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spatio-temporal electricity loads
integrating multi-dimensional
information
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China

Traditional load prediction methods are unable to effectively predict the loads
according to the spatial topology of each electricity consumer in neighboring
areas and the load dependency correlations. In order to further improve the load
prediction accuracy of each consumer in the region, this paper proposes a short-
term prediction method of electric load based on multi-graph convolutional
network. First, the input data are selected withmaximum information coefficient
method by integrating multi-dimensional information such as load, weather,
electricity price and date in the areas. Then, a gated convolutional network
is used as a temporal convolutional layer to capture the temporal features of
the loads. Moreover, a physical-virtual multi-graph convolutional network is
constructed based on the spatial location of each consumer as well as load
dependencies to capture the different evolutionary correlations of each spatial
load. Comparative studies have validated the effectiveness of the proposed
model in improving the prediction accuracy of power loads for each consumer.

KEYWORDS

graph convolutional network, short-term load, multidimensional information,
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1 Introduction

The global electricity demand is experiencing rapid growth, and the structure
of urban distribution networks is becoming increasingly complex, which elevates
the challenges associated with power grid scheduling and control (Hou et al.,
2021). The ongoing expansion of hybrid renewable power systems has led to the
integration of a substantial number of variable renewable energy sources, such as
wind and solar, transforming the grid into an active distribution network. This
transformation has concomitantly increased the volatility and uncertainty inherent
to power systems (Cleary et al., 2015). Accurate load prediction is of paramount
importance for enhancing the safety, stability, and efficient operation of the power grid
(Celebi and Fuller, 2012). Furthermore, as power systems undergo reform, electricity
sales companies and virtual power plants participating in the electricity market
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must accurately predict the electricity consumption of individual
consumers (Aparicio et al., 2012).

The existing research on power load prediction can be broadly
categorized into two primary methodological approaches: statistical
models and machine learning techniques. The statistical modeling
approach offers simplicity and expedient prediction capabilities.
Prominent statistical methods include linear regression and
exponential smoothing (Shi W. et al., 2023). Saber and Alam (2017)
leveraged the autoregressive integrated moving average model
to analyze the correlation between load demand and influential
factors, and established a non-stationary stochastic prediction
framework. However, such statistical techniques generally suffer
from limitations in prediction accuracy and robustness. In
contrast, machine learning methods possess adaptive and self-
learning capabilities that have demonstrated improvements in
load prediction precision. These advanced analytical techniques
include support vector machines, extreme learning machines, long
short-term memory (LSTM) networks, and convolutional neural
networks (Li et al., 2020; Samadianfard et al., 2020; Zhang J. et al.,
2021; Tang et al., 2021; Roy and Yeafi, 2022; Sun et al., 2023;
Deng et al., 2024). Specifically, Li et al. (2020) proposed a power
load decomposition and reconstruction prediction approach
based on support vector machines. Furthermore, Roy and Yeafi
(2022) and Sun et al. (2023) leveraged machine learning theory
to establish residual self-attention encoding-decoding networks
for electricity consumption and wind power prediction, effectively
capturing the coupling relationships within the data. Additionally,
Tang et al. (2021), Zhang J. et al. (2021) and Samadianfard et al.
(2020) employed echo state networks, LSTM, and multi-layer
perceptrons to predict wind direction, speed, and power generation.
While the aforementioned methods utilize multi-dimensional
information, such as load data and weather factors, to model the
temporal correlations in load patterns, they have largely overlooked
the potential spatial correlations in electricity consumption among
multiple consumers. Neighboring consumers are affected by factors
such as weather, electricity prices, and holidays, exhibiting similar
electricity consumption behaviors and load profiles (Lin et al.,
2021). Fully capturing and leveraging the spatial correlation
information among these neighboring consumers has the potential
to further improve the accuracy of load prediction. However, the
non-Euclidean, interconnected graph structure of the consumer
data limits the direct applicability of conventional neural network
architectures, and thus necessitates specializedmodeling approaches
capable of learning from the complex spatial correlation of
neighboring consumers.

Graph neural networks have attracted widespread attention
because they can learn implicit representations of node data on
graph structures and process non-Euclidean spatial data. Currently,
graph neural networks have been successfully applied in fields such
as transportation and load prediction. Yan et al. (2021) proposed
a multi-time scale traffic prediction method based on graph
convolutional networks, which treats each road sensor as a node
to construct a spatio-temporal module and capture spatio-temporal
correlations. Liao et al. (2023) established a three-dimensional
Gaussian wake function that represents the relevant information of
each wind turbine and used graph neural networks combined with
attention mechanisms to predict the output power of non-uniform
wind farms, reducing prediction errors. Shi P. et al. (2023) proposed

FIGURE 1
Spatial and temporal load structure diagram.

a multi-user short-term power load spatio-temporal prediction
method using multi-head attention and adaptive graph theory and
compared it with various methods. Zhang L. et al. (2021) used K-
means clustering to divide user groups, capture the intrinsic spatio-
temporal correlation information of the data using local spatio-
temporal graphs, and finally aggregate the calculation results of
each part to predict the future spatio-temporal power demand
sequence. Fahim et al. (2024) took a load of each charging station
as a node, used an adaptive adjacency matrix to reflect the
spatial relationship between stations, and proposed a multi-station
charging demand prediction method for electric vehicle charging
stations based on graph networks. Existing literature has shown
that graph neural networks can explore potential relationships
between loads and improve prediction accuracy. However, the above
literature only considers the fixed spatial connection relationships
of consumers and relies on a single graph representation, failing to
reflect the various spatial correlations between electricity loads in
the neighbors.

Multimodality neural networks have improved prediction
accuracy, which has attracted the attention of researchers.
Zheng et al. (2023) used virtual dynamic graph and physical road
graph to extract heterogeneous, variable, and inherent spatial
patterns of the road network. Liu et al. (2020) presented a physical-
virtual collaboration graph neural network for passenger flow
prediction. The network is a general model that can be directly
applied to online pedestrian flow prediction. Xiu et al. (2024)
adopted parallel convolutional networks and combines relational
data within the metro network to predict ridership. In addition, the
train timetable as feature input to the network, improving prediction
accuracy. However, there is limited application of literature in load
prediction. How to design a proper prediction network based on the
characteristics of electricity demands is an important issue.

Multi-graph convolutional networks have been applied in
literature for load prediction. Wei et al. (2023) presented a novel
multi-graph neural networks for short-term electricity demand
prediction, which is embedded with the directed static graph and
directed dynamic graph. The results show that the network has
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TABLE 1 Influencing factors of electric load.

Type Factor Meaning Label

Historical load Load Historical electricity load A

Time

Time Time B

Date Weekday, weekend, holiday C

Temperature Temperature at the time of prediction D

Meteorological condition

Humidity Humidity at the time of prediction E

Wind speed Wind speed at the time of prediction F

Rain Rain at the time of prediction G

Price Electricity price Peek, flat, valley H

FIGURE 2
Convolutional network: (A)Full convolution, (B)Dilated convolution.

a strong ability to capture periodic features. Yanmei et al. (2024)
adopted dynamic load knowledge graph to extract the correlation
between internal at-tributes and external influencing factors of
various loads. Moreover, the attention mechanism enhances the
learning ability of load feature representation. To capture complex
non-linear correlations of loads, Wang et al. (2023) proposed spatial
and temporal graph neural network for residential load prediction.
The multiple dependence graphs consists of synchronization graph
and causality graph, which can model linear and non-linear
dependence. However, the exist research has not fully captured the
in-dependence with multidimensional data, and electricity demand
is associated with various complex and unknown factors. Therefore,
predefined graphs cannot fully reflect load correlations. In addition,
the coupling of spatio-temporal multidimensional information and
the large amount of datamake effective utilization to improvemodel
performance another key issue.

This article proposes a multi-graph convolutional spatio-
temporal collaborative prediction method for power load
integrating multi-dimensional information. By constructing a
multi-graph network, the spatial information of each consumer’s
load is fully captured to improve prediction accuracy. First, based
on historical load, weather, and electricity prices, the maximum
information coefficient (MIC) is used to analyze the correlation of
load sequence and to construct input data that integrates multi-
dimensional information. Then, the network adopts a dilated
convolution and gatingmechanism to parallelly capture the practical
information of temporal loads. Moreover, based on the actual
location connection between consumers and the similarity of
electricity loads, a physical, virtualmulti-graph convolutionalmodel
is established to capture various interrelationships between loads in
space. T the performance of the proposed model is tested on real
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FIGURE 3
Graph convolution operation: (A)The form of convolution, (B)Convolutional operation.

electricity datasets and compared with other baseline models to
verify its effectiveness.

The innovation of this paper is as the following:

• The gated casual convolution is adopted to accelerate the
temporal convolution, which can capture correlation of time
series information.
• We proposed a physical virtual multi-graph convolutional
network to fully capture electricity load evolution
patterns. The physical graph contains connection
and distance data, which is based on realistic grid
topology. The virtual graphs are built based on human
domain knowledge.

Moreover, the main contribution of this paper is to use
MIC to obtain the correlation of nonlinear influencing factors,
which reduces input data redundancy. Specifically, this method
filters out irrelevant spatio-temporal data and selects high MIC
values as input, reducing the interference of input on the
prediction results.

2 Spatio-temporal network of
electricity loads

2.1 Spatial and temporal load structure

Stable electricity promotes the development of social
production, and electricity is transmitted through power grid lines.
The power consumption fromdifferent spatial locations is ultimately
integrated into the power load of different grid nodes.As shown
in Figure 1, different nodes in the grid topology correspond to
electricity demand generated in different actual geographic areas.
The load in an area corresponding to a grid node is regarded as
the information of the nodes in the graph G, and the connection
between grid nodes is regarded as the edges between the nodes in
the graphG. We use the graphG(V,E,A) to describe the spatial load
information, where V is a node, E is an edge, and A is an adjacency
matrix, representing the connection between nodes. Each node in
the graph G generates data with a total number of features F in a
time interval. As shown in Figure 1, each time slice is a spatial graph
that records the feature information of all nodes in the time interval.
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FIGURE 4
Spatio-temporal convolution.

2.2 Definition of parameters and sets for
electricity load prediction

Let the electricity load generated by each node in the graph in
a future time period be the forecast data. Let x f ,it be the features
f generated by node i in the time interval t, then Xc = (x f

1,…,x
f
τ)

be the features f generated by all nodes in time period τ, and
χ = (X1,…,Xτ) be all features generated by all nodes in time period
τ. It is assumed that the load yit = x

f ,i
t generated by a node i at a

certain time t, that is, all the characteristics χ including the load
generated by all nodes within a certain time period are known.Then,
the electricity load Ŷ = (ŷ1,…, ŷN) for a certain time period in the
future is predicted where ŷi is the electricity load during a certain
time period of the node.

2.3 Maximum information coefficient

Themain factors influencing load prediction are historical loads,
weather conditions, time, and electricity prices (Quilumba et al.,
2014; Sun et al., 2022). Table 1 summarizes the load influencing
factors. Although applying influencing factors directly to neural
networks as input data can also predict loads, excessive data
increases computational complexity and speed. Using proper
methods to select input data can improve prediction accuracy and
accelerate computational speed. Therefore, this paper applies the
maximum information coefficient theory for feature extraction.

The maximum information coefficient was proposed by Reshef
based on mutual information theory (Reshef et al., 2011). MIC can
analyze the linear and nonlinear correlation between two variables

and screen parameters that affect load. The mutual information
between sequences Xa and Ya can be expressed as Eq. 1.

Im (Xa,Ya) = ∑
xa∈Xa

∑
ya∈Ya

p(xa,ya) log2
p(xa,ya)

p(xa)p(ya)
(1)

where Im(Xa,Ya) represents mutual information, and p(⋅) is the
probability density function, xa ∈ Xa and ya ∈ Ya.

Let Da = {(xa,i,ya,i), i = 1,…,n} be the set of binary data, and
divide the value domains of Xa and Ya into segments pa and qa in
grid Ga. Define the maximum mutual information of Da in grid Ga
to be Imi that is calculated using the Eq. 2.

Imi (Da,pa,qa) =max Im (Da ∣ Ga) (2)

where Da ∣ Ga represents the data Da divided by grid Ga.
Therefore, the maximum information coefficient is formulated

as Eq. 3.

Imic (Xa,Ya) = max
paqa<B(n)

Imi (Da,pa,qa)
log2 (min(pa,qa))

(3)

where Bn is the limit on the number of grid divisions, generally
Bn = n0.6 (Reshef et al., 2011).

3 Spatio-temporal multi-graph
prediction network

The spatio-temporal power prediction model mainly comprises
a data embedding layer, a spatio-temporal prediction layer, and
an output layer. The spatio-temporal prediction layer contains a
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FIGURE 5
Spatio-temporal multi-graph prediction network structure.

temporal convolutionmodule and a spatial multi-graph convolution
module to capture the spatio-temporal correlation features of the
data and the spatio-temporal dependencies of the data.

3.1 Data embedding layer

The data embedding layer consists of a convolutional network
that transforms the input feature volume into high-dimensional
data suitable for the spatio-temporal prediction layer. A standard
convolutional network consists of three parts: convolutional,
pooling, and fully connected layers, where the convolution is
defined by Eq. 4

yc = f (x
∗
inωc + bc) (4)

where xin is the input to the convolutional layer; ωc is the
convolutional kernel, i.e., the weight parameter; bc is the bias value;
f(⋅) is the convolution operation; is the activation function; yc is the
output value. In this paper, linear convolution is used to linearly
transform the input data into high dimensional data by convolution
operation, i.e., no activation function is used.

3.2 Spatio-temporal prediction layer

Mining the dependencies of loads in the time dimension can
help improve prediction accuracy, and choosing an appropriate
network structure is crucial. Recurrent neural networks have the
structure of loops that accept data from themselves and other
neurons and are particularly suitable for processing time-series
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FIGURE 6
The overall flowchart.

TABLE 2 Parameters of the model.

Parameters Values Parameters Values

Chebyshev polynomial order 3 Batch size 32

Iterations 200 Learning rate 0.0001

Dropout 0.3 Dilation factor 1, 2, 4, 8

Convolution kernel 2 Optimizer Adam

data. However, deeper networks take a long time to compute
results, and they are prone to gradient explosion and vanishing
problems. In this paper, we choose convolutional neural networks
with strong robustness and faster computation to capture themutual
characteristics of data in time.

3.2.1 Causal convolutional networks
Causal convolution is a special convolutional neural network

that utilizes only past data in its computation. Its expansion factor
can be controlled to quickly increase the receptive field, thus
capturing load data for a longer period. As shown in Figure 2,
causal convolution does not rely on data from future moments
for computation compared to ordinary convolutional networks. In
addition, stacking more layers of the null convolution can result in
an exponential increase in the receptive field, covering more input
data and speeding up the computation. The causal convolution can

be expressed by Eq. 5 (Wu et al., 2019).

m(t)∗xd =
K−1

∑
s=0

m (s)xd (t− qds) (5)

where m is the convolution kernel of the null convolution; s is
the serial number of the convolution kernel; K is the size of the
convolution kernel; xd ∈ RT is the input sequence; t is the moment;
qd is the dilation factor, i.e., the interval between two factors.

3.2.2 Gated mechanisms
Gating methods can selectively control the rate of data

accumulation to avoid memory saturation. Combining the gating
mechanism with a casual convolutional network can capture the
complex relationship between loads in the temporal dimension,
which has a significant advantage in processing sequential data. The
output of the gating operation can be expressed as Eq. 6.

hg = gh (ω
∗
h xg) ⊙ gs (ω

∗
s xg) (6)

where xg is the input data; ωh and ωs are the learnable
model parameters; gh(⋅) is the hyperbolic tangent function;
gs(⋅) is the Sigmoid function; ⊙ is the operator for multiplying
elements; hg is the output value. The temporal convolution
module mined the features and correlations between power
loads of the time series using gated null convolution network
and fed the processed data into the spatial multi-graph
convolution module.
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3.3 Spatial multi-graph convolution
module

In order to exploit the dependencies between electric loads in
space, this section proposes a representation and calculationmethod
of spatial loads based on spectral graph theory. Then, a physical-
virtual multi-graph convolutional network based on the spatial
location of loads and load similarity is built to represent the different
dependencies of loads in the spatial dimension.

3.3.1 Spectral convolution
The graph load data is non-Euclidean space data, and each

load node has a different connection relationship with other nodes.
Moreover, the convolutional network is based on the translation
invariant operation of the data, which cannot be directly applied
to the non-Euclidean space. Bruna et al. (2014) defined graph
convolution operation in spectral space based on graph theory and
expressed the graph structure as a mathematical form. As a result,
the non-Euclidean space data is transformed into Euclidean data for
convolution operation.

In spectral theory, graph information can be represented by a
Laplace matrix L. The equation is L = D −A and the standard form
is L = Iℕ −D

1
2AD

1
2 whereA is the adjacency matrix,D is the degree

matrix, and IN is the identity matrix. Let αi,j and di,j be the elements
of A and D, and i and j be the number of rows and columns, then
di,j = ∑jai,j. Decompose L into eigenvalues, L = UΛUT , where U is
the eigenvector andΛ is the diagonal array of eigenvalues.The graph
convolution operation relies on the Fourier transform, defining the
Fourier transform of the information on the graph x as x̂ = UTx and
x̂ as the value of x in the spectral domain. Accordingly, the Fourien
inverse transform of x is x = U x̂. By the convolution theorem, the
Fourier transform of the convolution of signals is equal to the
product of their individual Fourier transforms (Shuman et al., 2013).
Therefore, it is possible to multiply the Fourier transform of the
information on the graph by the information in the spectral domain
and then invert the transformation to obtain the convolution result
on the graph, as shown in Eq. 7.

x∗Gz = U ((U
Tx) ⊙ (UTy)) = UgθU

Tx (7)

where x and z are the signals on the graph; ∗G is the graph
convolution; gθ is the convolution kernel, and gθ = U

Tz
The graph convolution operation can be realized based on Eq. 7.

However, calculating the Laplace matrix is cumbersome when the
graph size is large. Therefore, the Chebyshev graph convolution
approximation is used to solve the convolution kernel to simplify
the operation:

x∗Gz = UgθU
Tx ≈

M−1

∑
m

θmTm (L̃)x (8)

where θm is the Chebyshev polynomial coefficients; Tm(L̃) is the
Chebyshev polynomial, Tm(L̃) = 2L̃Tm−1(L̃) −Tm−2(L̃) and T0(L̃) =
1, T1(L̃) = L̃; L̃ = 2L/λmax − IN; and m is the order of Chebyshev
polynomial.

The information in the graph is updated by the order
information of itself and its neighboring nodes M− 1, and the
depth of the transmitted information can be adjusted by controlling
the maximum order M. In the actual calculation, the value of

L = IN −D
− 1

2AD−
1
2 is dispersed, so it is generally replaced

D̂−
1
2 ÂD̂−

1
2 , where Â = A+ IN and D̂ are the degree matrices of

Â (Yan et al., 2021).
An example of graph convolution operation is shown in Figure 3.

Figure 3A is form of convolution, and the right side shows the
convolution on non-Euclidean space. Figure 3B shows the spectral
convolutional operation. Given a 6-bus grid, the adjacency matrixA
and degree matrix D are obtained based on the grid. Then, we can
get D−

1
2AD−

1
2 . Given the input data xct and convolution kernel gθ1,

the result of graph convolution xct ∗Gz can be obtained.
The representation of the convolutional results on the network

is further enhanced by the activation function ReLU:

hf = gr(
M−1

∑
m

θmTm (L̃)x) (9)

where gr is the activation function ReLU and hf is the spatial
convolution output.

3.3.2 Multi-graph construction
Different dependencies are implied between loads at different

locations in space. The load relationship implied by the different
interconnections and distances of electric loads in different regions
is called neighborhood dependence, and the relationship implied
by the different load similarities due to the different patterns of
electricity use is called load correlation. In order to mine the
proximity dependence and load correlation of electric loads at each
location in space, a physical connectivity map, location distance
map, and virtual correlation map are constructed.

1) Physical connection graph: The connection matrix is
established based on the connection relationship between the
lines where the power loads are located at each location, i.e., the
interconnections of the nodes in the grid topology. The element of
this matrix can be defined as Eq. 10.

aai,j =
{
{
{

1, node i isconnectedtonode j

0, else
(10)

2) Positional distance graph: A distance matrix is created based
on the distance of the nodes where each power load is located Ad.
The element of this matrix can be defined as Eq. 11.

adi,j =
{{{
{{{
{

exp(−
d2i,j
ε2d
), di,j ≥ ρd

0, di,j < ρd

(11)

where adi,j is the element in Ad; di,j is the distance between node i
and node j; ɛd is the matrix threshold parameter; ρd is the distance
threshold parameter.

3) Virtual similarity graph: A similarity matrix is created based
on the similarity between the electrical loads at each location As

(Shi J. et al., 2023). The element of this matrix can be defined as Eq.
12, and the similarity between the load of node i and the load of node
j can be calculated by Eq. 13.

asi,j = exp(−ρsc
d
i,j) (12)

cdi,j = √
T

∑
t=1
(xlt,i − x

l
t,j)

2 (13)
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where asi,j is the element in As; ρs is the parameter controlling the
decay rate; cdi,j is the similarity between the load of node i and the
load of node j; xlt,i and x

l
t,j are the loads of node i and node j at time t.

ThematricesAa,Ad andAs are used to obtain the corresponding
La,Ld andLs by bringing them into the standard computational form
of the Laplace matrix, respectively.The Laplace matrices are brought
into Eqs 8, 9 to obtain the convolution results of the loadings in
each graph.

3.3.3 Multi-graph fusion
The graph fusion method is the key to graph neural networks,

and a simple average summation of each graph will reduce the
prediction performance. In this paper, we use the convolution results
of each graph to be fused into a new graph by weighted summation
to reflect the degree of influence of each graph in space. The
weights of each graph are normalized using the Softmax function
formulates as Eq. 14.

was,wds,wss = gso (wa,wd,ws) (14)

where gso is the Softmax function; wa, wd and ws are the learnable
weight parameters of the physical connectivity graph, positional
distance graph and virtual association graph, respectively; was, wds
and wss are the weights of the graphs after normalization, which
indicate the influence degree of each graph in the new graph.

The weight parameters are multiplied with the results of the
convolution of each graph and then summed, as shown in Eq. 15.

hnew = was ⊙ h
a
f +wds ⊙ h

d
f +ws s ⊙ h

s
f (15)

where hnew is the convolution result of the new graph; haf , h
d
f and

hsf are the convolution outputs of the physical connectivity graph,
the positional distance graph and the virtual association graph,
respectively.

The data features are extracted through the spatio-temporal
convolution module, and the spatio-temporal convolution process
is shown in Figure 4.

3.4 Output layer

The output layer is connected to the spatio-temporal prediction
layer, which converges and transforms the passed results into the
desired dimensions. The use of linear convolution can effectively
transform the data dimension, and the selection of an appropriate
activation function can extract the nonlinear features of the data.
Due to the large degree of nonlinearity and high dimensionality of
the data, this paper adopts the ReLU activation function and linear
convolution twice in series, i.e., the predicted power load value is
finally obtainedwithout losing toomuch information each time.The
prediction step size of this network is adjustable, i.e., the load value
can be obtained at one time for more than one moment.

3.5 Spatio-temporal multi-graph
prediction network structure

Before inputting the data, the resulting data should be blank-
filled, outliers removed, and corrected (Azeem et al., 2021). The

Input: Data set of {Xi}M; the size of Xi is i ∗ f ∗ t;

i is node, f is feature, and t is time.

Output: Multi-graph convolution model result Ŷ;

1:   for each epoch do

2:   for each batch do

3:   Linear convolution: Conv(Xi) → Xstart;

4:   Initial value 0→ Xres;

5:   for each spatio-temporal convolutional

layer do

6    if first layer then

7:     Xstart→ Xin

8:    else

9:     Previous Xres is current Xin: Xres→ Xin;

10:    end if

11:    Gated casual convolution:

Conv(Xin) ⊙Conv(Xin) → Xw;

12:    Skip connection: Yskip +Xskip→ Yskip;

13:    Graph 1 convolution: G1conv(Xskip) → XG1;

14:    Graph 2 convolution: G2conv(Xskip) → XG2;

15:    Graph 3 convolution: G3conv(Xskip) → XG3;

16:    Graphs fusion: XG1 +XG2 +XG3→ Xres;

17:    Residual connection: Xres +Yres→ Yres;

18:   end for

19:   Linear convolutions: Conv(Conv(Yres)) → Yout;

20:   Obtain MAE of network;

21:   Adjust hyperparameters;

22:  end for

23: end for

24:   Obtain result of Ŷ.

Algorithm 1. Spatio-temporal multi-graph prediction algorithm.

features such as historical electric load power, weather, and date are
filtered usingmaximum information coefficient analysis to select the
most relevant features as input data into the prediction network.The
structure of the spatio-temporal multi-graph prediction network is
shown in Figure 5, and the corresponding multi-graph convolution
algorithm is shown in Algorithm 1.

The prediction network mainly comprises a data embedding
layer, a spatio-temporal prediction layer, and an output layer. The
spatio-temporal prediction layer consists of multiple temporal and
spatial convolutional blocks stacked together, enabling the network
to capture data correlations at different temporal levels. Different
spatio-temporal convolutional blocks converge different levels of
information to the output layer through skip connections. In
addition, residual connections are utilized in the blocks to accelerate
convergence and to address possible degradation of the deep
network (He et al., 2016).The overall flowchart is shown in Figure 6.

3.6 Evaluation indicators

The performance of the prediction network is evaluated by
applying Mean Absolute Error (MAE) IMAE calculated by Eq. 16,
Mean Absolute Percentage Error (MAPE) IMAPE calculated by Eq.

Frontiers in Energy Research 09 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1409647
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Chen et al. 10.3389/fenrg.2024.1409647

17, Mean Squared Error (MSE) IMSE calculated by Eq. 18, and Root
Mean Squared Error (RMSE) IRMSE calculated by Eq. 19. MAE is
the difference between the predicted load and the actual load, which
truly reflects the prediction error, and in this paper, we choose the
Mean Absolute Error as the loss function of the network.

IMAE =
1
TM

T

∑
t=1

M

∑
m=1
|yt,m − ŷt,m| (16)

IMAPE =
1
TM

T

∑
t=1

M

∑
m=1
|
yt,m − ŷt,m

yt,m
| × 100% (17)

IMSE =
1
TM

T

∑
t=1

M

∑
m=1
(yt,m − ŷt,m)

2 (18)

IRMSE = √
1
TM

T

∑
t=1

M

∑
m=1
(yt,m − ŷt,m)

2 (19)

where yt,m and ŷt,m are the real and predicted values of load at time
t node m respectively; m is the node number; and M is the total
number of nodes.

4 Case study

4.1 Data set and parameters

In this paper, we use the 10 kV voltage level electric load dataset
of a region inNorthChina, including loads, weather conditions, date
information and electricity prices, as shown in Table 2. All data have
been desensitized and normalized to [0, 1]. The dataset contains a
total of 10 bus data with a time range of 1 January 2020 to 1 June
2021, with a time interval of 60 min and a total of 24 points per day.

The predictive network model is implemented in Python
software’s PyTorch learning library. In the debugging process of
the network, considering the size of the data volume, the data
set is taken as 70% as the training set, 20% as the validation set,
and 10% as the test set. After several comparative analyses and
comprehensive prediction performance, the model parameters are
set as shown in Table 2. Among them, the Dropout means to make
the neurons not work in a certain proportion, which can make the
model generalization ability stronger. In addition, the model is a
single-step prediction, i.e., all bus loads at the next moment are
predicted using all bus data of the previous day. The framework of
the model of this paper is illustrated in Figure 7.

4.2 Feature selection results

The historical characteristics of Table 1 were analyzed by the
maximum information coefficient analysis method to calculate the
contribution of the influence of each characteristic quantity on the
load, and the results are shown in Figure 8.

The meanings of the letter labels in the graph
are shown in Table 1, and label I is the predicted day load. It
can be seen that the MIC of historical load, time and electricity
price with forecast daily load is high, which represents a strong
correlation. And the MIC between electricity price and time is
1, which represents a high correlation with cyclical changes in time

and electricity price on a daily basis. Due to the higherMIC between
electricity price and load, electricity price was chosen as one of the
input features.TheMIC for weather conditions is generally between
0.2 and 0.4, with temperature and humidity having a greater impact
on load. Too much input data will reduce the computing speed of
the model, in order to have better performance of the prediction
network, this paper takes the threshold of MIC as 0.3. In summary,
the input features are historical load, temperature, humidity and
electricity price.

4.3 Analysis of forecast results

The neighbor matrices in the physical connection graph,
location distance graph and virtual association graph of the
prediction model are shown in Figure 9. It can be seen that since
some of the nodes are not directly connected to each other, the
elements of the connection matrix are 0. To control the sparsity
of the graph, the distance matrix elements of the two nodes that
are too close to each other are set to 0 to improve the speed of
operation. The similarity matrix elements vary as the nodes have
different power usage patterns. We adjust the parameters ρs to make
the distribution of the adjacency matrix more uniform. Applying
the proposed spatio-temporal multi-graph prediction model, the
metrics for evaluating power load forecasts at 10 nodes are shown
in Table 3.As can be seen from Table 3, the mean absolute error
varies from node to node due to their different load characteristics,
and the overall MAE is 0.0136. The node 4 has a smaller MAE
and a larger MAPE due to its small load power and high degree
of fluctuation. However, node 6 and node 7 have irregular daily
power loads with high uncertainty, resulting in larger MAPE
and MSE. Node 3, node 5, node 8 and node 9 have smooth
and distinctly cyclical load variations and have higher predicted
MAPE. Node 1 has a higher load MAE and MAPE than node
5, but low MSE and RMSE, which indicates a higher degree of
deviation from the individual results of the predictive model at
node 5. Overall, the multigraph convolutional model predicted
a MAPE of 5.26%.

4.4 Model comparison

To further validate the performance of the spatio-temporal
multi-graph prediction network, it is compared with the following
four widely used prediction networks:

1) Historical Average (HA): this model takes the average of the
most recent load data as the predicted value and is one of the
most classical statistical methods;

2) Gated Recurrent Unit (GRU): this network is a type of
recurrent neural network that employs a gating mechanism
to filter out the information in the long term sequences, thus
improving the prediction performance;

3) Convolutional Neural Network-Long Short-term Memory
Network (CNN-LSTM): this network utilizes a convolutional
neural network to extract valid information from the input
data. Due to the ability of LSTM to handle longer time series,
they are integrated into the CNN for prediction;
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FIGURE 7
The framework of the model.

FIGURE 8
MIC of each feature.

4) Spatio-Temporal Convolutional Network (STGCN): this
network consists of gated linear units to extract temporal
features, graph convolutional networks to extract spatial
features, and multiple spatio-temporal blocks superimposed
to form a prediction network (Yu et al., 2017).

The prediction results are shown in Table 4. It can be seen that
the performance of the multi-graph convolutional prediction model
proposed in this paper are satisfactory. Since HA relies on simple
averaging of historical loads to obtain the results, it is unable to

capture the nonlinear factors of power loads in the time series,
and thus has the lowest prediction accuracy. The GRU, a neural
network with memory function, captures the correlation features of
loads in the time series, with a MAPE of 6.62%, which reduces by
1.44% compared with that of HA, and achieves a better result. CNN-
LSTM utilizes the convolutional network to process the feature
information of the input load, which further reduces the MAPE by
0.31%.STGCN, a classical graph neural network, predicts a MAE of
0.0152 and a MAPE of 5.63%, which outperforms the traditional
neural networks and statistical models. This is due to the fact
that graph convolutional networks can process non-Euclidean load
information and capture the hidden information of spatial loads.
Due to the use of physical-virtual multi-graph structure to mine the
different evolutionary relationships of loads in space, the proposed
method has a MAPE of 5.26%, which is the best performance. The
predicted MAE and MAPE evaluation metrics for each comparison
method at each node load are shown in Figure 10.

It can be seen that the MAE and MAPE of each method are
differentduetothedifferentfluctuationpatternsofelectric loadsateach
node. HA is a classical statistical model with large prediction errors in
predicting more volatile loads such as nodes 4, 6 and 7. While deep
learning models such as GRU and CNN-LSTM have less difference
inMAPE at each node.The prediction networks with graph structure
such as STGCN and MGCN can learn the potential relationship of
each node and can further reduce the prediction error of each load.

4.5 Ablation experiments

In order to analyze the contribution of each module in the
proposed physical virtual multi-graph network structure, we design
ablation experiments. We compare the proposed model with the
following variants:
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FIGURE 9
The adjacency matrices of the graphs: (A) 10 kV power grid topolpgy, (B) Convolution matrix, (C) Distance matrix, (D) Similarity matrix.

TABLE 3 Load prediction results of each node.

Node MAE MAPE/% MSE/1e-5 RMSE

Node 1 0.00409 4.60 2.37 0.00487

Node 2 0.0219 4.09 75.34 0.0274

Node 3 0.00835 3.00 10.35 0.0101

Node 4 0.006794 9.61 7.52 0.00867

Node 5 0.00391 2.13 2.60 0.00510

Node 6 0.0359 8.13 194.23 0.0440

Node 7 0.0279 11.73 108.43 0.0329

Node 8 0.0101 2.93 15.54 0.0124

Node 9 0.000963 2.48 16.93 0.0130

Node 10 0.0169 3.87 63.41 0.0251

Average 0.0136 5.26 49.67 0.0222

• MGCN: The model is the proposed network, which contains
the multi-graph and temporal convolutional network
simultaneously.

TABLE 4 Load forecasting results of different methods.

Model MAE MAPE/% MSE/1e-5 RMSE

HA 0.0225 8.06 104.84 0.0323

GRU 0.0192 6.62 86.58 0.0294

CNN-LSTM 0.0171 6.31 60.76 0.0246

STGCN 0.0152 5.63 52.79 0.0229

MGCN 0.0136 5.26 49.67 0.0222

• PC-GCN: In this variant, we retain the physical connection
graph and remove the other graphs.
• P-GCN: Similarly, the virtual similarity graph is
removed, retaining the positional graph and the physical
connection graph.
• VS-GCN: This variant adopts virtual similarity matrix as
features of graph, without employing the physical connection
and distance graph.
• TCN: Different with above variants that contain the graph
network, the variant is constructed with only temporal
convolutional network.

The performances of different variants is shown in Table 5.
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FIGURE 10
MAE and MAPE of each node: (A) MAE of load, (B) MAPE of load.

In Table 5, TCN obtains the MAPE of 6.40, which is similar to
the performance of GRU and CNN-LSTM. Due to the lack of graph
modules, they can only capture temporal features of data.When there
is a physical graph in themodel, the error in load prediction decreases
significantly. In addition, We can observe that the MAE of P-GCN is
very close to that of the STGCN. This indicates that physical graphs
can extract hidden patterns of loads in the spatial dimension. We
further combine a virtual similarity graph with the convolutional
network,which achieves superior performance.Notably, theproposed
virtual graph based on human domain knowledge can fully explore
the evolution patterns of electricity loads.

5 Conclusion

In order to fully explore the correlation of various modes
between the power loads of each node, this paper proposes a

multi-graph convolutional spatio-temporal synergistic prediction
method for power loads by fusing multi-dimensional information,
and the theoretical analysis and the results of the arithmetic
examples show that:

1) The maximum information coefficient method can effectively
analyze load prediction influencing factors, select the most
relevant features and reduce the redundancy of input
information;

2) The non-Euclidean load information is processed by using
spectral graph theory, and the constructed physical-virtual
multi-graph convolutional network mines multiple spatial
relationships between loads at each node, enriches the spatial
characteristics of loads and improves the prediction accuracy;

3) Compared with statistical models, traditional neural networks
and graph convolution models, the multi-graph spatio-
temporal prediction network proposed in this paper has
high prediction accuracy, which verifies the effectiveness of
the method;

Although this paper has made some progress in constructing
multi-graph convolution for spatio-temporal load prediction, the
graph convolution network needs to be improved further: 1)
The superior performance of the graph convolution network
requires multiple rounds of manual hyperparameter tuning. More
generalized and concise prediction networks can be considered for
future adoption to improve the model’s quality. 2) The electricity
demand periodically changes over a large period. For example,
the electricity load during the New Year is usually similar.
We can add modules to learn load characteristics if there is
continuous electricity data for every year. 3) We will design more
general prediction models to achieve robust performance with
incomplete data.
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