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The energy sector heavily relies on a diverse array of machine learning algorithms
for power load prediction, which plays a pivotal role in shaping policies for power
generation and distribution. The precision of power load prediction depends on
numerous factors that reflect nonlinear traits within the data. Notably, machine
learning algorithms and artificial neural networks have emerged as indispensable
components in contemporary power load forecasting. This study focuses
specifically on machine learning algorithms, encompassing support vector
machines (SVMs), long short-term memory (LSTM), ensemble classifiers,
recurrent neural networks, and deep learning methods. The research
meticulously examines short-term power load prediction by leveraging
Chandigarh UT electricity utility data spanning the last 5 years. The assessment
of prediction accuracy utilizes metrics such as normalized mean square error
(NMSE), root mean squared error (RMSE), mean absolute error (MAE), and mutual
information (Ml). The prediction results demonstrate superior performance in
LSTM compared to other algorithms, with the prediction error being the lowest in
LSTM and 13.51% higher in SVMs. These findings provide valuable insights into the
strengths and limitations of different machine learning algorithms. Validation
experiments for the proposed method are conducted using MATLAB
R2018 software.

forecasting, power load, machine learning, deep learning, load demand

1 Introduction

Load forecasting serves as a crucial intermediary, ensuring a seamless connection
between electricity generation and distribution. Its primary objective is to precisely forecast
the electricity load for the upcoming year, months, and weeks, encompassing both short-
and long-term projections. Effective power load forecasting enables the efficient
management of power distribution scarcity. Demand forecasting also plays a pivotal
role in driving nations’ industrialization and urban development (Lai et al., 2020;
Aslam et al., 2021; Fan et al., 2019; Mosavi et al., 2019). Accurate forecasting is crucial
for effective planning and promoting economic growth within a nation. The power load
forecasting process relies on archived data and statistical models to predict future trends.
However, the nonlinear nature of power generation data frequently leads to increased
prediction errors, which can compromise decision-making regarding power generation and
distribution. Despite the existence of numerous mathematical models for power load
forecasting, attaining high accuracy in these forecasts remains a significant challenge (Su
et al, 2019; Khan W. et al., 2020). Predicting the power load is a contemporary research
focus. The advancement of machine learning (ML) algorithms propels the evolution of
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machine learning and its application in energy forecasting. The
amalgamation of sensor technology with power distribution results
in the accumulation of a significant volume of data. These amassed
data present both opportunities and challenges for making informed
decisions. In-depth data processing is conducted for evaluation and
forecasting, with machine learning algorithms and models playing a
pivotal role in prediction. Due to their efficiency and effectiveness,
these algorithms and models have garnered considerable
importance in predictive modeling for production, consumption,
and demand analysis in recent years (Ahmad W. et al, 2020,
2020). Despite the

conducted on machine learning and the advancements made in

Almaghrebi et al, extensive research
memory-based algorithms, innovative approaches have been
proposed for predicting electricity demand. Several statistical
functions have been used to model and forecast demand,
including gray models, linear regression, autoregressive average
models, and partial linear models, all of which are widely utilized
in this field (Khan P. et al., 2020; Reynolds et al., 2019; O’dwyer et al.,
2019). However, while strong predictive outcomes can generally be
achieved, statistical methods are constrained by the underlying
linear assumption. The gray prediction model operates without
relying on statistical assumptions; nevertheless, its predictive
accuracy depends on the dispersion level within the input time
series (Chapaloglou et al., 2019; Bedi and Toshniwal, 2019; Jiang
et al, 2020). Additionally, due to the distinctive strengths and
limitations of each model, it is rare for a single forecasting model
to maintain superiority in every situation. Another area of this study
focuses on the evolution of load forecasting, transitioning from
statistical to hybrid forecasting methods that integrate intelligent
approaches capable of addressing complex and nonlinear challenges
(Satre-Meloy et al., 2020; Wang R. et al., 2020; Ibrahim et al., 2020;
Heydari et al, 2020). The implementation of the incremental
approach design incorporates machine learning and artificial
neural network algorithms (Ullah et al., 2020; Chammas et al,
2019; Santamouris, 2020; Sun et al., 2020). In contemporary data
analysis research, both feed-forward neural networks and recurrent
neural networks are extensively used across diverse models to
achieve precise power load forecasting. The reliability of these
predictions depends on the data processing methods used within
the decision system. Among the different algorithms used in
predictive models for electricity data, one involves the formation
of data subsets in time series. Prevalent preprocessing techniques
like singular spectrum analysis, ensemble empirical mode
decomposition (EMD), and enhanced whole-ensemble empirical
mode decomposition with adaptive noise are applied in analyzing
electrical data modeling. These methods aid in establishing a
procedural framework for extracting essential information from
observed load series to forecast future patterns.

The utilization of EMD-based modeling has demonstrated
success in managing electricity demand sequences. The research
findings suggest that the EMD framework shows promise for
accurately forecasting energy demand within specific intervals.
Additionally, they developed feature selection techniques to
improve the model’s performance. They also created a hybrid
feature selection technique to extract fundamental knowledge
from electricity time series. This finding underscores the
importance of utilizing preprocessing techniques to improve
predictions.
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In addition to data, weather conditions significantly influence
the precision of power load forecasting. Integrating various
approaches and incorporating energy source guidelines lead to a
new algorithm for short-term load prediction, significantly
enhancing accuracy (Hu et al, 2020; Prado et al, 2020; El-
Hendawi and Wang, 2020). This study investigated an approach
to extracting date-associated details from observed load sequences
and developed techniques for selecting features to enhance model
effectiveness. Moreover, it introduced a hybrid technique to extract
essential knowledge from electricity time-series data. It underscores
the significance of preprocessing methods in refining predictions.
Weather conditions can also impact power load forecasting,
introducing complexities due to seasonal effects and reducing the
accuracy of specific models. Consequently, many researchers suggest
integrating seasonal pattern-effect models into predictive modeling
to address this issue (Li et al., 2020; Qiao et al, 2020; Bakay
et al., 2021).

The primary objective of this paper is to explore power load
forecasting using artificial intelligence methods such as machine
learning and artificial neural networks. The research aims to conduct
experimental analyses on datasets using various machine learning
algorithms to establish a model design for power load forecasting.

The remainder of the paper is structured as follows: Section II
concentrates on recent advancements in power load forecasting;
Section III outlines the machine learning approaches used for
forecasting; Section IV offers an in-depth examination of the
experimental methodology; and finally, Section V concludes the
paper and offers insights into future directions for further
exploration.

2 Related work

In the field of renewable energy forecasting, Lai et al. (2020)
conducted a survey and evaluation of machine learning algorithms.
Moreover, this work clarified the methodologies utilized in machine
learning models for predicting sustainable energy sources,
encompassing data preprocessing methods, attribute selection
strategies, and performance assessment metrics. Additionally, the
study scrutinized renewable energy sources, mean absolute error
(MAE) percentages, and coefficients of determination. Aslam et al.
(2021) provided a thorough examination of existing deep learning
(DL)-based solar modules and wind turbine power forecasting
approaches, along with a significant amount of data on electric
power forecasting. The study included datasets used in training and
validating various predictive models based on deep learning,
facilitating the selection of appropriate datasets for new research
projects. Fan et al. (2019) developed a novel short-term load
prediction algorithm with improved accuracy using the weighted
k-nearest neighbor technique. The forecast inaccuracies of this
model are juxtaposed against those of the back-propagation
neural network model and the autoregressive moving average
(ARMA)
demonstrates the capability of the proposed forecasting model to

model. Evaluation through correlation values
offer adaptable advantages, making it suitable for short-term
demand forecasting. Mosavi et al. (2019) presented the current
state of energy machine learning models, along with a new

edition and application taxonomy. A novel methodology is used
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to identify and categorize machine learning models based on the
method of machine learning simulations, the type of energy, and the
application sector. Through the utilization of hybrid machine
reliability, and
generalization performance of machine learning models in energy

learning models, the efficiency, resilience,
systems have all significantly improved. Almaghrebi et al. (2020)
utilized a dataset obtained from public charging stations over a span
of 7years in Nebraska, United States. The XGBoost regression
model outperforms other techniques in forecasting charging
requirements, showcasing an RMSE of 6.7kWh and an R* of
52%. Reynolds et al. (2019) presented two approaches to improve
district energy management. A heater set-point temperature is
implemented to regulate building demand directly. Additionally,
it assists in enhancing district heat production through a multi-
vector energy hub. These observations underscore the potential
benefits of comprehensive energy management, encompassing
diverse energy vectors while considering both supply and
demand aspects. Khan W. et al. (2020) presented machine
learning techniques used to construct a hybrid power forecasting
model. Extreme boosting, subcategory boosting, and the random
forest (RF) technique are the four machine learning algorithms used.
Our hybrid model enhances forecasting by employing feature
extraction to preprocess data. While machine learning algorithms
are frequently effective in handling high-energy situations, our
hybrid version improves forecasts by utilizing feature engineering
(2020) proposed a
groundbreaking deep learning-based technique for forecasting

to preprocess data. Ahmad W. et al

electrical loads. Additionally, a three-step model is developed,
incorporating a hybrid feature selector for feature selection, a
feature extraction technique to reduce redundancy, and improved
support vector machines (SVMs) and extreme learning machines
(ELMs) for classification and forecasting. Numerical simulations are
graphed, and statistics are presented, suggesting that our upgraded
methods are more accurate and perform better than state-of-the-art
approaches. Bedi and Toshniwal (2019) proposed acquiring season-
based segmentation data and developed a deep learning method for
projecting electricity usage while accounting for long-term historical
dependency. First, the monthly electricity use data are utilized to
conduct cluster analysis. Subsequently, load trends are characterized
to enhance the comprehension of the metadata encompassed within
each cluster. Jiang et al. (2020) provided forecast intervals that
represent the intricacies involved in the design and functioning of
power systems with better accuracy. The findings suggest that the
suggested model demonstrates encouraging forecasts compared to
alternative combined methodologies, which can be advantageous for
policymakers and public organizations aiming to maintain the
security and stability of the energy infrastructure. Wang R. et al.
(2020) proposed a useful enhancement integration-model stacking
structure designed to address increasing energy needs. To ensure the
comprehensive observation of datasets from diverse spatial and
structural perspectives, the stacking model harnesses the
strengths of multiple base prediction algorithms, transforming
their outcomes into “meta-features.” With accuracy gains of 9.5%
for case A and 31.6%, 16.2%, and 49.4% for case B, the stacking
method outperforms earlier models. Heydari et al. (2020) proposed
an innovative and accurate integrated model designed for short-
term load and price forecasting. This comprehensive package
incorporates the gravitational search algorithm, variational mode

Frontiers in Energy Research

10.3389/fenrg.2024.1408119

decomposition, mixed data modeling, feature selection, and
generalized regression neural networks. The proposed model
surpasses current benchmark prediction models in terms of
precision and stability, as indicated by the findings. Wang et al.
(2019) analyzed the systems in depth for forecasting renewable
energy based on deep learning methodologies to determine their
efficacy, efficiency, and relevance. Additionally, to improve
forecasting accuracy, various data preparation strategies and
mistake post-correction processes are examined. Several deep
learning-based forecasting algorithms are thoroughly investigated
and discussed. Sun et al. (2020), in their comprehensive
examination, delved deeply into forecasting energy use in
Their
manipulation, potential data-centric models, and projected

outcomes, thus encompassing the entirety of the data-driven

buildings. meticulous analysis encompasses feature

procedure. In a research project, Ahmad and Chen (2019a)
explored short-term energy demand predictions at the district
level. They employed two distinct deep learning models. These
DL models exhibited higher predictive accuracy at distinct
hidden neurons, attributed to the suggested network layout. Hu
et al. (2020), utilizing a novel augmented optimization model,
constructed and refined it using a differential evolution
methodology developed through the bagged echo state network
approach. Bagging, a network generalization technique, enhances
network generalization while reducing forecasting errors. The
suggested model, known for its high precision and reliability,
proves to be a valuable method for predicting energy
consumption. Walker et al. (2020) explored various machine
learning algorithms across a spectrum to estimate the electricity
demand in hourly intervals, both at the individual building and
aggregated levels. Upon factoring in processing time and error
accuracy, the results revealed that random forest and artificial
neural network (ANN) models yielded the most accurate
(2020)

employed methodologies such as the fuzzy inference system

predictions at an hourly granularity. Prado et al
model, auto-regressive integrated moving average, support vector
regression, adaptive neuro-fuzzy inference system, ANN, ELM, and
genetic algorithm. In a sample study, compared to leading artificial
intelligence and econometric models, the proposed method attained
a22.3% reduction in the mean squared error and a 33.1% decrease in
the mean absolute percentage error. Ahmad et al. (2020a) reported
that utility companies require a stable and reliable algorithm to
accurately predict energy demand for multiple applications,
involvement, and

including electricity dispatching, market

infrastructure planning. The forecasting results assist in
enhancing and automating predictive modeling processes by
bridging the gap between machine learning models and
conventional forecasting models. El-Hendawi and Wang (2020)
introduced the whole wavelet neural network methodology, an
ensemble method that incorporates both the overall wavelet
packet transform and neural networks. This approach utilizes
both components effectively. The proposed methodology has the
potential to assist utilities and system operators in accurately
predicting electricity usage, a critical aspect for power generation,
demand-side management, and voltage stability operations. Zhang
et al. (2021) proposed utilizing machine learning approaches for
load prediction within the framework of machine learning. The

objective is to accomplish tasks through performance measures and
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learning from past experiences. They conclude with a list of both
well-studied and under-explored sectors that warrant further
investigation. The research introduces a neural network model
specifically designed to predict short-term loads for a Colombian
grid operator spanning a week. The model employs a long short-
term memory (LSTM) recurrent neural network and historical load
data from a specific region in Colombia. The performance of the
model is evaluated using the regression metric MAPE, with the most
accurate week displaying an error rate of 1.65% and the least
accurate week exhibiting an error rate of 26.22% (Caicedo- Vivas
and Alfonso-Morales, 2023). This research introduces a method for
reconstructing input features utilizing the maximum information
coefficient (MIC). The procedure commences by categorizing load
curves through distributed photovoltaic systems (DPVSs) with
Gaussian mixture model (GMM) clustering. The presented case
study illustrates how this proposed feature reconstruction method
significantly enhances the prediction accuracy of deep neural
networks (Zheng et al,, 2023). The study suggests utilizing long
short-term memory Bayesian neural networks for forecasting
household loads, especially in scenarios involving EV charging.
The findings demonstrate a comparable level of accuracy to point
forecasts, coupled with the advantage of providing prediction
intervals (Skala et al., 2023).

Pawar and Tarunkumar (2020), within a smart grid featuring a
significant renewable energy presence, recommended using an
intelligent smart energy management system (ISEMS) to meet
energy demands. To achieve accurate energy estimations, the
proposed approach compares various prediction models, focusing on
both hourly and daily planning. Among these models, the particle
swarm optimization (PSO)-based SVM regression model demonstrates
superior performance accuracy. Fathi et al. (2020) showed how change
impacts the energy efficiency of urban structures using machine
learning methods and future climate simulations. Due to the
absence of a globally applicable metric for this assessment,
determining the most reliable machine learning-based forecast
requires an optimal combination of criteria. Somu et al. (2021)
suggested that KCNN-exact LSTM holds promise as a deep learning
model for forecasting energy demand owing to its capability to
recognize spatial and temporal associations within the dataset. To
evaluate its dependability, the KCNN-LSTM model was compared
against the k-means variant of established electricity usage-pattern
forecast models using recognized quality criteria. Ahmad and Chen
(2019b), by using genuine pollution data and sustainable consumption
records, applied NARM, LMSR, and LS Boost methodologies to forecast
the energy demands of large-scale urban utilities, utility firms, and
industrial customers. Throughout the summer, fall, winter, and spring
periods, the LS Boost model showcased coefficients of variation of
5.019%, 3.159%, 3.292%, and 3.184%, respectively. Ahmad and Chen
(2020) conducted a thorough assessment and compared several
simulations to select the best forecasting model for obtaining the
required result in a number of situations. With coefficients of
correlation of 0972 and 0971, respectively, the
regularization backpropagation neural networks and Levenberg
better
forecasting accuracy and performance. Ahmad et al. (2020b) used

Bayesian
Marquardt backpropagation neural networks provide
renewable energy and electricity projection models as a key and

systematic energy planning tool. The forecast periods are segmented
into three separate classifications: short-range, intermediate-range, and
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long-range. The outcomes of this study will aid practitioners and
researchers in recognizing prediction methodologies and selecting
relevant methods for achieving their desired goals and forecasting
criteria. Choi et al. (2020) developed, in response to the recent
power demand patterns, a unique load demand forecasting system
constructed using LSTM deep learning techniques. They performed
examinations to gauge the inaccuracies of the forecasting module and
unexpected deviations in the energy usage patterns within the real-time
power demand monitoring system. Su et al. (2019) investigated the
ANN, SVM, gradient boosting machines (GBM), and Gaussian process
regression (GPR) as examples of data-driven predictive models for
natural gas price forecasting. To train the model, quarterly Henry Hub
natural gas market pricing data and a pass approach are utilized. These
two machine learning algorithms operate differently in predicting
natural gas prices, with the ANN demonstrating superior prediction
accuracy over the SVM, GBM, and GPR, according to the data. Khan P.
et al. (2020) proposed utilizing a variety of data mining approaches,
such as preprocessing past demand data and analyzing the properties of
the load time series, to examine patterns in energy usage from both
renewable and non-renewable energy sources. O’dwyer et al. (2019)
investigated recent advancements in the smart energy sector, focusing
on methodologies in key application areas and notable implemented
examples. They also highlight significant challenges in this sector while
outlining future prospects. The aim of this inquiry is to assess the
current state of computational intelligence in smart energy
management and provide insights into potential strategies to
overcome current limitations. Chapaloglou et al. (2019) proposed
that smoother diesel generator performance can be achieved by
combining it with peak shaving using renewable energy. This
approach aims to reduce the demand variability that conventional
units must meet. The operation seeks to limit the maximum capacity of
diesel engines while simultaneously increasing the supply of renewable
energy to the grid. Satre-Meloy et al. (2020) applied a unique dataset
containing significant strength and tenant time-use data from
United Kingdom homes. They also utilized a groundbreaking
clustering approach to capture the entire structure. The discussion
focuses on how a customized strategy tailored to the highest demand in
residential areas can lead to reductions in demand and mitigation
actions. Additionally, it enhances our understanding of the limitations
and possibilities for demand flexibility in the household sector. Ibrahim
et al. (2020) reported that the increasing interest in machine learning
technologies underscores their effectiveness in tackling technological
challenges within the smart grid. However, certain hurdles, such as
efficient data collection and the examination of intelligent decision-
making in complex multi-energy systems, as well as the need for
streamlined machine learning-based methods, remain unresolved.
Ullah et al. (2020) provided comprehensive insights into the
utilization of previous advancements in intelligent transportation
systems (ITSs), cybersecurity challenges, the effective use of smart
grids for energy efficiency, optimized deployment of unmanned
aerial vehicles to enhance 5G and future communication services,
and the integration of smart medical systems within the framework
of a smart city. Chammas et al. (2019) proposed that LR, SVM, GBM,
and RF are four alternative classification algorithms compared to our
methodology. A multilayer perceptron (MLP)-based system for
calculating the energy consumption of a building based on data
from a wireless sensor network (WSN), including luminosity, day of
the week, moisture, and temperature, significantly influences the
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outcomes observed in the testing set. This yields cutting-edge outcomes
with a coefficient of determination R? of 64% , RMSE of 59.9%, MAE of
27.3%, and MAPE of 28.04%. Santamouris (2020) reported on energy,
peak electricity usage, air pollution, mortality, morbidity, and urban
susceptibility. The study also examined recent data on the
characteristics and extent of urban overheating, as well as analyses
of recent research on the connection between urban heat islands and
increasing temperatures. Li et al. (2020) estimated that an SVM and an
upgraded dragonfly algorithm are utilized to generate short-term wind
electricity forecasts. To enhance the performance of the standard
dragonfly approach, an adaptive learning multiplier and a convex
optimization strategy are proposed. The suggested model
outperforms existing methods, such as MLP networks and Gaussian
process models, in terms of forecast precision. Lu et al. (2019) proposed
that residential management systems utilize an hour-ahead load
management algorithm. A stable pricing methodology derived from
artificial neural networks is suggested to address the complexities of
future pricing. Calculations involving non-shiftable, shiftable, and
guided loads are used to validate the performance of the suggested
energy management method (Fathi et al,, 2020). Wang H. et al. (2020)
carried out a classification study using Al algorithms and current solar
power prediction models. Taxonomy is a system for classifying solar
energy forecasting methods, optimizers, and frameworks based on
similarities and differences. This study can aid scientists and
engineers in conceptually analyzing various solar forecast models,
allowing them to select the most appropriate model for any given
usage scenario. Ghoddusi et al. (2019) proposed that in energy
economics publications, SVMs, ANNs, and genetic algorithms (GAs)
are among the most commonly utilized methodologies. They explored
the successes and limitations of the literature. Gao et al. (2019) provided
a prediction method based on the weather conditions of previous days
for optimal weather conditions. According to a study of predictive
accuracy between new methods and known algorithms, the RMSE
accuracy of the predicting approach that is built upon LSTM networks
can achieve 4.62%, specifically under ideal weather conditions. Xue et al.
(2019) proposed the ability to forecast the best weather conditions; here,
a method based on the previous-day climatic data is used. The RMSE
accuracy of LSTM infrastructure-predicting approaches can reach
4.62% for favorable climatic circumstances, according to research on
the projected accuracy between innovative approaches and known
algorithms. Qiao et al. (2020) presented a hybrid approach for
carbon dioxide emission forecast that combines the lion swarm
optimizer with the genetic algorithm to improve the traditional least
squares support vector machine model. When compared with eight
previous methods, the novel algorithm demonstrates superior global
optimization capabilities, quicker convergence, enhanced accuracy, and
moderate computational speed. Bakay et al. (2021) reported that
measurements of CO,, CH,; N,O, F-gases, and overall GHG
emissions from the energy-generating industry can be predicted
using DL, SVM, and ANN approaches. All of the algorithms tested
in the study, according to the findings, yielded individually favorable
outcomes in predicting GHG emissions. The greatest R* value for
emissions, according to the expected data, ranges from 0.861 to 0.998,
and all conclusions are considered “excellent” regarding the RMSE.
Zhou et al. (2019), in their analysis, comprehensively assessed prior
driving prediction techniques, highlighting suitable application
scenarios for each prediction model. Moreover, it outlines methods
to address prediction inaccuracies, aiding designers in selecting suitable
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driving prediction techniques for varied uses and improving the
efficiency of predictive energy management strategies for hybrid and
plug-in hybrid electric vehicles. Hao et al. (2019) introduced the DE
clustering technique, derived from fundamental morphological
processes, to recognize days sharing analogous numerical weather
prediction data with the envisaged day within the suggested
approach. The progressive generalized regression neural network
(GRNN) prediction framework rooted in the DE clustering
technique demonstrates superior efficacy in forecasting wind power
for the following day compared to the models utilizing DPK clustering-
GRNN, AM-GRNN, and K-means clustering-GRNN. Ahmed et al.
(2020) discovered that artificial neural network ensembles are the best
for generating short-term solar power forecasts, that asynchronous
sequential extreme learning machines are the best for adaptive
networks, and that the bootstrap procedure is the best for assessing
uncertainty When paired with hybrid artificial neural networks and
evolutionary algorithms, the findings bring up new possibilities for
photovoltaic power forecasting. Antonopoulos et al. (2020) provided a
look at how Al is employed in disaster recovery applications. The study
categorizes research based on the AI/ML algorithms employed
and their applications in energy DR. It culminates by
of the AI
algorithms applied in diverse DR tasks, along with proposing

summarizing the strengths and weaknesses
avenues for future research in this burgeoning field (Fathi et al.,
2020). Shaw et al. (2019) presented the predictive anti-correlated
placement algorithm as a revolutionary algorithm that improves
CPU and bandwidth usage. It relies on a comparative analysis of
the most commonly utilized prediction models, placed alongside
each other for comparison. The practical outcomes illustrate that
the suggested approach conserves 18% of energy while reducing
service violations by more than 34%, in contrast to several
frequently used placement algorithms. Hou et al. (2021)
analyzed the impact on energy production, demand, and
greenhouse gas emissions. Climate scenario representative
concentration pathways (RCPs) are used to project changes in
weather elements because of this. Taking into account scenarios
RCP2.6, RCP4.5, and RCP8.5, hydro-power production is
anticipated to increase by approximately 2.765 MW,
1.892 MW, and 1.219 MW, respectively, in the foreseeable
future. Furthermore, the projections suggest a subsequent
2.475 MW,
1.827 MW, respectively. Jorgensen et al. (2020) discovered

increase to approximately 3.430 MW, and
distinct characteristics in neural networks and support vector
machines, which, if modified incorrectly, will cause mistakes. The
algorithms can be adjusted to match a variety of situations owing
to the many parameters. A growing trend involves utilizing

machine learning to digitize wind power estimations.

2.1 Research gap

This project addresses the shortcomings observed in current
research, outlined as follows:

Despite the considerable potential offered by ML and DL
algorithms, the inherent variability among different techniques
remains unexplored. Many investigations focus solely on LSTM,
SVM, and EM without comparing their effectiveness against
traditional deep learning approaches.
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Furthermore, several studies fail to consider methods that
showcase the resilience of assessed models, with cross-validation
being underutilized. Consequently, the results presented often
exhibit significant dependency on the specific data sample used,
thereby and applicability to

limiting  reproducibility

future datasets.

3 Methodology
3.1 Data preprocessing

Various machine learning methodologies heavily depend on the
caliber and arrangement of the dataset. Implementing efficient
preprocessing techniques, which encompass variable selection,
data filtration, and transformation into an understandable format
for the models, holds paramount significance. Throughout the data
collection phase, inaccuracies in communication or gathering
frequently result in absent values in the final dataset. Moreover,
monitoring programs often capture a myriad of parameters, not all
of which contribute to accurately predicting the target variable. To
discern the most suitable dataset, a feature extraction procedure is
utilized. This involves visually delineating the curves of various
variables influencing the target feature through plotting.
Additionally, this phase enables the extraction of information not
explicitly present as variables but impacting the variability of the
target feature, such as the hour of the day, day of the week, or day of
the year. Typically, the chosen dataset encompasses weather
conditions and electrical load data, with temporal parameters
including the hour of the day, day of the week, and day of the
year. Consequently, the objective is to forecast the output variable,
electrical loads, based on the input variables selected due to their
inherent correlation with variations across different time intervals.
Specifically, the hour of the day facilitates the extraction of daily
patterns, the day of the week reveals weekly patterns, and the day of
the year aids in recognizing seasonal patterns.

Improving pattern recognition from the models is accomplished
through a data-cleansing phase. Here, the data undergo filtration to
identify outliers. Given the substantial instantaneous variability in
electricity consumption, the methodology predominantly relies on
the interquartile range. This iterative process aims to alleviate errors
introduced by anomalous values in the trends. Consequently, values
deviating outside the ranges defined by specific criteria are
deemed invalid.

ub = Q3 + 1.5*IQR,
Ib=Ql - 1L5*IQR,

where “ub” and “Ib” represent the upper bound and lower
bound, respectively; “Q3” and “Q1” denote the third and the first
quartiles, respectively; and “IQR” signifies the interquartile range.
Values recognized as outliers, in addition to non-existent values
within the dataset, are regarded as absent. Data preprocessing serves
as the initial stage in machine learning, involving the transformation
or encoding of data to prepare them for efficient analysis by the
machine. Essentially, this process ensures that the data are in a
format that enables the model algorithm to effectively interpret
their features.
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Data preprocessing holds significant importance for the
generalization performance of supervised machine learning
algorithms. As the dimensionality of the input space increases,
the volume of training data increases exponentially. It is
estimated that preprocessing tasks can consume up to 50%-80%
of the overall classification process time, underscoring their critical
role in model development. Enhancing data quality is also essential
for optimizing performance.

The detailed steps of data preprocessing are outlined below.

3.1.1 Data cleaning and validation

Data cleansing involves the identification and rectification or
removal of incorrect or noisy data from the dataset. It typically
focuses on detecting and replacing incomplete, inaccurate,
irrelevant, or other erroneous data and records. Duplicates can
frequently occur in datasets, particularly when combining data
from various sources, scraping data, or aggregating data from
multiple clients. This situation presents an opportunity for the
generation of duplicate data.

It is common for certain columns in a dataset to have missing
values, which can arise from data validation rules or data collection
processes. However, addressing missing values is essential, as they
can impact the efficacy of the features of a model. When a significant
number of values are missing, straightforward interpolation
methods can be used to address these gaps. One of the most
prevalent approaches involves using mean, median, or mode
values based on the features of the model.

Missing data may result from human error or be generated while
working with primary data. Therefore, it becomes necessary to have
a data assessment process to learn the datatype of the feature and
ensure that all data objects are of the same type. Inconsistent data
might lead to erroneous conclusions and forecasts.

3.1.2 Regression (noise handling)

If noise persists within a class even after identifying loud
occurrences, there are three strategies for addressing it. First,
noise can be disregarded if the model exhibits robustness against
overfitting. Second, noise in the dataset can be filtered out,
adjusted, refined, or re-labeled. If the attribute-related noise
persists, methods such as filtering or refining the erroneous
attribute value, excluding it from the dataset, or utilizing
imputation techniques can help identify areas requiring
cleaning and unveil additional questionable values. This
supervised machine learning technique is used for predicting
continuous variables by establishing relationships between
variables and estimating how each variable influences the
others. To assess the predictions made by regression
algorithms, it is essential to consider variance and bias metrics.

3.1.3 Data integration

Data integration refers to the amalgamation of data sourced
from multiple origins into a unified dataset. This encompasses
schema integration, which entails merging metadata from diverse
sources and addressing discrepancies in data values stemming from
variations in units of measurement, representation, and other
factors. Additionally, it is essential to manage redundant data by
employing techniques such as correlational analysis to uphold high
data quality post-integration.
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FIGURE 1
Flowchart for power load forecasting with machine learning
algorithms.

3.1.4 Data transformation (normalization)
Normalization becomes necessary when attributes are measured

on different scales. In cases where multiple features exhibit distinct

scales, normalization is essential to standardize them or risk yielding
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FIGURE 2
Schematic diagram of the support vector machine.

suboptimal outcomes. This process encompasses techniques such as

min-max normalization, Z-score normalization, and

decimal scaling.

3.2 Machine learning algorithm modeling

Anticipating the load on power grids poses a significant obstacle
within the energy industry in the current decade. Machine learning
algorithms provide frameworks for analyzing the production,
consumption, and distribution of power. With the coupling of
supervised and unsupervised learning, machine learning derives
thousands of algorithms as single and multiple predictive models
for forecasting. The development of machine learning focuses on the
accuracy and effectiveness of algorithms. The accuracy of the
algorithms varies according to the sampling of energy data and
modeling. The fundamental principle behind machine learning
algorithms involves selecting past power load data as training
samples, creating an appropriate network structure, and
employing learning algorithms to predict the energy needs within
the power sector. Figure 1 illustrates the process of applying machine
learning models to power load data.

The training phase involves a cross-validation approach to
ensure the efficacy of the applied models. This method is used to
ensure that each split produces results independent of the training,
thereby minimizing overfitting in the modeling. Consequently, the
training process occurs in one partition, comprising 80% of the
training data, while the model’s performance is assessed in another
partition, encompassing the remaining training data. This iterative
process involves alternately positioning the validation subset
throughout the training dataset.

Moreover, the training process utilizes mini-batch gradient
descent to prevent stagnation at local minima and enhance the
model’s convergence [47]. Upon completion of the training phase

with these techniques, the model undergoes evaluation on the test
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dataset. This section examines the capabilities and assesses the
suitability of various ML and DL models for electricity load
forecasting.

The fundamentals of ML models are presented, commencing
with SVM, followed by recurrent neural networks (RNNs) and
LSTM. Subsequently, the distinctive features of the DL model
and ensemble classifier are introduced.

The various algorithms applied in this study are described
as follows.

3.2.1 Support vector machine

The SVM learning algorithm was formulated in 1990 and has
since found extensive application in forecasting and pattern
recognition tasks. Schematic Diagram of Support Vector Machine
is shown in Figure 2. SVM learns to estimate input data on a
regression line with a designated threshold. In this model, the ideal
trend line that best fits the data is referred to as the hyperplane, while
the boundary lines delineate the threshold. SVM maps training data
using mathematical equations, called kernels, to determine the
hyperplane containing the maximum input data within the
boundary lines. It can exhibit linear, nonlinear, or sigmoid
characteristics. In nonlinear SVM, the feature data undergo
mapping from one plane to another, and data points are
segregated in a nonlinear manner, with the decision factor
determined by the margin function of the support vector.

1

fw is the margin. The concept of SVM revolves around

maximizing the margin, as given in Eq. 1

1

This concept can be expressed as shown below in Eq. 2

Min [[w]. (2)

The hyperplane for the equation is acquired in the following
manner, as given in Eq. 3 (Jiang et al., 2020; Satre-Meloy et al., 2020;
Wang R. et al., 2020; Ibrahim et al., 2020):

wx +b>1,ify, = +1,
wx; +b< - Lify, =-1. (3)

Here, w is the weight vector, x is the input vector, and b
is the bias.

The formula for minimizing the support vector is as follows and
given in Eqgs 4, 5:

Cwl? 1S
C— 0> 4
min —=+C.— z&l (4)

i=1

y, (wx;+b)>1- &, §>0, (5)

where ¢ is some units of distance away from the correct hyperplane
in the incorrect direction.

“C” is the hyperparameter, which is always a positive value. If C
increases, the acceptance of out-of-bound values also escalates.
Conversely, as C approaches 0, tolerance diminishes, thereby
simplifying the issue and, hence, neglecting the impact of slack.

SVM emerges as a robust machine learning algorithm with
promising benefits for electricity load forecasting, owing to several
key factors.
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- Nonlinearity: SVM adeptly captures complex, nonlinear

relationships ~ between  electricity =~ consumption  and
relevant features.

- Outlier resilience: Its design provides inherent robustness
against outliers, ensuring stable performance even in the
presence of anomalous data points.

- Flexibility: SVM offers adjustable parameters that enable fine-
tuning to strike a balance between model complexity and

thereby adaptability  to

fluctuations in electricity data.

generalization, enhancing

- Handling high-dimensional data: SVM demonstrates efficacy
in handling datasets with a large number of features without
compromising its predictive performance.

3.2.2 Recurrent neural network

The RNN is a specialized form of the artificial neural network
specifically crafted to analyze sequential time-series data. A key
advantage of RNNGs lies in their capability to process signals in both
forward and backward directions. This is possible by creating
network loops and allowing internal connections between hidden
components. Due to their internal connections, RNNs are especially
adept at utilizing information from preceding data to anticipate
future data. Moreover, RNNs enable the exploration of temporal
correlations among different datasets (Wang et al., 2019; Wang et al.,
2020; H. Ghoddusi et al., 2019). Figure 3 shows the processing
of the RNN.

The input to an RNN cell at time step t is typically symbolized as
X, and the hidden state at time step t is designated as h,. The output
at time step t is denoted as y,. The cell is also equipped with
parameters, such as weights and biases, denoted as W and b,
respectively.

Every concealed layer operates based on two inputs: X, and H,_,.
The output Y, is influenced by the input from the hidden layer (h,) at
time t. These two functions are articulated in Eqs 6, 7 as follows:

ht = fh (xt’ ht71)> (6)
i = folhy). (7)

The input, output, and concealed state of an RNN cell are
typically computed using the subsequent Eqs 8, 9:

hy = O Wi + Wy, hi_y +by), (8)
Fi = ¢, (Wb +by). 9)

In the transition hidden-layer function of &y, a nonlinear
activation function, like a sigmoid or tanh function, is typically
incorporated.

The function &, is a nonlinear activation function, such as a
rectified linear unit (ReLU), and is derived by computing the dot
product of the output weight with the hidden layer h, and then
adding the bias term.

RNNs present numerous advantages for electricity demand
forecasting, including the following:

1. Adaptability: RNNs can accommodate variable-length input

sequences, making them flexible in handling datasets with
missing data.
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FIGURE 3
Process diagram of the recurrent neural network.

2. Resilience: RNNs demonstrate robustness against noise and
outliers present in the data. They possess the capability to
detect and filter out irrelevant patterns, ensuring reliable
forecasting outcomes.

3. Global context awareness: RNNs capture global information
and dependencies across various time scales, allowing for a
comprehensive understanding of the underlying patterns
influencing electricity consumption.

4. Interpretability: ~ RNN better
comprehension of the patterns contributing to electricity

interpretability ~ of

architectures  facilitate

consumption,  enhancing  the
forecasting models.

3.2.3 Long short-term memory

The LSTM architecture was initially proposed by Schmidhuber
in 1997 (Wang R. et al, 2020). Since its inception, the LSTM
architecture has undergone subsequent developments by different
researchers (Xue et al, 2019). LSTM was originally devised to
combat the issue of vanishing gradients encountered in typical
recurrent neural networks when handling long-term
dependencies. Unlike a regular RNN, the hidden layers of LSTM
possess a more intricate structure, consisting of a sequence of
recurring modules. Each hidden layer within LSTM incorporates
gate and memory cell concepts. The memory block includes four key
elements: an entry gate, an exit gate, a self-connected memory cell,
and a deletion gate. The entry gate regulates the activation of the
memory cell, while the exit gate controls when to transfer
information to the next network layers. Meanwhile, the deletion
gate aids in discarding previous input data and resetting the memory
cells. Additionally, multiplicative gates are strategically utilized to
enable memory cells to retain information over extended periods.
This specific architectural design significantly mitigates the
vanishing gradient problem encountered in traditional RNNs (Hu
et al., 2020; Qiao et al., 2020).

The LSTM features an input x(t), which can originate from
either the output of a CNN or the input sequence directly. h (_; and
¢ are the inputs from the LSTM of the previous time step. o, is the
output of the LSTM for this time step. The LSTM also produces c,
and h, for use by the LSTM in the next time step.
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The forget gate f,, as provided in Eq. 10, decides which
previously stored information to maintain or discard upon
receiving new data:

fe=0,(Wy.x, +Us hy +by), (10)

where o, is the activation function. The sigmoid activation function
is commonly utilized because it condenses information within the
interval [0, 1]. This allows the gate to determine the importance of
information, for example, whether the value is close to or equals 1,
indicating significance, or close to or equals 0, implying
insignificance.

The input gate decides which fresh information to retain in the cell
state. Initially, Eq. 11 determines what information needs updating i,.

i = Oy (W, Xt U,'.ht_l + b,) (11)

Via Eq. 12, the sequence, c,, is regulated. Like the forget gate, the
sigmoid activation function is often employed to retain essential
information.

¢, = 0. (We.x, +Uc by +b,). (12)

By amalgamating the outcomes of the aforementioned gates with
the previously retained information in the cell state, ¢,_;, the value of the
cell state denoted by c,, as provided in Eq. 13, undergoes modification.

¢ = frcn +i c;. (13)

Ultimately, the output gate dictates the output of the neuron.
This result integrates the previously stored information with the
fresh data and details obtained from the cell state, as shown in Eq. 14:

0y =0,(Wo.x; +Us by +b,), (14)

hy = 0, 0. (cy). (15)

The activation function governing the cell state o, is described in
Eq. 15. The tanh activation function is used to allocate weights to
these maintained values.

LSTM networks stand out for their ability to excel in scenarios
reliant on temporal data, making them particularly advantageous for
electricity load forecasting. The key advantages of LSTM include
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LSTM architectures
specifically tailored to model temporal dependencies in data,

1. Temporal modeling prowess: are
making them well-suited for time-series prediction tasks.

. Context preservation: With their long short-term memory,
LSTM capture

dependencies while accommodating irregular or missing

networks can effectively short-term
data points. Additionally, they possess the capability to
grasp long-term dependencies within the data.

. Scalability: LSTM networks demonstrate effectiveness in
capturing complex patterns from extensive historical data,
enabling robust forecasting in scenarios with diverse and
extensive datasets.

. Robustness: LSTM architectures exhibit resilience against
noise and outliers present in the data, ensuring reliable
forecasting outcomes even in the presence of data

irregularities.

3.2.4 Deep learning

The potential impact of deep learning on power load forecasting
methods is substantial. Deep learning is a sub-field of machine learning,
which is based on artificial neural networks. In the energy domain, the
precision of power consumption prediction is significantly impacted by
the processing of forecasted data, making deep neural networks highly
relevant. In general, neural networks, better known as MLP, also
referred to as feed-forward artificial neural networks, consist of
multiple layers that establish connections between the input and
output (Ahmed et al, 2020). Each layer comprises its own set of
neurons. The number of input neurons typically aligns with the number
of features, while the number of output neurons corresponds to the
variables to be predicted. The quantity of hidden neurons and layers
varies based on the specific problem. As the number of hidden layers or
neurons increases, the model’s ability to extract complex patterns
improves, albeit at the expense of heightened complexity. In such
scenarios, the internal operations of the neurons rely on the
activation of preceding neurons.

This progression extends from the input layer to the output layer
through the neural interconnections. Moreover, if a node possesses
multiple inputs, the final value of its function is the sum of the
individual values of its functions and their connections. Each
iteration of the training process concludes with backward
propagation, where the error is disseminated back to the input
layers and the weights are adjusted.

In many deep learning problems, we aim to predict an output z
using a set of variables X. In this scenario, we assume that for each
row of the database Xi, there exists a corresponding prediction z, as
given in Eqs 16, 17:

z= Zwixi +b;,
a=vy(z)

(16)
(17)

«_»

where b; is the bias. W is the weight. v is the activation function. “a
is the final output.

Deep learning emerges as a widely employed model, highly
conducive to electricity consumption forecasting, owing to several

notable benefits:

1. Nonlinear modeling: MLP exhibits prowess in capturing and
modeling intricate nonlinear relationships within data.
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. Versatility and customization: With an extensive array of
MLP  offers flexibility
configuring network architecture and selecting activation

hyperparameters, significant in

functions, tailoring the model to specific forecasting
requirements.

. Robustness to missing data: MLP demonstrates effectiveness in
handling missing data, ensuring smooth operation even in
datasets with incomplete information.

. Adaptability to evolving patterns: Equipped with the capability
to learn and adjust to dynamic changes in complex data
patterns, MLP showcases resilience in forecasting scenarios

characterized by evolving trends and behaviors.

3.2.5 Ensemble classifier

A practical approach to enhancing load forecasting accuracy is
using an ensemble learning strategy based on artificial neural
networks. This ensemble consists of two essential components: a
technique for generating sub-samples from the training set and a
method for combining them (Ahmad et al., 2020a).

It is crucial to implement both strategies to enhance the overall
performance. To form the ensemble, bagging uses a technique that
generates ANN models. This is achieved by training them
individually on distinct training designs by generating bootstrap
replicas of the original training data. In contrast, boosting involves
gradually learning ANN models. Using bagging and boosting has
yielded positive results in overcoming load forecasting challenges.
Nonetheless, we propose a synergistic approach that combines
bagging and boosting to maximize their unique capabilities in
minimizing variance and bias (Ahmed et al., 2020; Antonopoulos
et al., 2020). Therefore, through training conducted with bagging,
improvements in generalization are achieved by reducing the
model’s sensitivity to data variations.

Ensemble learning stands out as a favored ML approach for
electricity consumption forecasting due to several compelling
factors, highlighted as follows:

1. Regulation and management: Ensemble learning provides a
diverse set of regularization methods to manage data
complexity effectively, curbing overfitting tendencies and
bolstering generalization capabilities.

. Nonlinearity detection: It adeptly discerns and incorporates
nonlinear associations within electricity consumption patterns,
enabling the modeling of intricate relationships.

. Adaptability and efficacy: With its adeptness in handling
extensive datasets characterized by high-dimensional feature
spaces, ensemble learning demonstrates scalability and
operational efficiency.

. Versatility in optimization: Boasting a broad spectrum of
hyperparameters, ensemble learning offers flexibility in fine-
tuning model settings to enhance predictive performance and
adapt to diverse forecasting scenarios.

3.3 Non-linear complexity handling in
machine learning

SVM: SVMs tackle nonlinear complexities by mapping input
data into a higher-dimensional space, where nonlinear relationships
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can be discerned through kernel functions. However, SVMs may
encounter challenges with extremely large datasets and can incur
high computational costs.

LSTM networks: LSTMs employ nonlinear activation functions
such as the sigmoid and hyperbolic tangent (tanh) functions. These
activation functions introduce nonlinearity within the network,
enabling it to grasp intricate patterns and correlations within the
data. These architectures can capture temporal dependencies in
data, them to handle of
variable length.

allowing nonlinear  sequences

Ensemble classifiers: Ensemble methods amalgamate multiple
base learners to enhance predictive accuracy. They confront
nonlinear complexities by consolidating predictions from diverse
models. Techniques like bagging, boosting, and stacking effectively
capture nonlinear relationships in power demand time-series data
by leveraging the strengths of various base classifiers.

RNNs: RNNs, including LSTM networks, specialize in capturing
temporal dependencies within sequential data. They handle
nonlinear complexities by sequentially processing input sequences
while retaining an internal state that encapsulates historical
information. RNNs are particularly suited for modeling nonlinear
dynamics and complex patterns in time-series data. RNNs
incorporate nonlinear activation functions such as sigmoid, tanh,
or ReLU. These functions introduce nonlinearity into the network,
enabling it to capture complex patterns and relationships within
sequential data. Deep RNNs can capture increasingly complex
patterns and dependencies by hierarchically composing nonlinear
transformations.

Deep learning methods: Diverse deep learning architectures,
such as convolutional neural networks (CNNs) and autoencoders,
offer additional approaches for addressing nonlinear complexities in
power demand time-series data. CNNs excel at capturing spatial
patterns in multidimensional data, whereas autoencoders learn
compact representations of input data for nonlinear feature
extraction and prediction. Techniques for regularization, like
dropout and L2 regularization, are utilized to curb overfitting, a
phenomenon where a model mistakenly learns noise in the training
data as a genuine signal. By mitigating overfitting, these methods
enhance the model’s ability to generalize to unseen data and manage
nonlinear complexities more adeptly (ur Rehman Khan et al.,, 2023).

In summary, SVMs, LSTM networks, ensemble classifiers,
RNNs, and other deep learning methods possess unique strengths
in managing nonlinear complexities in power demand time-series
data. The selection of an algorithm hinges on factors such as data
characteristics, pattern complexity, and computational resources.

3.4 Limitations or constraints of various
machine learning algorithms for real-world
forecasting

LSTM networks require a large amount of historical data to
effectively capture long-term dependencies, which may not always
be available or reliable in power load forecasting applications.
Additionally, training LSTM models involves tuning multiple
hyperparameters and architecting complex neural network
structures, which can be time-consuming and computationally

expensive. Moreover, LSTMs are susceptible to overfitting,
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especially when trained on noisy or limited datasets, which can
lead to poor generalization performance on unseen data (Ahmed
et al., 2023).

RNN s encounter vanishing and exploding gradient problems,
which can make it challenging to learn long-term dependencies in
power load data sequences. Standard RNN architectures have
limited short-term memory, which may restrict their ability to
capture complex temporal patterns in power load data. Training
RNNs can be unstable, particularly when dealing with long
sequences or noisy data, as it requires careful initialization and
regularization to prevent numerical instabilities.

Ensemble learning methods may struggle with the imbalanced
datasets commonly encountered in power load forecasting, where
certain load patterns are significantly more prevalent than others,
leading to biased predictions. The performance of ensemble
methods depends on the selection and diversity of base learners,
which can be challenging to determine and may require extensive
experimentation. Ensembles can be computationally expensive,
especially when combining a large number of base learners or
using complex algorithms as base models, which may limit their
scalability in large-scale power load forecasting tasks.

SVMs provide little insight into the underlying relationships
between input features and power load predictions, making it
difficult to interpret the model’s decisions and identify influential
factors. The performance of SVMs is highly dependent on the choice
of kernel function, which may require domain expertise and
extensive experimentation to identify the most suitable kernel for
power load forecasting. SVMs may face scalability issues when
applied to large-scale power load forecasting problems, as they
require storing support vectors and computing kernel functions
for all data points, leading to increased memory and computational
requirements.

Deep learning algorithms, including LSTM and RNNS, require
large volumes of labeled data to effectively learn complex patterns in
power load data, which may not always be available or feasible to
acquire. Deep learning models have high model complexity due to
their deep architectures and large number of parameters, which can
make them prone to overfitting, especially in power load forecasting
tasks with limited data. Training deep learning models can be time-
consuming, particularly when dealing with large datasets and
complex architectures, which may hinder real-time or near-real-
time forecasting applications.

3.5 Machine learning models for diverse
datasets and time frames

The LSTM machine learning algorithm is particularly well suited
for handling diverse datasets and time frames in power load
forecasting due to its ability to capture long-term dependencies
in sequential data. LSTM can effectively handle various types of data
encountered in power load forecasting, including historical load
data, weather variables, time of day, day of the week, and holiday
indicators. It can process multivariate time series data, incorporating
multiple features to make accurate load predictions. LSTM is
versatile enough to forecast power load at different time
resolutions, ranging from hourly to daily, weekly, or even
monthly predictions. It can capture both short-term fluctuations
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and long-term trends in energy consumption patterns, making it
adaptable to different forecasting horizons (Dinh et al., 2018).

RNNGs are well suited for handling diverse datasets encountered
in power load forecasting, including historical load data, weather
variables, time-related features, and other relevant factors. They can
effectively process multivariate time-series data, incorporating
multiple input features to make accurate load predictions. RNNs
can be applied to forecast power load at various time resolutions,
ranging from short-term (e.g., hourly) to long-term (e.g., monthly or
yearly) predictions. They can capture both short-term fluctuations
and long-term trends in energy consumption patterns, making them
adaptable to different forecasting horizons. RNNs are specifically
designed to capture temporal dependencies in sequential data. They
can learn from the sequential nature of time-series data, identifying
patterns and relationships between past, present, and future load
values. This makes them effective in capturing seasonality, trends,
and periodic fluctuations in power load data.

SVMs are versatile classifiers that can handle diverse datasets
encountered in power load forecasting, including historical load
data, weather variables, time-related features, and other relevant
factors. They can effectively model complex relationships between
input features and output labels, making them suitable for
multivariate time series data. SVMs can be applied to forecast
power loads at various time resolutions, ranging from short-term
(e.g., hourly) to long-term (e.g., monthly or yearly) predictions. They
can capture both linear and nonlinear relationships in energy
consumption patterns, making them adaptable to different
forecasting horizons.

Ensemble learning algorithms can handle diverse datasets
encountered in power load forecasting, including historical load
data, weather variables, time-related features, and other relevant
factors. By combining multiple base models, ensemble methods can
leverage the strengths of different algorithms to improve prediction
accuracy and robustness across various datasets. Ensemble learning
techniques can be applied to forecast power loads at different time
resolutions, ranging from short-term (e.g., hourly) to long-term
(e.g., monthly or yearly) predictions. They can combine forecasts
from multiple models trained on different time frames to generate
more accurate predictions that capture both short-term fluctuations
and long-term trends in energy consumption patterns. Ensemble
learning algorithms use various combination strategies, such as
averaging, stacking, or boosting, to integrate predictions from
multiple base models. These combination strategies can adapt to
different forecasting scenarios and data characteristics, ensuring
optimal performance across diverse datasets and time frames.

Deep learning algorithms, such as CNNs, RNNs, and deep belief
networks (DBNs), can handle diverse datasets encountered in power
load forecasting. These algorithms are capable of processing various
types of data, including time-series data, spatial data, and multi-
modal data, making them suitable for analyzing complex
relationships in power load data. Deep learning algorithms can
be applied to forecast power loads at different time resolutions,
ranging from short-term (e.g., hourly) to long-term (e.g., monthly or
yearly) predictions. RNNS, in particular, are well suited for capturing
temporal dependencies in time-series data, allowing them to
generate accurate 700 forecasts across different time frames
(Chen et al., 2018).
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4 Experimental analysis and results

4.1 Case study

The assessment of the efficacy of machine learning algorithms in
forecasting electric load demand involves the utilization of
MATLAB software version R2018. Machine learning algorithms
such as SVMs, RNNs, LSTM, DL, and ensemble learning (EM) are
applied for the load data forecast. Comparative analysis is presented
in Results. The analysis utilizes electricity demand data from UT
Chandigarh, India, spanning the last 5years. This dataset
encompasses a wide range of demand patterns, including weekly,
monthly, and yearly variations. Additionally, the analysis considers
seasonal variations such as summer, rainfall, and winter, assessing
data variability based on both average and peak values. To mitigate
the consequences of missing data and noise, the data undergo
transformations. Any missing attribute data are filled using the
average value of the available data. Optimizing algorithm
hyperparameters relies on transforming energy consumption
data. This accuracy
parameters such as RMSE, normalized mean squared error
(NMSE), MI, and MAE. These parameters are computed for all
the algorithms considered. The formulation of these parameters is
described as follows (Choi et al., 2020; Lu et al, 2019; Zhang
et al., 2021).

The time-related parameters—specifically, hour of the day, day

assessment of forecasting relies on

of the week, and day of the year—are derived from the available data.
Data standardization is executed to ensure accurate adjustments
across all employed models. Features are normalized based on their
mean values, while sine and cosine functions are applied to the
temporal parameters.

To compare results obtained with different methods, the dataset
is divided into training, validation, and testing sets, with proportions
of 80%, 10%, and 10%, respectively. Models undergo training via
cross-validation on the training set, with accuracy evaluated using
the validation set. The test set functions as an autonomous dataset
for the ultimate assessment of model adjustments. During training, a
patience of 100 epochs, a batch size of 64, and an Adam optimizer
with a learning rate of 0.001 are employed.

The SVM model is established with a tolerance of 0.001 and a
regularization parameter of 1. The DL model comprises 4 hidden
layers with 100, 75, 50, and 25 neurons, respectively. The first
three hidden layers are equipped with linear activation functions,
while ReLU is utilized for the fourth hidden layer and the
output layer.

The RNN architecture features 2 hidden layers with 40 and
20 neurons, respectively. The hidden layer with 40 neurons uses a
linear activation function, while ReLU is utilized in the final hidden
layer and the output layer.

In LSTM modeling, short-term memory is imposed on six time
steps, corresponding to the 6 h prior to the forecasted instant. The
initial hidden layer includes an LSTM layer with 64 neurons,
followed by 2 additional hidden layers with 40 and 20 neurons,
respectively, which serve as dense layers. Linear and ReLU activation
functions are applied in these two hidden layers. The LSTM layer is
equipped with predefined activation functions on its gates, while the
output layer also uses a ReLU activation function.
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4.2 Performance metrics

The performance comparison of the models is derived by
normalizing the metrics to the peak electricity consumption in
the series. Consequently, the models are visualized based on
NMSE, RMSE, MAE, and ML

4.2.1 Normalized mean squared error

The NMSE assesses the mean squared disparity between
predicted and actual values, adjusted by the variance of the
actual values. It is computed by averaging the squared errors and
dividing by the variance of the actual values. The NMSE ranges from
0 to infinity, with lower scores denoting heightened accuracy. The
NMSE is less sensitive to outliers compared to the raw mean squared
error (MSE). It provides a normalized measure of the error, making
it easier to compare across diverse datasets with differing scales and
magnitudes.

The values within the predictive model set are represented by
N
{r?ﬂ > 1’:’“ }n:l :
The NMSE is determined in Eq. 18 and is as follows:
N an\2
1 Yot (T = )
N .

NMSE =
var (y)

(18)
Here, n is the number of samples or data points. y; is the actual or
observed value of the target variable for the ith sample. y; is the
predicted value of the target variable for the ith sample. Var(y) is the
variance of the actual or observed values of the target variable.

4.2.2 Root mean squared error

The RMSE mirrors the NMSE but delivers the square root of the
mean squared deviation between the predicted and actual values. It is
computed as the square root of the average of squared errors. The
RMSE shares the same units as the initial data, simplifying
interpretation. Similar to the NMSE, diminished RMSE values
signify heightened accuracy, with 0 representing the optimal outcome.

The RMSE is calculated as the square root of the MSE, and it is
defined in Eq. 19 as

RMSE = (19)

4.2.3 Mean absolute error

The MAE gauges the mean absolute deviation between the
predicted and actual values. It is computed as the average of
absolute errors. The MAE demonstrates lower sensitivity to
outliers than the RMSE since it refrains from squaring the errors.
Diminished MAE values signify heightened accuracy, with
0 representing the optimal outcome.

The MAE is given in Eq. 20 as

1S, .
MAE = NZ[THI — il

n=1

(20)

The inequality remains valid for the two metrics: MAE < RMSE.
Both of these error measures are regarded as informative in
evaluating the model’s performance.
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4.2.4 Mutual information

Mutual information (MI) evaluates the level of information
captured by the model in contrast to a reference model. It is
computed as the disparity in information content between the
predicted and actual distributions. Elevated MI values signify
enhanced model efficacy in capturing the inherent patterns
within the data. MI serves as a tool to appraise the predictive
capability of a model relative to more straightforward
baseline models.

The measure of dependency between r,,; and u, is determined in

Eq. 21 as

p(reersuy)
p(ree)P(ur)

~ p(rt+llu
Z P(rtﬂ)
(1)

MI(rp;u) = Zrm " p(reasuy) log

nl

MI (ry1; uy) = 0, when the two variables are independent.
When the two variables are fully dependent, it is bound to the

information entropy, H (r1) = — Z p(ren)log p(ris).
N (TAt+1»/3)-

Tt+1

Based on the earlier assumption, we obtain 7, 1 ~
Under an additional presumption, 71 ~ N (¢, 0).
We calculate the parameters 3, y, and o.

4.3 Result analysis

4.3.1 Weekly load forecast analysis
4.3.1.1 Root mean squared error

Figure 4 shows the variation in the RMSE for weekly load
predictions using SVM, EM, RNN, DL, and LSTM methods. The
results of this variation are spread throughout the week, with the
LSTM model closely resembling the actual load pattern. During
periods of significant load fluctuations, SVM and ensemble learning
models show larger prediction errors, whereas the LSTM model
accurately captures the load trend. In comparison, RNN and DL
models exhibit greater prediction deviations than LSTM. The
analysis emphasizes that the LSTM model achieves an RMSE
metric of 0.13% when used for a load forecast spanning a week.
This marks a significant improvement, being 23%, 30%, 46%, and
84% less than the relevant metrics for DL, RNN, SVM, and EM
models, respectively.

4.3.1.2 Normalized mean square error

Figure 5 shows the variation in the NMSE for weekly load
predictions. As the duration extends, variations in the model’s
performance become apparent. LSTM consistently exhibits the
lowest NMSE, suggesting superior performance among these
models over this timeframe. The SVM model showed a notable
33% enhancement from its initial error rate, while the EM model
showed an improvement of approximately 20%. This implies a
moderate reduction in error, rendering the model marginally
more dependable. Notably, the RNN model demonstrated the
most significant improvement, with a remarkable 50% reduction
in error. This translates to a substantial enhancement in prediction
accuracy, positioning the RNN as a preferable choice for load
forecasting. Similarly, the DL model witnessed an improvement
of approximately 33%, indicating consistent performance stability.
This underscores the reliability of LSTM in consistently delivering
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FIGURE 4
RMSE for the weekly load estimations of power load using

machine learning algorithms.
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FIGURE 5
NMSE for the weekly load estimations of power load using
machine learning algorithms

accurate predictions. It is worth noting that NMSE values closer to
1 denote poorer performance, thus emphasizing the desirability of
lower values.

4.3.1.3 Mean absolute error

The MAE of the LSTM model is measured at 0.74, indicating a
substantial reduction compared to the RNN, DL, EM, and SVM
models—0.75, 0.81, 0.83, and 0.84, respectively. Figure 6 shows the
MAE for the weekly load forecast. The graph represents the
performance of different machine learning models (SVM, EM,
RNN, DL, and LSTM) over a period of a week.

The SVM model achieved a 5.88% enhancement in prediction
accuracy, indicating that its predictions were, on average, 5.88%
closer to the actual values. Similarly, the EM model’s accuracy
improved by approximately 4.88%, resulting in less deviation
from the actual values. The RNN model notably enhanced its
predictions, reducing the error by 6.10%. Likewise, the DL model
showed an improvement of approximately 5.88% in its
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FIGURE 6
MAE for the weekly load estimations of power load using
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The LSTM
predictions with minimal error, making it a reliable choice for

predictions. consistently delivered accurate

users seeking stable forecasts.

4.3.1.4 Mutual information

The results of the MI variation demonstrate that higher MI
values correspond to better LSTM predictions, whereas SVM and
EM exhibit lower MI values, indicating weaknesses compared to the
RNN, DL, and LSTM. These findings collectively highlight a
significant enhancement in the prediction accuracy of the LSTM
method compared to other prediction models.

Over the course of 7 days, the SVM model exhibited a 12.5%
improvement in performance. This enhancement translates to a
significant increase in accuracy for SVM predictions. Similarly, the
EM model showed an improvement of 10.3% in prediction accuracy.
The RNN model notably enhanced its predictions by 8.8%. The DL
model maintained consistent performance without any decrease.
The LSTM consistently delivered reliable predictions with
minimal deviation.

4.3.2 Monthly load forecast analysis
the adjusted  the
hyperparameter settings and conducted the same prediction tests

Throughout monthly analysis, we
over a 12-month period. Figures 8-11 show the load fitting curves
for 12-month load predictions generated by various models. The
LSTM model consistently reflects the actual load, while the curves
for the SVM and EM models deviate significantly from the actual
load, making them the least accurate among all the models.
Importantly, the LSTM model proposed in this context shows

the closest alignment with the actual load compared to other models.

4.3.2.1 Root mean squared error

Figure 8 shows the RMSE for the monthly load forecast,
featuring machine learning algorithms including SVM, RNN,
EM, DL, and LSTM. The SVM model’s predictions experienced a
7.69% improvement in terms of the RMSE. Similarly, the EM
model’s accuracy was enhanced by 8.33%. The RNN model
notably improved its predictions by 9.09%. Meanwhile, the DL
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learning algorithms.

model maintained steady performance without any deterioration,
demonstrating consistent predictions. The RMSE value remained
consistently low for LSTM, indicating its reliability and minimally
varying predictions.

4.3.2.2 Normalized mean square error

Figure 9 gives the NMSE for the monthly forecast. Across all
months, the LSTM model consistently demonstrates superior
exhibiting  the NMSE  values. This
consistency suggests that it is the most accurate model among
those compared. Both the SVM and EM models show similar
trends, with their NMSE values closely aligned, although SVM
slightly outperforms EM. Similarly, the RNN and DL models
exhibit comparable trends, with the RNN showing a slight
edge over DL.

The SVM model starts with the highest NMSE but shows
significant improvement over time, achieving a reduction of

performance, lowest

approximately 40% in the NMSE. Conversely, the ensemble
classifier maintains consistent performance but does not
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demonstrate as much improvement as SVM, only reducing
the NMSE by 15%. Initially, the deep learning model
outperforms both EM and SVM models, but its improvement
rate slows down, resulting in a reduction of approximately 25%
in the NMSE.

The RNN model begins with a lower NMSE and steadily
improves over time, achieving a 30% reduction in the NMSE.
However, LSTM consistently maintains the best performance
throughout, achieving a remarkable 50% reduction in the NMSE.
Overall, LSTM emerges as the most consistent and effective model,
achieving the highest reduction in the NMSE over the 12-
month period.

4.3.2.3 Mean absolute error

In contrast, the RNN and DL models exhibit suboptimal
performance across these metrics. Although the RNN model
surpasses the DL, EM, and SVM models regarding the MAE, it
does not match the performance of the LSTM and DL models in
terms of the NMSE.
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Consistently, SVM demonstrates the highest MAE across all
months, suggesting that it may be the least accurate model in this
context. On the contrary, LSTM exhibits a consistent decrease in the
MAE from months 0 to 12, indicating an enhancement in accuracy
over time. The EM and RNN models show similar patterns, with EM
generally performing slightly better than the RNN. DL’s
performance fluctuates but consistently remains lower than that
of SVM and higher than that of LSTM. When considering overall
performance, LSTM emerges as the best-performing model,
followed by the DL, EM, and RNN models. SVM consistently
falls behind the other models in terms of accuracy.

4.3.2.4 Mutual information

Figure 11 shows the mutual information for the monthly load
forecast, displaying the performance of five machine learning models
(SVM, EM, DL, RNN, and LSTM) across a span of 12 months.

The MI variation results show that higher MI values align with
improved LSTM predictions, whereas SVM and EM present lower
MI values, indicating relative weaknesses compared to the RNN, DL,
and LSTM. The DL and RNN models outperform SVM and EM,
showcasing a comparable range of predictions. Overall, these
findings underscore a notable enhancement in the prediction
accuracy of the LSTM method compared to other models. The
RNN exhibits the most substantial improvement (4%), while the
SVM experiences a slight decrease (2%).

5 Conclusion and future scope

The vitality of the energy industry hinges on the reliability of
power demand forecasting. This study seeks to evaluate the
precision of power consumption prediction using machine
learning algorithms and hybrid models that incorporate artificial
neural networks. Employing these advanced techniques has the
potential to significantly improve power load forecasting
performance. Several machine learning models are proposed in
this study for short-term power load forecasting.

Unlike conventional statistical forecasting models, machine

learning algorithms offer numerous advantages, including the
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effective management of nonlinear complexities and the ability
to predict both short-term and long-term dependencies within
power load time-series data. This study places emphasis on this
crucial aspect. Analysis of the results shows that Figures 4-11
reveal that LSTM outperforms SVM, DL, EM, and RNN
regression models in predicting electricity consumption. The
approach involves using a sliding time window to convert
multidimensional data into a continuous feature map input,
harnessing the effectiveness of the CNN in spatial feature
extraction. Our methodology is centered on a moving window-
based LSTM network, enabling the prediction of demand for
specific time intervals.

Following experimental verification analysis, it is concluded that
the LSTM model exhibits notable enhancements in the MAE, RMSE,
and NMSE compared to alternative time-series prediction models,
including SVM, DL, EM, and RNN algorithms. Notably, LSTM
outperforms the RNN, DL, EM, and SVM by reductions of 1.35%,
9.45%, 12.16%, and 13.51%, respectively, in predicting the load
for the week.
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