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Oil and gas industries are facing a special dilemma when it comes to high-
pressure, high-temperature (HPHT) drilling as the accurate forecasting of the
drilling fluid density (DFD) is a vital factor for safe and efficient operations.
Complicated relationships and inconsistencies in HPHT situations are rarely
mapped by current forecasting models, while their buggy performance and
safety risks during drilling can be underestimated. In this research, we propose
a novel machine learning (ML) approach to enhance the accuracy of DFD
anticipation under HPHT conditions: central force search-adaptive extreme
gradient boosting (CFS-XGB). This paper uses a dataset that has drilling
variables together with the DFD for HPHT situations to examine the accuracy
of the CFS-XGB model. Excluding the abnormalities of data or mistakes, the
reliability of the original data is maintained by applying min–max normalization.
After that, finding the important features with the help of the boosted principal
component analysis (BPCA) approach to the normalized data will ensure a major
improvement in the CFS-XGBmethodology’s prediction efficacy. This research is
experimented in the Python platform, and the performance of the proposed CFS-
XGB method is analyzed in terms of MSE, R2, and AAPRE metrics. The suggested
approach performs better than the current methods in forecasting the drilling
fluid concentration in HPHT settings, according to the experimental data. This
development in predictive modeling helps increase the productivity and safety of
drilling operations, which will eventually help the oil and gas sector manage the
challenges posed by HPHT drilling settings.
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1 Introduction

Drilling fluid is created and maintained in surface pits or tanks
and is a mixture of water, chemicals, bentonite, and weighting
additives that circulate throughout the borehole during drilling
operations. Apart from cleaning the wellbore by removing bit
cuttings on the outside, circulation of drilling fluid also keeps the
bottom of the wellbore hydrostatically pressured to cool and
lubricate the drill bit string while drilling proceeds, preventing
the formation fluids from entering the wellbore (Davoodi et al.,
2023). In reservoir zones, which can occur several kilometers below
the surface, a vertical borehole is required to safely generate
hydrocarbons, for which rotating rigs equipped with subsystems
to facilitate safe drilling processes are used. Bit nozzles pull up
drilling fluid for recirculation and maintenance; this fluid is then
filtered by the solid’s control systems and pushed back into tanks
(Gul, 2021). Because of safety measures and well control difficulties
that affect workers’ lives along with the high expense of the
operations, drilling operations are regarded as the most crucial
among the oil and gas operations. Controlling of the activities
will be aided by several sensors monitoring the drilling processes
alongside downhole sensors on the surface (Abdelaal et al., 2023a).
When drilling narrow window zones, where the difference between
the hole and formation fracture pressures is not large, equivalent
circulation density (ECD), one of the characteristics, should be taken
into particular consideration (Bashir et al., 2021). Drilling HPHT oil
wells is a relatively new frontier in hydrocarbon deposit discovery
and development. According to Highoose Limited, there is yet a
higher risk of breakdown in HPHT wells because of the intense
pressure of the surroundings (Okonkwo and Joel, 2023).

Drilling and filling of wells are not carried out in the energy field
as they were performed over a century ago because oil is not found in
the exact same favorable areas. It is also presumed that the industry’s
perspective has changed during the past 10 years (Agwu et al., 2020).
A downward or wider bore design has been influenced by drilling
fluid hydraulics. For engineers to effectively design a good profile
and increase the drilling efficiency while lowering hazards and
cutting non-productive time (NPT), a reliable model with
optimum drilling fluid hydraulic systems is consequently essential
(Alsaihati et al., 2020). Geothermal power stations are a dependable
energy source with low environmental impact, yet the cost of the
drilling procedure accounts for approximately 25% of the total
investment. Drilling involves rotary, circulation, and hoisting
systems (Mengich et al., 2022). Viscose mixes known as drilling
fluids or muds are used in drilling circulation systems for cooling
and lubricating the drill bit as well as to transport rock cuttings to the
surface (Pedrosa et al., 2021). Hydrocarbon extraction in the
petroleum sector involves a difficult process called oil and gas
well drilling. These issues are caused by the uncontrolled
movement of drilling fluid through the rock during drilling. For
the purposes of reinforcing the drilled formations, moving cuttings
more easily, maintaining a steady pressure in the borehole, and
chemically regulating the borehole, drilling fluid is utilized (Krishna
et al., 2020). Due to the rise in temperature and pressure inside the
formation owing to continuous drilling, the rheology of a drilling
fluid changes. This inability of the rheology to be accurately
represented by surface conditions itself has an effect on the
accuracy of drilling hydraulics computation. The research aim is

enhancing the prediction of DFD in the HPHT environment by
developing CFS-XGB.

1.1 Contribution

The principal undertaking for this study is to employ ML
techniques to create the notion of DFD prediction in an
HPHT context.

✓ Used dataset that has drilling variables together with the DFD
for HPHT situations to examine the accuracy.

✓ The introduction of the central force search-adaptive extreme
gradient boosting model has greatly improved the predictive
accuracy for DFD in HPHT conditions.

✓Min–max normalization will add no anomalies or inconsistencies
to the data, thus assuring reliability. This preprocessing step is very
critical to maintain data integrity and increase the CFS-XGB
model’s efficiency.

✓ Boosted principal component analysis can extract only relevant
features from the normalized data. This refines the input
variables and considerably raises the accuracy of prediction
for the CFS-XGB model.

The CFS-XGB model is applicable to the remaining studies’
following categories: Section 2 examines the related works. Section
3 presents our suggested methodology. Section 4 presents the results
of the study. Section 5 presents the subject of debate, while Section
6 presents the conclusions of the study.

2 Related works

The prediction of the density of drilling fluids using different
machine learning and artificial intelligence models was evaluated by
Syah et al. (2021) for establishing the best model that can be applied in
the field. The least-square support vector machine-genetics algorithms
(LSVM-GA), the radial basis function method (RBF), and the particle
swarm optimization-adaptive neuro-fuzzy inferences system (PSO-
ANFIS) were some of the models created at the programming stage.
Al-Rubaii et al. (2023) designed the “equivalent circulation density and
mud weight” specialized models, specifically ECDeffc.m and
MWeffc.m, to perform the optimization of drilling performance and
analysis of various real-time drilling parameters. Such models not only
contribute to the aversion of problems such as blowouts and mistakes
related to trapped pipes but also offer very accurate estimations of
drilling conditions that are capable of detecting problems in real-time.
The particle swarm optimization–least-squares support vector machine
(PSO-LSSVM) technique was the most accurate, with the maximum
accuracy and the lowest variation factor. Gamal et al. (2021) tested
whether machine learning algorithms could provide an exact ECDwith
only data from the drilling. Some of these techniques were an artificial
neural network (ANN) and adaptable network-based fuzzy inference
system (ANFIS). The research utilized the actual motion of the drilling
variables “of the horizontal drilling segment, including penetration rate,
rotation acceleration, torque and standpipe volume.” Samnejad et al.
(2020) suggested a new model in which the mechanical properties of
drilling fluids in pre-API conditions were explained with a combination
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of physics, API data gathered at a site, and from laboratory testing, along
with machine learning algorithms.

Abdelaal et al., 2023b developed an ML architecture that can be
used to predict the rheological properties of the drilling fluids during
the drilling process. The structure forecasts the viscometer values by
frequent mud readings, and then it uses pre-existing algorithms to
estimate additional mud characteristics with the use of mud density
(MD) and mud flow viscometer (MFV). Ghamdi et al. (2021) sought
to enhance ROP by incorporating MPD with AI analysis. Kandil
et al. (2023) used machine learning methods such as an “artificial
neural network (ANN), passive-aggressive regressor and K-nearest
neighbours” based on the Levenberg–Marquardt back-propagation
algorithm in predicting ECD. All these models were based on a few
key operational variables that have been obtained during drilling
operations using downhole sensors. Al-Rubaii (2024) developed a
borehole clean index, HCI, to improve drill hole cleaning as a way of
improving well drillability. These were the properties of the holes

and drilling fluids, together with the majority of the drilling
parameters affecting it. In understanding how drill hole cleaning
works, both the engineering parameters and chemistry involved
have to be considered.

Alkinani et al. (2020) proposed a newmethod of ECD prediction
prior to drilling that utilized artificial neural networks. After the
ECD had been predicted, it can then be kept within the allowable
window through manipulation of the critical drilling parameters
affecting ECD. The results of the research have indicated that the
developed network had very small error tolerance in ECD prediction
globally before drilling. Gautam et al. (2021) suggested a simple
principle of momentum transfer of liquids to estimate the viscosity
of the drilling fluids at HPHT conditions. The model was relatively
straightforward yet able to reproduce the rheology of many drilling
fluids at least on a predictive basis. Quitian-Ardila et al. (2024)
developed a constitutive equation for modeling rheological data at
an HPHT condition and carried out the rheological characterization

FIGURE 1
Overview of the proposed workflow (source: author).

TABLE 1 Variability of input influencing the variable and output.

Parameters Statistical parameters range

Variable type Variable name Minimum Maximum Mean Standard deviation Skewness Kurtosis

Input variable Density (initial) 0.8 g/cm³ 2.2 g/cm³ 1.5 g/cm³ 0.4 g/cm³ 0.5 −0.3

Input variable Temperature 50°C 150°C 100°C 25°C 0.2 0.1

Input variable Pressure 1,000 psi 5,000 psi 3,000 psi 800 psi 0.7 0.4

Output variable Drilling fluid density (DFD) 1.0 g/cm³ 2.5 g/cm³ 1.8 g/cm³ 0.5 g/cm³ 0.3 −0.2
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of the “water-based drilling fluid, WBDF” with xanthan gum. The
fluid showed shear-thinning behavior. Temperature had a stronger
effect compared to pressure; however, their correlation was
extremely strong. Tariq et al. (2024) suggested an ML technique
for the forecast of the fluid linear swell pattern of shale wafers based
on sodium bentonite. The shale wafers were exposed to various
WBDFs, which were reconstituted in the presence of a few inorganic
salts such as potassium chloride, KCl; sodium chloride, NaCl; and
magnesium chloride, MgCl2, which are the three types of chloride.

3 Methodology

Initially, the data were gathered, normalized using min–max
normalization, and then analyzed using boosted PCA to identify

significant characteristics and create a flexible prediction model. It
includes DFD prediction in HPHT situations using a new CFS-XGB
technique. Figure 1 depicts the proposed overview.

3.1 Dataset gathering

The current research gathered more than 880 datasets with
varying fluid kinds, beginning densities (densities at standard
pressure and temperature), temperature, and pressure (Alizadeh
et al., 2021). The dataset is divided into two major groups for the
proper creation of the model. In building the model, approximately
80% of real data points were used in the training phase, and the
remaining, 20%, were test data used to test the performance. Table 1
summarizes key statistical parameters of input and output variables
that are used in the drilling fluid density forecasting model. It
contains the minimum, maximum, mean, standard deviation,
skewness, and kurtosis with regard to initial density, temperature,
pressure, and the resulting DFD. The initial density ranges from
0.8 to 2.2 g/cm³, with a mean of 1.5 g/cm³. Temperature ranges from
50°C to 150°C, with a mean of 100°C. Pressure ranges from 1,000 psi
to 5,000 psi, with a mean of 3,000 psi. DFD varies from 1.0 to 2.5 g/
cm³, with a mean of 1.8 g/cm³.

3.2 Data preprocessing

Min–max normalization data convert the density data of the
drilling fluid into a constant range, such as [0,1], by converting the
value of each feature in relation to the minimum and maximum values
in the dataset. This way, all the features will equally contribute to the
prediction model in ensuring that the improvement in the rate of
convergence will be the same in both normal andHPHTwells. By using
min–max normalization (Equations 1, 2), the original data, x, is
transformed linearly into the specified interval NEWmax −NEWmin.

FIGURE 2
Histograms showing the distribution of (A) temperature (50°C to 150°C,mean � 100°C) and (B) pressure (1000psi to5000psi,mean � 3000psi) in
the dataset.

FIGURE 3
Result of MSE (source: author).
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wJ � NEWmin + NEWmax −NEWmin( ) × wj − wmin

wmax − wmin
( ). (1)

wmax � maxwj, wmin

1≤ j≤M
� minwj, wmax

1≤ j≤M
. (2)

Using this approach, the data get properly scaled from
wmax, wmin to NEWmax −NEWmin. The advantages of this
approach are that all interactions among data elements are
perfectly maintained. This approach never corrupts the data.
Min–max normalization has simple rules along with an
adjustable range. It works better than other approaches.

3.3 Feature extraction using boosted
principal component analysis (BPCA)

Boosted principal component analysis is a relatively new
technique to enhance the DFD prediction accuracy in capturing
the high-pressure, high-temperature drilling environment. BPCA
improves traditional PCA by adding a boosting mechanism to the
model that can better handle variance in the data and select principal
components more robustly, thus leading to better feature
representation for predictive modeling. For the purpose of feature
extraction, a boosted principal component analysis was used. This
technique can be referred to as multi-linear principal component
analysis (MPCA). The orthonormal projection of the input from
feature information to MPCA was focused similarly to that of PCA,
and the predicted feature was a tensor of the same order as the
feature samples with reduced dimensions. The groupings of unified
characteristics were denoted as follows in Equation 3:

w � w1, w2, . . . , wn{ }. (3)

In this case,w1 ∈ Qt1* ....*tL represents theNth L-mode input-feature
key-points with size t1p . . . .ptL. In order to transfer the primary
featured scaled space Qt1* ....*tL into the scalar space
Qev1*ev2*...evl(evl < � tL), the MPCA describes the multi-linear
modification of the features. The multi-linear feature transformation
projects out nonlinear high-dimensional features of this type and
produces the best low-dimensional linear feature set. The following
modification of multi-linear features was identified as per Equation 4:

Vl ∈ Qtl* ....*evl , l � 1, . . . , L. (4)

Then, the definition of this variable x1 ∈ Qev1*...*evL is given as per
Equation 5 follows:

x1 � w1 pV
1( )S pV 2( )S p . . . p LV L( )S ∈ Qev1*ev2*...evl ,n�1,...,N. (5)

The goal of MPCA is to control the L-projection matrices to
make use of the entire tensor scatter, represented by φ(x). This is
done as per Equations 6, 7.

Vl ∈ Qtl*evl , l � 1, . . . , N. (6)

φ x( ) � ∑N
n�1

x1| |2. (7)

This time, eigenvectors (evl) that correspond to the biggest
eigenvalues of the evl matrix were the initial-projection matrices as
show in Equation 8.

φ n( ) � ∑N
n�1

W1 l( )..WS
1 n( )l � 1, . . . L. (8)

According to the following ratio in Equation 9, dimensionality
(evl) might be constant for every l.

Q n( ) �
∑evl
il�1

γil
l( )

∑tl
il�1
γil

l( )
≥ 0.96. (9)

In the above equation, the l-model total-scatter matrix’s ilth

eigenvalues are represented by the variable γi l
(l). The ideal linear

collection of features converted improves the classification accuracy,
and this improved method yields the most accurate results.

3.4 Predicting DFD

CFS-XGB represents a novel machine learning methodology
that would improve the accuracy for drilling fluid density prediction
under HPHT conditions. It combines the central force with extreme
gradient boosting to provide an optimized feature selection method
for model performance in complex drilling environments.

3.4.1 Central force search optimization (CFS)
CFS optimization is a fine-tuned optimization technique for

predictive models to improve their accuracy in the prediction of
DFD under high-pressure, high-temperature (HPHT) conditions.
This approach is deeply entrenched in the idea of simulating a
central force field that guides the search process toward optimal
solutions. CFS, concerning its application in DFD forecasting, fine-
tunes model parameters for best performance and feature selection
for better predictive accuracy. CFS is used to find an
Mc-dimensional goal function e( �w) specified on a decision set of
potential solutions.

Ω: {w| �wj
min ≤wj ≤wj

max, 1≤ j≤Mc}∣∣∣∣∣ , wj ∈ R; here w �
w1, w2, . . . . . . .., wMc( ). Ω is enclosed by the 2Mc planes

Ojl: {w| w �| w1, . . . .., wj−1,Wjl, wj+1, . . . .., wMc( )}.WhereasWjl �
wj

min, l � 1
wj

max, l � 2
{ } notice that( j � 1, . . . . . . .,Mc; l� 1, 2 throughout).

It is sampled by CFS by flying “probes” across it over several
“time” increments (iterations). The exact position of every probe,
represented by the vector, is used to incrementally calculate a
measure for e( �w) capability.

At step i − 1, “probe p” is located at �Q
o

i−1 � ∑Mc
j�1w

o,i−1
j f̂j,

where 0≤ i≤Ms is the iteration index, f̂j is the unit matrix
along the jth vector axis, and Ms is the overall number of steps
(notice that step 0 is the first). The probe number is 1≤ i≤Mo, and
the overall number of probes isMo. Probe o departs at step from the
position �Q

o
i−1.

i − 1 to �Q
o

i−1 � ∑Mc
j�1w

o,i
j f̂j at step i due to the (constant)

acceleration �b
o

i−1 � ∑Mc
j�1b

o,i−1
j f̂j produced at step i − 1 by the CFO

“masses” discovered by the probe distributions.
The trajectory and acceleration of the probe, respectively, are

determined using the following two stochastic “equations of
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motion” to determine the probe’s motion in “CFO space” as show in
Equations 10, 11:

�Q
o

i � �Q
o

i−1 + �b
o

i−1. (10)

�b
o

i−1 � ∑Mo

m�1
m ≠ o

V Nm
i−1 −No

i−1( ). Nm
i−1 −No

i−1( ) × �Q( m

i−1 − �Q
o

i−1)
�Q
m

i−1 − �Q
o

i−1
����� ����� . (11)

The objective function’s fitness at probe o’s position at time step
i − 1 is represented byNo

i−1 � e(wo,i−1
1 , wo,i−1

2 , . . . . . . , wo,i−1
Mc

). At that
particular step (iteration), every other probe has a fitness value
associated with it: Nm

i−1, m � 1, . . . .., o − 1, o + 1, . . . ..,Mo. “V(.) is
the unit step function,” which is derived as

V y( ) � 1, y≥ 0
0 otherwise

{ }. It should be noted that for

�Q
m

i−1 � �Q
o

i−1,, m ≠ o r, as probe m has then fused with probe o
and it is unable to apply any gravitational force to o. Since
Nm

i−1 � No
i−1, the acceleration equation in this instance is

uncertain, and it is set to 0.

3.4.2 Extreme gradient boostingmethod (XGBoost)
The XGBoost method has been used to develop an effective

model with fast computing times. The accurate prediction of the
drilling fluid density is very critical for wellbore stability and
optimization of drilling performance, especially in a high-
pressure, high-temperature drilling environment. The high-end

gradient boosting method—XGBoost—utilizes this strength and
ability to deal with the complex nonlinear relationship in drilling
data to boost the prediction accuracy of DFD. The equation models
use a blending approach for predicting decision tree losses, which
optimizes future forecasts. Still, another part of the model creation
process reports the importance of the influence of each feature on
the final prediction of the efficiency score of the building. This
feature value indicates the general predictive power of each attribute
toward learning outcomes. XGBoost produces decision trees
concurrently, which makes parallelization easier. The algorithm
has the important property of distributed computing, which
allows it to process large and complex models efficiently. The
examination of extensive and varied datasets defines it as out-of-
core computing. This analytical technique is used to control resource
use in an efficient manner. Every iteration should involve the
introduction of a new model to reduce errors.

Equation 12 is the objective of the XGBoost function at step t:

K s( ) � ∑
j�1

K(youti, yout s−1( )
j

+ es wj( ) + h gs( ). (12)

By using data from the training dataset, the variable youti denotes
a known real value. It is possible to represent the combined
component as e(w + dw), where x � yOut1(s−1)j . Using the
Taylor approximation is essential. The function f(w) can be
approximated in the simplest linear form as show in Equation
13 follows:

e w( ) � e a( ) + e(a w − a( ) dw � fs wj( ). (13)

This evaluation is being done in relation to the loss equation K,
which is represented by e(w). The variables dx and a represent the
new learning that must be incorporated into step s and the projected
output (s − 1) from the prior method, respectively (Equations
14, 15).

e w( ) � e a( ) + e a( ) w − a( ) + 0.5e′ a( ) x − a( )2. (14)
K s( ) � ∑

j�1
K youti, yout s−1( )

j
( ) + gjes wj( ) + 0.5lje

2
s wj( )[ ] + h es( ).

(15)
Following the removal of the constant components, the removed

objectives that require reduction at step s also exist as show in
Equation 16.

K1 s( ) � ∑
j�1

gjes wj( ) + 0.5lje
2
s wj( )[ ] + h es( ). (16)

3.4.3 Central force search-adaptive XGBoost
(CFS-XGB)

CFS-XGB is a novel methodology applied for the estimation of
key variable DFD in HPHT settings for drilling operations. In the
approach presented herein, central force search will be used with
the effective machine learning method of XGBoost. The central
force search models simulate the motion of celestial objects borne
out of the idea of gravitational force to produce the most accurate
results within a multifunctional environment. With the help of
CFS, the program efficiently searches through the search space
and, therefore, easily identifies optimum model parameters for

FIGURE 4
Result of R2 (source: author).

TABLE 2 Result of MSE and R2.

Methods MSE R2

PSO-ANN 0.000137 0.9964

FIS 67.0907 0.7273

GA-FIS 0.091 0.9397

CFS-XGB [proposed] 0.000113 0.9999
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precise density prediction. A revised version of the very famous and
efficient gradient boosting algorithm, called XGBoost, is integrated
within the CFS framework. Due to the reciprocal advantages between
central force search and XGBoost, this CFS-XGB could competently
search through the vast solution space by enhancing the prediction
accuracy and optimizing model parameters. CFS-XGB provides
iterative improvements that deliver an improved performance and
accurate density forecasts in varied drilling circumstances. The
advantages associated with the CFS-XGB in this DFD forecasting
exercise are many. First, it is efficient for drilling since real-time
density estimation will enable supporting of decision-making
throughout the operation. Second, its flexibility to change drilling
circumstances ensures that it yields reliable performance in different
conditions and, hence, improves the general safety and reliability of
the operation. Details of the central force search adaptive XGBoost
methodology are shown in pseudocode 1.

4 Result

The performance was evaluated by comparing the proposed
method with existing methods. The performance was estimated
in various metrics such as MSE, AAPRE, and R2. The existing
papers include ABR-DT (adaptive boosting regression with
decision tree) (Hashemizadeh et al., 2021), SVM (support
vector machine) (Hashemizadeh et al., 2021), PSO-ANN
(particle swarm optimization with artificial neural network)
(Ahmadi et al., 2018), FIS (fuzzy inference system) (Ahmadi
et al., 2018), DT (decision tree) (Hashemizadeh et al., 2021), and

GA-FIS (genetic algorithm with fuzzy inference system) (Ahmadi
et al., 2018).

The Python 3.11.8 version was implemented with the help of a
Windows 11 laptop, which was equipped with Intel i7 11th Gen
CPU and a 64 GB RAM, which had been used for testing.

Figure 2A plots a temperature histogram in the range of
minimum 50°C to maximum 150°C, with the mean temperature
equal to 100°C. This will depict the distribution of a set of
temperatures and the frequency of their occurrence within
various ranges of temperature. Figure 2B plots a histogram of
pressure from minimum 1,000 psi to maximum 5,000 psi, with a
mean pressure of 3,000 psi. This will graph the distribution of the
values of pressure so that one can see how often pressures of
different magnitudes are represented in the dataset.

The mean squared error is an often-used statistic to evaluate the
performance of the regression model. The error is the distinction
between the actual and anticipated numbers, and its simple formula
is the average of the squares of the errors. The disparity between the
predicted and actual densities of the drilling fluids across the dataset,
for example, would be measured by MSE when computing DFD.
Figure 3 shows the MSE values of our suggested approach versus the
MSE values of current approaches. PSO-ANN, FIS, and GA-FIS
have MSE values of 0.0001374, 67.0907, and 0.091, respectively. The
recommended CSF-XGB approach yields an MSE value of
0.0001134. It demonstrates that our suggested approach
outperforms the existing methods.

TABLE 3 Result of AAPRE.

Methods AAPRE

ABR-DT 0.5

DT 0.8

SVM 0.9

CFS-XGB [proposed] 0.3

FIGURE 5
Result of AAPRE (source: author).
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The percentage of the variance in the dependent variable that
can be predicted from the independent variable is represented by the
statistical measure known as R2. R2 would show the rate at which the
selected framework predicts the variability in DFD in the context of
DFD prediction. The R2 value of our recommended and proposed
strategy is displayed in Figure 4. The R2 values of PSO-ANN, FIS,
and GA-FIS are 0.9964, 0.7273, and 0.9397, respectively. The R2

value obtained with the suggested CSF-XGB method is 0.9999. It
proves that our proposed method works better than the existing
approaches. Table 2 displays the MSE and R2 results.

The average absolute percent relative error (AAPRE) measures
the average of the absolute percentage errors relative to the true
values and gives a sense of the accuracy of the predictions in
percentage terms. AAPRE provides information on the average
percentage difference between the projected and actual densities
in the context of DFD prediction. Figure 5; Table 3 shows the
AAPRE value for our suggested approach in addition to the AAPRE
values of the existing approaches. AAPRE values for ABR-DT, DT,
and SVM are 0.5, 0.8, and 0.9, respectively. The AAPRE value
obtained using the suggested CSF-XGB method is 0.3. It proves that
our proposed method works better than the existing approaches.

Sensitivity analysis was done to find out if the inputs affected the
result (DFD, for example). Then, the quantitative effects of the
parameters were determined using a relevance factor as follows:

s �
∑m
j�1

Yl,i − Yl( ) Xj − �X( )�����������������������∑m
j−1

Yl,i − Yl( )2∑m
j�1 Xj − �X( )2√ , (17)

where m is the total number of data points, Xj is the output, Yl is
the mean of input l, andX is the mean output. Yl,i stands for input j of

variable l. The relevance factor is a scale that ranges from −1 to + 1; a
greater effect on the related parameter is indicated by a larger relevance
factor. A negative influence suggests that an improved parameter would
cause the goal to decrease, whereas a positive influence suggests that
boosting a specific input will enhance the target parameters. The
temperature and initial density were two of the characteristics with a
direct effect on the results. Furthermore, an inverse relationship
between DFD and the pressure was discovered, meaning that
increase in pressure results in a decrease in DFD. Table 4 presents
the sensitivity analysis findings. As shown with a relevance factor
of −0.04, pressure was determined to have the biggest negative effects.

To depict the performance of generated models, graphical error
analyses were used with statistical parameter assessments. Cross-plots
show the predicted and experimental values. A more compact area
around the unit slope line (X = Y) indicates an improved model.
Figure 6 shows cross-plots for the proposedmodels. The suggestedCFS-
XGB model performs well, as evidenced by the fact that the bulk of
points are positioned around the unit slope line. During the training
phase, 80% of the real data points were used to develop the model, with
the remaining 20% serving as test data for assessing performance.

For the most precise model, CFS-XGB, Figure 6 displays the
cross-plots in addition to the error distribution plot. It plots a
relative error value with respect to the fluid density test results.
In the case of an accurate model, the points lie around the zero error
line in such a plot. Figure 7 shows that the CFS-XGB method could
predict with very high accuracy, as can be noticed from the
proximity of the points to the zero-error line.

Figure 8 displays cumulative frequency error graphs for comparing
model performance. The supplied chart demonstrates that the CFS-
XGBmodel is more effective than the DT, SVM, and ABR-DT models.

5 Discussion

The traditional methods to predict the drilling fluid density (DFD)
for the HPHT environment, such as DT, ABR-DT, SVM, PSO-ANN,
FIS, and GA-FIS, have their limitations. Although DT (Hashemizadeh
et al., 2021) models are interpretable, they can inherently be weak in
attaining the power to model the complex, nonlinear relationships in
HPHT settings, which could, in turn, lead to overfitting due to noise
pollution. ABR-DT (Hashemizadeh et al., 2021) improved the
predictive power of models or weak learners by reducing the
variance. However, it might be prone to overfitting due to high-
dimensional data and might require much parameter tuning. While
SVMs (Hashemizadeh et al., 2021) can be useful to deal with small to
medium data, they become expensive, less efficient, and are not suitable
for large data with high dimensions that are often associated with
HPHTdrilling. Both PSO-ANNandGA-FIS (Ahmadi et al., 2018) were
integrated optimization techniques with neural networks and fuzzy
systems, respectively, to enhance the predictive accuracy, though they
might be computational consumers, and hence would need high
computational resources and more time to have converged. In
addition, these models may not be robust and generalized under
different drilling conditions. FIS (Ahmadi et al., 2018) was capable
of handling uncertainty and imprecise data, but it may be less capable in
a highly dynamic or complex HPHT environment where the ability to
define precise membership functions and rules becomes too difficult.
Furthermore, PSO-ANN and GA-FIS models are less interpretable in

TABLE 4 Result of sensitivity analysis.

Psi 0C g/cm3

−0.04 0.08 0.97

Note: initial density, g/cm3; pressure, Psi; temperature, 0C.

FIGURE 6
Cross-plots of CFS-XGB fluid density (source: author).
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nature, and hence, notmuch actionable insight could be drawn from the
predictions, which is very important in HPHT scenarios because
decisions are to be made in real-time. The problem is overcome by
introducing the CFS-XGB model, which outperforms traditional
methods in forecasting DFD, leading to better productivity and
safety in HPHT drilling operations. This advancement can help the
oil and gas industry better manage the complexities and risks associated
with HPHT environments.

6 Conclusion

DFD regulation is essential in HPHT drilling environments. To
provide safe and effective drilling operations while limiting
formation damage, this entails maintaining the proper fluid
weight to offset harsh downhole conditions. This paper proposes
a new machine learning methodology of central force search-based
adaptive XGBoosting for improving DFD detection in HPHT

drilling environments. The data gathered are preprocessed using
min–max normalization. The key features are identified using
BPCA, which may improve the effectiveness of the prediction.
The Python platform is used to simulate our proposed method.
It reveals better results with reduced MSE along with increased
R-square and reduced RMSE metrics. Compared to existing
methods, this technique outperforms the state-of-the-art models
for the density forecasting of drilling fluid in HPHT scenarios.
Under HPHT scenarios, the CFS-XGB method faces an issue with
high-dimensional data management and may require further fine-
tuning for execution in real-time applications. Future developments
are oriented toward advanced optimization methods, enhancing its
scalability, integration, and robustness.
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