to fit the actual data. The accuracy of the fit can then be further
determined through clustering algorithms.

This paper solely compares the application of the proposed
method in the analysis of daily load profiles with different types of
electric vehicle (EV) integration, without a comparison to other
common clustering methods. This is because existing clustering
methods in power systems are primarily based on the K-means
algorithm, which requires the setting of initial cluster centroids
based on empirical experience. In this study, with the variation of the
K value, each new K effectively necessitates the redefinition of
centroids, presenting a challenge in implementation. Other
clustering algorithms are seldom used in power system research
due to their individual characteristics and limitations.

6 Conclusion

A weight similarity definition that takes into account the shape
of the load curve was proposed in this paper. It can distinguish
curves with significant differences in load characteristics. Based on
this, the impacts of three types of electric vehicle charging loads on
the clustering results were studied. The results indicated that the
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daily load of the system buses with larger rated power load and
smaller valley peak difference are more susceptible to the
superposition of electric vehicle loads. At the same time, electric
vehicle charging loads should be connected to suitable system buses
due to the potential influence to power system. Considering this
issue when make decisions on the location of electric vehicle
charging loads can help the large-scale distribution network
connected to electric vehicle charging station keep the
characteristics of clustering. Thus, it is easier for power grid
operators to plan and operate the power grid.
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