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Solar energy has emerged as a key solution in the global transition to renewable
energy sources, driven by environmental concerns and climate change. This is
largely due to its cleanliness, availability, and cost-effectiveness. The precise
assessment of hidden factors within photovoltaic (PV) models is critical for
effectively exploiting the potential of these systems. This study employs a
novel approach to parameter estimation, utilizing the electric eel foraging
optimizer (EEFO), recently documented in the literature, to address such
engineering issues. The EEFO emerges as a competitive metaheuristic
methodology that plays a crucial role in enabling precise parameter
extraction. In order to maintain scientific integrity and fairness, the study
utilizes the RTC France solar cell as a benchmark case. We incorporate the
EEFO approach, together with Newton-Raphson method, into the parameter
tuning process for three PVmodels: single-diode, double-diode, and three-diode
models, using a common experimental framework. We selected the RTC France
solar cell for the single-diode, double-diode, and three-diodemodels because of
its significant role in the field. It serves as a reliable evaluation platform for the
EEFO approach. We conduct a thorough evaluation using statistical,
convergence, and elapsed time studies, demonstrating that EEFO consistently
achieves low RMSE values. This indicates that EEFO is capable of accurately
estimating the current-voltage characteristics. The system’s smooth
convergence behavior further reinforces its efficacy. Comparing the EEFO
with competing methodologies reinforces its competitive advantage in
optimizing solar PV model parameters, showcasing its potential to greatly
enhance the usage of solar energy.
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1 Introduction

Concern over the environment’s decline and the severe effects of climate change has
grown over the past few decades, partly due to the excessive use of conventional fossil fuels
like coal, oil, and gas. As a result, renewable energy sources have garnered significant
attention (Mohamed et al., 2024). Solar energy stands out as a very potential sustainable
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alternative due to its clean, abundant, cost-effective, and widespread
characteristics (Li B. et al., 2021). Photovoltaic (PV) systems can
efficiently utilize this limitless energy resource, with meticulous
modeling closely ensuring the system’s performance precision
(Yesilbudak, 2024).

PV systemmodeling commonly utilizes three prominent models
of PV cells: the single-diode model, the double-diode model, and the
more complex three-diode model. However, the datasheets provided
by PV manufacturers do not provide certain physical parameters
found in these models (Abdel-Basset et al., 2020). Finding these
hidden traits accurately is important for many areas, such as
evaluating performance, making sure quality, and the very
important task of tracking the maximum power point in PV
systems (Li M. et al., 2021; Wang et al., 2021; Memon et al., 2023).

Efficient exploitation and integration of solar cells and modules
into renewable energy systems necessitate a comprehensive
understanding of the characteristics that define their behavior
(Yousri et al., 2020; Sun et al., 2021; Zheng et al., 2022). The
utilization of parameter estimation techniques has become
essential in this context. There is a lot of research that looks at
how optimization methods for parameter extraction in PV models
have changed recently (Luo et al., 2018; Sheng et al., 2019; Chen L.
et al., 2023; Almunem et al., 2024; Ekinci et al., 2024; Hussain et al.,
2024; Singla et al., 2024). A number of metaheuristic algorithms
were used in the study to solve the difficult problem of accurately
predicting parameters that are needed to make PV systems work as
efficiently as possible.

For example, one of the studies proposes a hybrid algorithm that
combines bird mating optimizer with Lambert W-function (LBMO)
and Wang’s analytical method called (WLBMO) to optimize
parameters of the single diode model (Saadaoui et al., 2024). Its
effectiveness is evaluated on the RTC solar cell and three commercial
photovoltaic models. The WLBMO algorithm achieves significant
error rate reductions of 92.856%, 1.147%, 49.732%, and 89.221% for
the R.T.C France solar cell, Photowatt-PWP201, STM6-40/36, and
KC200GT modules, highlighting its pivotal role in optimizing
solutions. In another study, the Jaya algorithm has been
improved for precise parameter extraction (Choulli et al., 2024).
This new version uses individual performance metrics, weighting
factors, and population averages to avoid incorrect solutions and
promote the best-suggested solution. It also incorporates a Gaussian
mutation strategy for improved population quality. The improved
algorithm is superior in stability, precision, and convergence speed
for photovoltaic parameter estimation in single-diode, double-
diode, triple-diode, and photovoltaic module models. The study
in (Ramachandran et al., 2024) aims to develop an objective function
for accurately estimating the initial root parameters of PV models.
The objective function is designed using the first-order Berndt-Hall-
Hall-Hausman numerical method and the non-linear damping
parameter of the Levenberg-Marquardt technique. The enhanced
Henry gas solubility optimization (EHGSO) algorithm is combined
with the sine-cosine mutualism phase of symbiotic organisms search
to efficiently estimate unknown parameters. The proposed EHGSO
methodology is tested on single diode and double diode PV models,
showing excellent agreement with experimental data and superiority
compared to other algorithms. The study reported in (Han et al.,
2024) proposes an improved multi-verse optimizer, INMVO, which
integrates an iterative chaos map and the Nelder–Mead simplex

method to accurately extract unknown parameters from PVmodels.
The proposed INMVO has a balance between exploration and
exploitation, and has been tested on four well-known PV models.
The results show its effectiveness and reliability, and it can be
implemented as an advanced tool for extracting parameters in
various PV models. In Ru (2024), the chaos learning butterfly
optimization algorithm (CLBOA) is proposed as a new method
for extracting PV model parameters. It uses a Cauchy mutation to
jump out of local optima, a chaos learning strategy to learn from
optimal individuals, and randomization to increase population
diversity. Compared to other algorithms, CLBOA outperforms
them in convergence performance, parameters extraction
accuracy, running time, and improvement index. It was applied
to the YL PV power station model of Guizhou Power Grid in China,
proving its strong potential for PV parameter extraction. Apart from
the above studies, the weighted mean of vectors (INFO) algorithm
demonstrated statistical superiority, achieving high accuracy and
reliability in parameter extraction for various PV cells and modules
(Demirtas and Koc, 2022). INFO’s application extended to single
and double diode models, showcasing its potential in advancing the
integration of solar energy systems (Izci et al., 2022). Lastly, the
dandelion optimizer coupled with the Newton-Raphson numerical
method proved effective in accurately determining parameters for
different PV models, highlighting its superiority in terms of
accuracy, reliability, and convergence (Elhammoudy et al., 2023).
Recently, a novel research field successfully combining machine
learning and swarm intelligence approaches has emerged, proving to
be capable of obtaining outstanding results in various areas. For
instance, hybrid methods between metaheuristics and machine
learning have been shown to significantly enhance optimization
performance (Malakar et al., 2020; Bacanin et al., 2021). These
approaches harness the strengths of both paradigms to address
complex optimization problems more effectively.

Cumulatively, this research provides significant contributions to
the dynamic field of optimization strategies for solar parameter
extraction, thereby facilitating the development of more effective
and environmentally friendly photovoltaic systems. Every strategy
presents distinct advantages and advancements, thereby facilitating
future progress in the realm of renewable energy. Nevertheless, the
aforementioned methodologies demonstrate limitations, including
slow convergence and insufficient population diversity. In addition,
due to the intrinsic unpredictability of metaheuristics, their rates of
convergence and stability sometimes meet expectations.
Furthermore, most previous research has focused on predicting
parameters for single-diode and double-diode models, limiting the
exploration of the three-diode model (Hassan et al., 2024; Kumari
et al., 2024).

This work aims to address the crucial job of parameter
estimation in PV models, with a specific emphasis on a novel
and effective methodology. The electric eel foraging optimizer
(EEFO) method (Alzakari et al., 2024) is proposed as a novel and
effective metaheuristic technique for parameter estimation in PV
models in response to the discovered gap. The present optimizer is a
sophisticated optimization technique that draws inspiration from
the social predation behaviors exhibited by electric eels. This study
represents the inaugural report on the potential of this optimizer for
extracting parameters in PV models. To reach better results the
EEFO is implemented in conjunction with the Newton–Raphson
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method (Izci et al., 2024), ensuring their coordination throughout
the process. Our investigation focuses on the RTC France solar cell,
specifically examining single-diode, double-diode, and three-diode
models as case studies. Our objective is to ensure consistency and
fairness throughout the study. We implemented a standardized
experimental framework to ensure consistency. The integration of
the EEFO brought forth a methodical and effective strategy for
navigating the complex parameter space of solar PV models. We
carefully adjusted the parameters of the single-diode model, double-
diode model, and three-diode model. We selected the RTC France
solar cell as the primary case study due to its notable importance in
the field of solar photovoltaics, which makes it a reliable platform for
assessing the efficacy of the EEFO across different solar cell models.

In order to ensure a thorough evaluation and analysis of the
results, we conducted statistical, convergence, and elapsed time
examinations. The analysis yielded vital information, enabling us
to draw significant conclusions about the effectiveness of the EEFO
in optimizing various solar cell models. The empirical findings of
several model improvements employing the EEFO demonstrate a
notable level of precision in parameter estimation. Regular proposals
of this approach consistently show low root mean square error
(RMSE) values, indicating its superior performance in accurately
assessing current and voltage properties. The EEFO demonstrates
smooth convergence behavior. The performance measures of the
EEFO method provide a high level of concordance between the
experimental and estimated values, hence indicating the precise
modeling capabilities of the proposed approach. The gravitational
search algorithm (Rashedi et al., 2009), whale optimization
algorithm (Mirjalili and Lewis, 2016), slime mould algorithm
(Chen H. et al., 2023), arithmetic optimization algorithm
(Abualigah et al., 2021) and sinh cosh optimizer (Bai et al., 2023)
are some of the new and competitive methods used in comparison
tests. We also delve into a comprehensive statistical analysis
comparing the EEFO’s performance with alternative methods
(Diab et al., 2020; Houssein et al., 2021; Nicaire et al., 2021; Rezk
et al., 2021; Beşkirli and Dağ, 2022; Fan et al., 2022; Kharchouf et al.,
2022; Premkumar et al., 2022; Yu et al., 2022; 2023; Ayyarao and
Kishore, 2023; Bogar, 2023; Chauhan et al., 2023; Gu et al., 2023; Li
et al., 2023; Maden et al., 2023; Qaraad et al., 2023; Izci et al., 2024;
Kullampalayam Murugaiyan et al., 2024; Wu et al., 2024), further
establishing its competitive edge in the realm of solar PV model
parameter optimization. In light of the above discussion, the
contributions of this study cam briefly be listed as follows:

1 - Introduction of the EEFO method for the first time in the
context of PV model parameter estimation.

2 - Implementation of EEFO in conjunction with the
Newton–Raphson method to ensure robust and precise
parameter estimation.

3 - Comprehensive evaluation of the EEFO on the RTC France
solar cell, using single-diode, double-diode, and three-diode
models to validate its effectiveness.

4 - Detailed statistical, convergence, and elapsed time analyses
to assess the performance of EEFO against state-of-the-art
optimization algorithms.

5 - Demonstration of EEFO’s superior performance in terms
of low RMSE, smooth convergence behavior, and precise
modeling capabilities.

2 Electric eel foraging optimizer

The exceptional predatory capability of electric eels, indigenous
to South America, was used as a source of inspiration for the
development of electric eel foraging optimization (EEFO) (Zhao
et al., 2024). According to Bastos et al. (2021), the EEFO
encompasses the social predation activities of electric eels, which
encompass interactions, resting, migrating, and hunting. The
subsequent subsections provide a description of the mathematical
representations pertaining to foraging behaviors.

2.1 Interacting

EEFO utilizes a cooperative methodology, drawing inspiration
from the social predation behavior of eels, wherein each electric eel
assumes the role of a candidate solution. At every stage, the most
optimal candidate solution acts as the desired target. This
interaction phase replicates the process of global exploration, in
which each eel actively participates with others according to their
respective places. In particular, eels interact with a partner that is
randomly picked from the entire population, and they modify their
positions in response to the disparity between the selected eel and
the center of the population. In addition, eels engage in interactions
with partners that are randomly selected from the population. They
adjust their locations by assessing the difference between a randomly
chosen eel and a position that is produced randomly within the
search space. Interactions encompass a phenomenon known as
churn, which denotes stochastic movements occurring in diverse
directions. The churn is represented mathematically as

C � n1 × B. (1)
where n1 ~ N(0, 1) and B � [b1, b2, . . . bk, . . . bd]. Here, the
function b(k) is equal to 1 when k is equal to g, while b(k) is
equal to 0 for all other values of k. The value of g is decided by
generating a random permutation of the numbers from 1 to d. The
interactive behavior is defined as

vi t + 1( ) � xj t( ) + C × �x t( ) − xi t( )( ), p1 > 0.5
vi t + 1( ) � xj t( ) + C × xr t( ) − xi t( )( ), p1 ≤ 0.5{ fit xj t( )( )<fit xi t( )( )
vi t + 1( ) � xi t( ) + C × �x t( ) − xj t( )( ), p2 > 0.5

vi t + 1( ) � xi t( ) + C × xr t( ) − xj t( )( ), p2 ≤ 0.5

⎧⎨⎩ fit xj t( )( )≥fit xi t( )( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ .

(2)

Here, xr is calculated as the product of the lower bound (Low)
and the sum of a random number (r) multiplied by the difference
between the upper bound (Up) and the lower bound. The variables
p1 and p2 represent random numbers chosen from the range
between 0 and 1. The suitability of the proposed position for the
ith electric eel is denoted byfit(xi), where xj is the position of an eel
chosen randomly from the current population, with j ≠ i.
Furthermore, the expression for �x(t) is

�x t( ) � 1
n
∑n

i�1xi t( ) (3)

Here, n represents the population size. According to Eq. 3, the
interaction behavior of electric eels allows them to move to different
spots in the search space, which greatly helps in exploring the
complete search space in the EEFO algorithm.
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2.2 Resting

It is crucial to establish a designated resting region before
electric eels engage in resting behavior in the EEFO algorithm. In
order to improve the efficiency of the search process, a specific
resting area is assigned inside the region where one particular
dimension of an electric eel’s position vector aligns with the
main diagonal of the search space. Creating a resting region
involves standardizing both the area being searched and the
position of the eel, which can range from 0 to 1. Afterwards, a
dimension is selected at random from the eel’s position and
projected onto the major diagonal of the normalized search
space. This determines the central point of the eel’s resting
region. The expression for the manifestation of resting
behavior is given by Eq. 4.

vi t + 1( ) � Ri t + 1( ) + n2 × Ri t + 1( ) − round rand( ) × xi t( )( )
(4)

Here, n2 follows a normal distribution with mean 0 and standard
deviation 1, and Ri represents the resting posture.

2.3 Hunting

Electric eels have a hunting tactic that goes beyond just
swarming when they find their victim. Instead, they demonstrate
cooperative behavior by organizing themselves into a huge circular
formation to surround the prey. Throughout this process, they
maintain continuous communication and collaboration with
other eels, accomplished by the use of mild electric organ
discharges. As the eels interact more, the size of the electrified
circle decreases. Ultimately, the eels direct the group of fish from the
depths of the ocean to shallower regions, rendering them easier to
catch as prey. Consistent with this pattern of behavior, the electrified
circle functions as the authorized hunting zone. At this stage, the
prey initiates strategic moves throughout the hunting area, rapidly
and repeatedly changing locations out of fear. The hunting behavior
shown by eels, which is defined by their curling action, may be
elucidated as follows:

vi t + 1( ) � Hprey t + 1( )
+ η × Hprey t + 1( ) − round rand( ) × xi t( )( ) (5)

where η is the curling factor as defined by Zhao et al. (2024), and
Hprey represents the prey’s current location relative to its former
position inside the hunting region.

2.4 Migrating

Electric eels have a natural inclination to go from their resting
location to the hunting area when they detect prey. In order to
quantitatively express this migratory tendency, the following
equation is utilized:

vi t + 1( ) � −r5 × Ri t + 1( ) + r6 × (Hr t + 1( )
− L × Hr t + 1( ) − xi t( )( ) (6)

In this context, Hr denotes any point inside the hunting area,
while r5 and r6 are arbitrary values selected from the interval (0,1).
The Levy flight function, represented as L, is included into the
exploitation phase of EEFO to avoid becoming trapped in
local optima.

2.5 Transition from exploration to
exploitation

The exploration and exploitation transitions in EEFO are
significantly influenced by an energy factor, which plays a key
role in optimizing the algorithm’s performance (Wang et al.,
2019; Izci et al., 2020). The energy factor value of the eel is used
to determine whether to choose exploration or exploitation. It is
technically described as

E t( ) � 4 × sin 1 − t

T
( ) × ln

1
r7

(7)

where r7 is a random number between 0 and 1.

3 Problem definition for solar
photovoltaic system and application
of EEFO

PV cells are semiconductor devices that have the ability to
directly convert sunlight into electrical energy. The precise
determination of photovoltaic cell parameters holds significant
importance in the development, examination, and enhancement
of solar systems. The characteristics that have a substantial impact
on the overall performance and efficiency of PV cells are the series
resistance (Rs), shunt resistance (Rsh), diode ideality factor, and
diode saturation current (Isd). Researchers and engineers frequently
employ mathematical models that elucidate the electrical
characteristics of PV cells in order to determine these
parameters. The single-diode (SD), double-diode (DD), and
three-diode (TD) are three often employed models to represent
the electrical equivalent circuit of PV systems. Figure 1 demonstrates
the equivalent circuit of those models and the related switch (S2 and

FIGURE 1
Equivalent circuits of SD, DD and TD models.
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S3) configurations to obtain those models. This section examines the
aforementioned models and their significance in the context of
estimating parameters for photovoltaic cells. Furthermore, the
execution of the suggested approach to extract those parameters
is also addressed.

3.1 Single-diode (SD) model

The SD model offers a streamlined and efficient mathematical
depiction of the electrical properties demonstrated by a PV cell.
According to this model, the PV cell may be accurately represented
as a single diode that is coupled in parallel with a current source.
Although the SD model is simple, it effectively represents the
essential characteristics of the PV cell’s electrical response while
also being computationally efficient. The current-voltage (I-V)
relationship of a PV cell in the SD model may be defined as follows:

I � Iph − Isd e
V+IRs( )
nVt( ) − 1( ) − V + IRs( )

Rsh
(8)

In this context, I denotes the current produced by the PV cell, V
represents the voltage across the terminals of the PV cell, Iph stands
for the current generated by the cell when exposed to light, Isd refers
to the current at which the diode (D1 – see Figure 1) in the cell
becomes saturated, Rs signifies the resistance in series with the cell,
Rsh denotes the resistance in parallel with the cell, n represents the
ideality factor of the diode, and Vt represents the thermal voltage,
which is approximately equal to kT/q. Here, k represents
Boltzmann’s constant, T represents the temperature in Kelvin,
and q represents the elementary charge.

3.2 Double-diode (DD) model

The DD model offers an advanced approach to simulate the
behavior of PV cells by including extra diodes to accurately
represent their complex electrical characteristics. This improved
version incorporates an additional diode (D2 – See Figure 1) that
precisely targets recombination losses in the PV cell, resulting in a
more detailed and accurate depiction of the PV cell’s real-world
properties. The I-V relationship of a PV cell in the DD model is
expressed by the following equation:

I � Iph − Isd1 e
V+IRs( )
n1Vt( ) − 1( ) − Isd2 e

V+IRs( )
n2Vt( ) − 1( ) − V + IRs( )

Rsh
. (9)

Here, Isd2 represents the diode saturation current of the extra
diode, n1 represents the ideality factor of the main diode (D1), and n2
represents the ideality factor of the additional diode (D2).

3.3 Three-diode (TD) model

The TDmodel is a sophisticated depiction of a PV cell that offers
a more precise characterization of its behavior in comparison to SD
and DD models. The current-voltage relationship in this model is
expressed as I � Iph − Id1 − Id2 − Id3 − Ish where Id1 represents the
current flowing through diodeD1, Id2 represents the current flowing

through diode D2, and Id3 represents the current flowing through
diodeD3. To compute the total current flowing through the PV cell,
one must add up the individual currents passing through the three
diodes in the TD model. The equation may be expressed as

I � Iph − Isd1 e
V+IRs
n1Vt − 1( ) − Isd2 e

V+IRs
n2Vt − 1( ) − Isd3 e

V+IRs
n3Vt − 1( )

− V + IRs

Rsh
. (10)

Here, the variables n1, n2, and n3 represent the ideality factors of
the diodes D1, D2, and D3, respectively.

3.4 Recommended novel approach

In order to effectively examine a practical solar system, it is
essential to possess a precise PV model that accurately mimics its
behavior under various operating situations (Ridha et al., 2022).
Such a model necessitates suitable characteristics that
differentiate one PV system from another. Consequently,
the process of determining the values of the parameters for
the solar PV model becomes an optimization issue, which
requires the use of an objective function. The objective
function is determined by comparing the measured data
values from a physical system with the data values received
from the model. When the estimated values of the model closely
align with the observed values, it signifies a similarity to the
physical system. The objective function (FObj) for parameter
estimation in solar PV models is determined by calculating the
root mean square error (RMSE) between the observed and
estimated values, which quantifies their similarity. The RMSE
is a metric that quantifies the average difference between the
measured current-voltage curve (Im) and the calculated current-
voltage curve (Ic) using a set of estimated parameters as
demonstrated in the following equation:

FObj �

�������������
1
N

∑N
i�1

Im − Ic( )2
√√

(11)

Here, N denotes the total number of data points. RMSE
quantifies the extent of the total difference between the model
and the observed data. The current may be determined by
solving the nonlinear equations obtained from the analogous
circuits, namely, Eqs 8–10. The standard objective function
estimates the current as follows:

Ic � Iph − Isd e
V+ImRs( )

nVt( ) − 1( ) − V + ImRs( )
Rsh

(12)

By substituting Eq. 12 into Eq. 11, we obtain the following
expression for the SD model:

FObj �

�������������������������������������������
1
N

∑N
i�1

Im − Iph − Isd e
V+ImRs( )

nVt( ) − 1( ) − V + ImRs( )
Rsh

{ }( )2

√√
(13)

For the DD model, this will be:
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FObj �

������������������������������������������������������������
1
N

∑N
i�1

Im − Iph − Isd1 e
V+ImRs( )
n1Vt( ) − 1[ ] − Isd2 e

V+ImRs( )
n2Vt( ) − 1[ ] − V + ImRs( )

Rsh
{ }( )2

.

√√
(14)

Lastly, for TD model, the following expression will be obtained:

FObj �

�����������������������������������������������������������������������������
1
N

∑N
i�1

Im − Iph − Isd1 e
V+ImRs( )
n1Vt( ) − 1[ ] − Isd2 e

V+ImRs( )
n2Vt( ) − 1[ ] − Isd3 e

V+Im Rs( )
n3Vt( ) − 1[ ] − V + ImRs( )

Rsh
{ }( )2

.

√√
(15)

The equations presented in Eqs 8–10 demonstrate a profoundly
nonlinear characteristic. Therefore, if we substitute (I � Im) in Eq.
11 to estimate the current, the results would be erroneous because of
the equation’s nonlinearity. Various approaches, including the
Taylor series, Newton-Raphson method, Lambert W function,
and others, can be used to solve the nonlinear Eqs 8–10
(Ayyarao, 2022; Ekinci et al., 2024; Izci et al., 2024). In this
work, we have opted to employ the iterative Newton-Raphson
(N-R) approach for parameter extraction. This approach has

FIGURE 2
Parameter extraction of PV models using EEFO and N-R methods.
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significant benefits, such as excellent precision and a relatively low
computing load. The optimization approach is implemented in
tandem with the N-R method, guaranteeing their synchronization
throughout the process.

The N-R technique is an iterative algorithm that necessitates a
beginning point, x0, and a termination condition. After k rounds, the
revised solution may be expressed as xk+1 � xk − f(x)/f′(x). The
ultimate solution is obtained when the magnitude of f(x) is smaller
than a certain tolerance, ε. The current for the SD, DD, and TDmodels
is calculated using Eqs 16–18 accordingly. This is done by solving the
nonlinear equations SD(x), DD(x), and TD(x), where x denotes I.

SD x( ) � Iph − Isd e
V+xRs( )
nVt( ) − 1[ ] − V + xRs( )

Rsh
− x (16)

DD x( ) � Iph − Isd1 e
V+xRs( )
n1Vt( ) − 1[ ] − Isd2 e

V+xRs( )
n2Vt( ) − 1[ ] − V + xRs( )

Rsh

− x

(17)
TD x( ) � Iph − Isd1 e

V+xRs( )
n1Vt( ) − 1[ ] − Isd2 e

V+xRs( )
n2Vt( ) − 1[ ]

− Isd3 e
V+xRs( )
n3Vt( ) − 1[ ] − V + xRs( )

Rsh
− x (18)

This approach is employed to calculate the value of the objective
function during the parameter optimization procedure. During the
optimization process, the algorithm transfers the solar PV cell
variables to the N-R technique, which computes the value of the
objective function. To solve the nonlinear equations in Eqs 16–18 at
a certain voltage, the N-R approach is used. This method yields
output current values with an error (ε) that is less than 10−4. There
are two major obstacles in this approach. First and foremost, the
selection of the starting point significantly impacts the ultimate
answer. Furthermore, it is essential to minimize the duration of the
execution. These problems can be surmounted with a
straightforward measure. The measured current is chosen as the
initial value since it is anticipated that the estimated current will be
in close proximity to the observed current. Figure 2 demonstrates
the procedure of parameter extraction by integrating the N-R
approach using the EEFO.

4 Comparative simulation results

This section provides a comprehensive discussion and
evaluation of the R.T.C. France solar photovoltaic cell. The
considered cell has 26 current-voltage data set that have been
obtained at a temperature of 33°C. It is worth mentioning that
the all comparative simulations are executed using MATLAB
R2023a on a personal computer with an 12th Gen Intel(R)
Core(TM) i7-12700H processor 2.30 GHz, 32 GB RAM, under
Windows 10 64-bit operating system.

4.1 Compared metaheuristic algorithms and
parameter settings

The efficacy of the EEFO (Zhao et al., 2024) was evaluated more
accurately by contrasting it with five distinct metaheuristic
algorithms. The selected algorithms include the gravitational
search algorithm (GSA) (Rashedi et al., 2009) and the whale
optimization algorithm (WOA) (Mirjalili and Lewis, 2016), which
are widely used. On the other hand, the slime mould algorithm
(SMA) (Chen H. et al., 2023), arithmetic optimization algorithm
(AOA) (Abualigah et al., 2021), and sinh cosh optimizer (SCHO)
(Bai et al., 2023) are the most recent additions. The control
parameters for all algorithms are listed as follows.

- EEFO: No other parameters
- GSA: G0 � 100 and a � 20
- WOA: a linearly decreases from two to 0
- SMA: z � 0.03
- AOA: α � 5 and μ � 0.499
- SCHO: ct � 3.6, u � 0.388, m � 0.45, ϵ � 0.003, n � 0.5,
α � 4.6, β � 1.55, p � 10 and q � 9

The population size for all algorithms was fixed at 50, and the
total number of iterations was set at 400. This was done to create
equitable conditions for conducting comparisons. According to
provided control parameters, GSA and AOA necessitate the
modification of two additional control parameters, whereas WOA
and SMA only require the adjustment of one. However, SCO
necessitates the modification of nine control parameters, with the
exception of population size and total number of iterations. The
primary advantage of the EEFO is its ability to optimize without the
need for parameters, making it very desired for solving the given
optimization issue.

4.2 Results of single-diode model

Table 1 provides the lower and maximum limits for the
5 parameters that need to be optimized in a single diode model.
In order to achieve the lowest value for the RMSE objective function,
it is crucial that the Iph, Isd, Rs, Rsh and n parameters be accurately
predicted within the specified limitations.

Figures 3, 4 display the graphical outcomes of 30 iterations of the
EEFO, GSA, WOA, SMA, AOA, and SCHO algorithms. Figure 3
displays the RMSE values achieved with the EEFO method, which
are consistently low and outperform other algorithms in each run. In
addition, the inspection of the box plot in Figure 4 clearly shows that
the RMSE range of the EEFOmethod is minimal, which indicates its
statistical success and stability.

Table 2 presents the statistical outcomes of all methods in the
single diode model for the RMSE objective function. The RMSE
objective function minimized by the EEFO method has an average,
standard deviation and best values of 7.7348 × 10−4, 6.8513 × 10−7,
and 7.7299 × 10−4 in the table. These numerical values are the most
minimal in comparison to other methods. In addition, the highest
RMSE value obtained from the EEFO method is considerably
smaller than the average and lowest RMSE values achieved by
the GSA, WOA, SMA, and AOA algorithms. The numerical

TABLE 1 The parameter limits of single-diode model.

Bounds Iph (A) Isd (µA) Rs (Ω) Rsh (Ω) n

Upper 1 1 0.5 100 2

Lower 0 0 0 0 1
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findings validate the excellence of the EEFO method and its resilient
statistical framework. The values of the most accurate estimated Iph,
Isd, Rs, Rsh and n parameters from the optimal run of all methods are
provided in Table 3.

Figure 5 shows the change of the convergence curves for
the RMSE objective function with respect to the algorithm’s
number of iterations. As shown in the figure, compared to
the GSA, WOA, SMA, AOA and SCHO algorithms, the

FIGURE 3
Obtained RMSE values with respect to all runs for single diode model.

FIGURE 4
Boxplot analysis of EEFO, GSA, WOA, SMA, AOA and SCHO for single-diode model.
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best RMSE value was achieved with the least iteration with
EEFO. Figure 6 shows the I-V and P-V curves of the
EEFO-based single diode model and 26 experimental data.
The EEFO algorithm has been overlapping with experimental
data because it makes the parameter extraction very precise
and accurate.

4.3 Results of double-diode model

The parameters to be optimized in the double diode model are
Iph, Isd1, Isd2, Rs, Rsh, n1 and n2. The lower and upper boundaries of
these 7 parameters are listed in Table 4. In Figure 7, RMSE values are
given for 30 running of all algorithms. Other algorithms (GSA,

TABLE 2 Statistical metric values of RMSE for single-diode model.

Algorithms Average Standard deviation Best Worst

EEFO 7.7348 × 10−4 6.8513 × 10−7 7.7299 × 10−4 7.7504 × 10−4

GSA 7.9310 × 10−4 1.8483 × 10−5 7.7612 × 10−4 8.5340 × 10−4

WOA 8.0029 × 10−4 3.4734 × 10−5 7.7877 × 10−4 9.1509 × 10−4

SMA 7.8801 × 10−4 1.9064 × 10−5 7.7508 × 10−4 8.4204 × 10−4

AOA 7.8776 × 10−4 2.2759 × 10−5 7.7522 × 10−4 8.9283 × 10−4

SCHO 7.8042 × 10−4 1.0114 × 10−5 7.7476 × 10−4 8.2618 × 10−4

TABLE 3 Estimated parameters of single-diode model.

Algorithms Iph (A) Isd (µA) Rs (Ω) Rsh (Ω) n

EEFO 0.7608 0.3107 0.0365 52.8899 1.4773

GSA 0.7608 0.3228 0.0364 53.9181 1.4811

WOA 0.7608 0.3282 0.0363 53.9987 1.4828

SMA 0.7607 0.3178 0.0365 54.1164 1.4795

AOA 0.7609 0.3130 0.0365 52.4173 1.4780

SCHO 0.7608 0.3186 0.0364 53.3586 1.4798

FIGURE 5
Detailed convergence curves of EEFO, GSA, WOA, SMA, AOA and SCHO for single-diode model.
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WOA, SMA, AOA, and SCHO) except for the EEFO are subject to
high fluctuations in RMSE values in each run. As with the single-
diode model, the EEFO algorithm finds RMSE values close to each

run, indicating statistical stability for the double diode model, as
well. Figure 8 shows the results of the boxplot analysis of all
algorithms. As is clear from the figure, the EEFO algorithm

FIGURE 6
I-V (A) and P-V (B) curve characteristics for single-diode model.

TABLE 4 The parameter limits of double-diode model.

Bounds Iph (A) Isd1 (µA) Isd2 (µA) Rs (Ω) Rsh (Ω) n1 n2

Upper 1 1 1 0.5 100 2 2

Lower 0 0 0 0 0 1 1

FIGURE 7
Obtained RMSE values with respect to all runs for double diode model.

Frontiers in Energy Research frontiersin.org10

Izci et al. 10.3389/fenrg.2024.1407125

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1407125


affirms its superiority as a statistical structure over other comparison
algorithms due to the absence of data at endpoints in the boxplot and
the lowest median value.

Table 5 shows the statistical metrics of the RMSE objective
function for the double diode model. Considering the numerical
values in the table, the lowest average (7.5814 × 10−4), the standard
deviation (7.4851 × 10−6), the best (7.4250 × 10−4) and the worst
(7.7144 × 10−4) values were obtained using the EEFO. As was the
case for the single-diode model, the best RMSE metrics were found
with EEFO. Table 6 shows the parameters of the double-diode model
optimized using EEFO, GSA, WOA, SMA, AOA and
SCHO methods.

Comparative convergence curves of the algorithms are provided
in detail in Figure 9. The EEFO has reached the lowest RMSE
(7.4250 × 10−4) without sticking to the local minimum. The GSA,
WOA, SMA, AOA, and SCHO algorithms started to reach lower
values between 300 and 400 iterations. However, the EEFO
approaches the lowest value earlier than 250th iteration. The I-V

and P-V curves of the system optimized with EEFO are shown in
Figure 10. As can be seen from the figure, 26 experimental data are
compatible with EEFO’s estimates for all voltage ranges.

4.4 Results of three-diode model

Table 7 shows the boundaries of the three-diode model with
9 parameters. For all algorithms, the RMSE values obtained from
30 runs are shown in Figure 11. On the other hand, the comparative
box plot analysis is shown in Figure 12. From these figures one can
see the superiority of the EEFO since it has achieved fewer
fluctuations and the lowest RMSE values in all runs compared to
GSA, WOA, SMA, AOA, and SCHO algorithms.

The fundamental statistical metrics of the algorithms in terms of
RMSE values are listed in Table 8. As were the same case with the
other two diode models, the three diode model had the lowest
average (7.5032 × 10−4), the standard deviation (7.6853 × 10−6), the

FIGURE 8
Boxplot analysis of EEFO, GSA, WOA, SMA, AOA and SCHO for double-diode model.

TABLE 5 Statistical metric values of RMSE for double-diode model.

Algorithms Average Standard deviation Best Worst

EEFO 7.5814 × 10−4 7.4851 × 10−6 7.4250 × 10−4 7.7144 × 10−4

GSA 7.8701 × 10−4 2.4199 × 10−5 7.6816 × 10−4 8.5446 × 10−4

WOA 7.8730 × 10−4 2.2506 × 10−5 7.6298 × 10−4 8.3090 × 10−4

SMA 7.8385 × 10−4 3.4419 × 10−5 7.5193 × 10−4 9.0735 × 10−4

AOA 8.0314 × 10−4 5.1292 × 10−5 7.5638 × 10−4 9.2363 × 10−4

SCHO 7.8282 × 10−4 2.3153 × 10−5 7.6065 × 10−4 8.3250 × 10−4
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TABLE 6 Estimated parameters of double-diode model.

Algorithms Iph (A) Isd1 (µA) Isd2 (µA) Rs (Ω) Rsh (Ω) n1 n2

EEFO 0.7608 0.1027 0.9990 0.0376 55.7703 1.3903 1.8445

GSA 0.7608 0.1907 0.2892 0.0366 53.6467 2.0000 1.4714

WOA 0.7608 0.1492 0.3081 0.0368 54.0155 1.4287 1.6525

SMA 0.7608 0.1750 0.6622 0.0371 54.8902 1.4311 1.8729

AOA 0.7608 0.6269 0.2286 0.0369 54.3799 1.9999 1.4513

SCHO 0.7608 0.3436 0.1650 0.0369 53.7527 1.7061 1.4319

FIGURE 9
Detailed convergence curves of EEFO, GSA, WOA, SMA, AOA and SCHO for double-diode model.

FIGURE 10
I-V (A) and P-V (B) curve characteristics for double-diode model.
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best (7.3551 × 10−4) and the worst (7.6766 × 10−4) values with the
EEFO algorithm. The values of the parameters Iph, Isd1, Isd2, Isd3, Rs,
Rsh, n1, n2 and n3 optimized with EEFO, WOA, SMA, AOA and
SCHO are given in Table 9.

Comparative convergence profiles for the three-diode model are
shown in Figure 13. As illustrated in the figure, the only algorithm
that achieves the lowest RMSE value with the least iteration is EEFO.
Due to its better exploration-exploitation balance and the no
requirement of adjustable additional parameters, the EEFO finds
global solutions in the shortest possible time without stagnating to
the local minimum. The I-V and P-V curves of the three-diode
model optimized with EEFO are shown in Figure 14. This figure
indicates that the EEFO can estimate the parameters with good
accuracy since the current and power data estimated by the EEFO is
almost identical with that of the experimental results.

4.5 Comparison of elapsed times

It is important for an algorithm to be able to perform the
optimization task as quickly as possible while achieving the best
results during the optimization process. Table 10 shows the average
run times of EEFO, GSA, WOA, SMA, AOA and SCHO algorithms

for different diode models. When the numerical values in the table
are considered, the shortest calculation times for all diodemodels are
obtained using the EEFO. Furthermore, since the estimated number
of parameters is highest in the three-diode model, the increase in
calculation time compared to the other two diode models is normal,
however, this is also negligible for EEFO. As these results show,
compared to other algorithms, the EEFO algorithm not only
minimizes the RMSE objective function, but also completes this
optimization process as quickly as possible.

4.6 Comparison of best RMSE values with
recently reported studies

The success and superiority of the proposed EEFO for the
extraction of the parameters of different photovoltaic models is
compared in this section by employing the best algorithms
published in reputable journals between 2020 and 2024. The
20 methods (Diab et al., 2020; Houssein et al., 2021; Nicaire
et al., 2021; Rezk et al., 2021; Beşkirli and Dağ, 2022; Fan et al.,
2022; Kharchouf et al., 2022; Premkumar et al., 2022; Yu et al., 2022;
2023; Ayyarao and Kishore, 2023; Bogar, 2023; Chauhan et al., 2023;
Gu et al., 2023; Li et al., 2023; Maden et al., 2023; Qaraad et al., 2023;

TABLE 7 The parameter limits of three-diode model.

Bounds Iph (A) Isd1 (µA) Isd2 (µA) Isd3 (µA) Rs (Ω) Rsh (Ω) n1 n2 n3

Upper 1 1 1 1 0.5 100 2 2 2

Lower 0 0 0 0 0 0 1 1 1

FIGURE 11
Obtained RMSE values with respect to all runs for three diode model.
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Izci et al., 2024; Kullampalayam Murugaiyan et al., 2024; Wu et al.,
2024) are employed and the respective comparison and the best
RMSE values are shown in Table 11. In the single diode model, the
lowest RMSE value was found with the EEFO at 7.7299 × 10−4. Its
closest competitor seems to be the approach reported in (Ayyarao

and Kishore, 2023) which is at 7.7306 × 10−4. Similarly, the best
RMSE values for EEFO’s two-diode and three-diode models are
7.4250 × 10−4 and 7.3551 × 10−4, respectively. The nearest
competitor (Izci et al., 2024) found RMSE values for two diode
and three diode models as 7.5850 × 10−4 and 7.4998 × 10−4,

FIGURE 12
Boxplot analysis of EEFO, GSA, WOA, SMA, AOA and SCHO for three-diode model.

TABLE 8 Statistical metric values of RMSE for three-diode model.

Algorithms Average Standard deviation Best Worst

EEFO 7.5032 × 10−4 7.6853 × 10−6 7.3551 × 10−4 7.6766 × 10−4

GSA 7.9322 × 10−4 2.5891 × 10−5 7.6523 × 10−4 8.3678 × 10−4

WOA 7.8517 × 10−4 2.7027 × 10−5 7.5116 × 10−4 8.3464 × 10−4

SMA 7.9437 × 10−4 4.0775 × 10−5 7.4673 × 10−4 9.0656 × 10−4

AOA 7.9703 × 10−4 5.3678 × 10−5 7.5475 × 10−4 9.3310 × 10−4

SCHO 7.8142 × 10−4 2.5260 × 10−5 7.4379 × 10−4 8.3599 × 10−4

TABLE 9 Estimated parameters of three-diode model.

Algorithms Iph (A) Isd1 (µA) Isd2 (µA) Isd3 (µA) Rs (Ω) Rsh (Ω) n1 n2 n3

EEFO 0.7608 0.9576 0.7094 0.0907 0.0379 57.4862 1.9124 2.0000 1.3777

GSA 0.7608 2.8098 × 10−4 0.2342 0.2559 0.0367 53.6942 1.8233 1.8512 1.4619

WOA 0.7608 6.9732 × 10−4 0.0149 0.6001 0.0378 55.4568 1.8280 1.2810 1.6163

SMA 0.7608 0.3818 0.1776 0.6897 0.0372 54.4662 1.9931 1.4304 1.9998

AOA 0.7608 0.0496 2.1317 × 10−4 0.9223 0.0375 57.0025 1.3449 1.9995 1.7402

SCHO 0.7608 0.3602 0.1418 0.7992 0.0372 56.3412 1.8397 1.4139 1.9991
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FIGURE 13
Detailed convergence curves of EEFO, GSA, WOA, SMA, AOA and SCHO for three-diode model.

FIGURE 14
I-V (A) and P-V (B) curve characteristics for three-diode model.

TABLE 10 Elapsed times for all diode models.

Algorithms Single-diode model (s) Double-diode model (s) Three-diode model (s)

EEFO 14.1635 14.3075 14.5054

GSA 16.3929 16.9562 17.2714

WOA 15.3801 16.2094 16.8973

SMA 16.8594 17.2553 17.5655

AOA 16.0208 16.3645 16.5791

SCHO 17.1840 17.4526 17.8478

Bold values are the best obtained results.
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respectively. As is clear from this comparison table, the proposed
EEFO-based approach can achieve better results by finding the
lowest RMSE value. This makes it superior to the previously
reported approaches in the literature as it allows us to estimate
more precise parameter values.

4.7 Discussion

A comprehensive analysis was conducted initially, comparing the
GSA, WOA, SMA, AOA, and SCHO algorithms with the Newton-
Raphson-supported EEFO method. This is the first report in the
literature regarding the presented technique with the aim of
improving the parameter extraction of solar systems. The EEFO
method successfully obtained precise and accurate parameter
values for three different diode models. This was achieved by
minimizing the RMSE, maintaining consistent statistical
performance, and approaching the global solution with minimal
iterations, without getting trapped in local minima. The
completion of these operations took the minimum possible time
frame for the EEFO compared to the competitors. Based on the
RMSE, the EEFO method was shown to be the most effective

approach among the twenty strategies currently documented in the
literature for diode models. EEFO may be efficiently used to a diverse
range of optimization problems that need the prediction of additional
factors in real-world scenarios as the behavior of the diode models
optimized with EEFO aligns well with the experimental data.

5 Conclusion

The increasing fears regarding environmental deterioration and
the pressing necessity to address climate change have stimulated the
investigation of renewable energy sources as feasible substitutes for
traditional fossil fuels. Solar energy has emerged as a feasible solution
owing to its vast availability, environmentally friendly characteristics,
and cost-effectiveness. Photovoltaic (PV) systems, which utilize solar
energy, are crucial in the shift towards sustainability. However,
accurately modeling these systems is still difficult due to the
intricate nature of the process. Traditional photovoltaic (PV)
modeling often depends on well-established models like the single-
diode, double-diode, and three-diode models. However, the absence
of specific physical characteristics inmanufacturer datasheets presents
challenges in accurately assessing and improving performance.

TABLE 11 Comparison of RMSE values.

References Algorithms Single-diode model Double-diode model Three-diode model

Proposed EEFO 7.7299 × 10−4 7.4250 × 10−4 7.3551 × 10−4

Kullampalayam Murugaiyan et al. (2024) OBEDO 9.8602 × 10−4 9.8250 × 10−4 9.8082 × 10−4

Izci et al. (2024) PDO 7.7803 × 10−4 7.5850 × 10−4 7.4998 × 10−4

Wu et al. (2024) SENMSSA 9.8602 × 10−4 9.8248 × 10−4 9.8248 × 10−4

Ayyarao and Kishore (2023) AHO 7.7306 × 10−4 9.8402 × 10−4 NR

Qaraad et al. (2023) IMFOL 9.8602 × 10−4 9.8252 × 10−4 NR

Yu et al. (2023) RTLBO 9.8602 × 10−4 9.8248 × 10−4 NR

Li et al. (2023) DLMVO 9.8602 × 10−4 9.8248 × 10−4 NR

Chauhan et al. (2023) OBL-RSACM 9.8452 × 10−4 9.8237 × 10−4 NR

Bogar (2023) CGO-LS 9.8602 × 10−4 9.8248 × 10−4 NR

Gu et al. (2023) ELADE 9.8602 × 10−4 9.8248 × 10−4 NR

Maden et al. (2023) SSA 7.7551 × 10−4 7.7192 × 10−4 NR

Premkumar et al. (2022) CCNMGBO 9.8600 × 10−4 9.8200 × 10−4 9.8230 × 10−4

Fan et al. (2022) PSOCS 9.8602 × 10−4 9.8297 × 10−4 NR

Yu et al. (2022) SDGBO 9.8602 × 10−4 9.8270 × 10−4 9.8249 × 10−4

Kharchouf et al. (2022) DE 7.7692 × 10−4 7.6300 × 10−4 NR

Beşkirli and Dağ (2022) TSA 9.9339 × 10−4 9.8894 × 10−4 NR

Houssein et al. (2021) MRFO 7.7307 × 10−4 7.6842 × 10−4 7.5936 × 10−4

Nicaire et al. (2021) BES 9.8602 × 10−4 9.8248 × 10−4 NR

Rezk et al. (2021) SFS 7.9310 × 10−4 7.7827 × 10−4 NR

Diab et al. (2020) COA 7.7547 × 10−4 7.6480 × 10−4 7.5976 × 10−4

aNR, not reported.

Bold values are the best obtained results
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Nevertheless, recent progress in parameter estimate methods, namely,
by employing metaheuristic algorithms, has greatly enhanced the
precision and effectiveness of PV system modeling. Numerous
optimization techniques, such as the bald eagle search method
and the artificial hummingbird methodology, have exhibited
their effectiveness in precisely forecasting parameters for
diverse photovoltaic (PV) models. However, current
approaches demonstrate several drawbacks, including sluggish
convergence and inadequate population variety. Additionally,
the investigation of the three-diode model has received limited
attention in the literature. In order to tackle these issues, the
present study presents the electric eel foraging optimizer (EEFO)
method, an innovative metaheuristic approach that draws
inspiration from the social predation behaviors observed in
electric eels. The EEFO method presents a methodical and
efficient strategy for navigating the intricate parameter space
of solar photovoltaic (PV) models. It has demonstrated
encouraging outcomes in several scenarios, including single-
diode, double-diode, and three-diode models. The improved
efficacy of the EEFO in accurately calculating parameters for
solar PV models is supported by statistical analysis and
comparative tests conducted against competing approaches.
The precision and reliability of the model in simulating
current and voltage parameters are shown by its smooth
convergence behavior and consistent ability to yield low root
mean square error values.
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