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This paper presents a comparative study between traditional and intelligent Maximum
Power Point Tracking (MPPT) algorithms for Photovoltaic (PV) powered DC Shunt
Motors. Given the nonlinearity of PV systems, they require nonstandard approaches to
harness their full potential. Each PVmodule has a uniquemaximumpower point on its
IV curve due to its nonlinear characteristic nature. Power electronic converters are
utilized toenableoperationat thatpoint. Therearemanydifferent algorithmsdescribed
in the introduction, each with its have their own advantages and drawbacks.
Recognizing the potential enhancement of PV system efficiency through effective
Maximum Power Point (MPP) tracking, this paper evaluates five MPPT methods under
varyingDC loads. The five algorithmswill be as follows: Incremental Conductance and
Perturb and Observe as traditional algorithms. Fuzzy Logic Control, Artificial Neural
Networks, and Adaptive Neuro-Fuzzy Inference Systems as Intelligent Algorithms.
While traditional algorithmsgenerally produced acceptable results except for Perturb&
Observe, intelligent algorithms performed well under rapidly changing solar radiation
conditions. Due to inadequate data, intelligent algorithms relying on data training
struggled to track the maximum power point when the temperature changed due to
inadequate data used for the training. The analysis focuses on the time required by
eachmethod to reachpeakpowerunderdifferent loadconditions, solar irradiance, and
temperature variations. The advantages and disadvantages of each MPPT with a shunt
DC motor are detailed in the comparative study.
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1 Introduction

Solar power has become a prominent leader in renewable energy
due to its reduced cost and ecologically friendly nature, providing a
sustainable alternative to fossil fuels (Hasaneen and Mohammed,
2008). The impact of solar energy on this endeavor has been
remarkably substantial. The study mentioned in Yang et al.
(2024) emphasizes the potential of rural rooftop photovoltaic
(PV) systems in addressing regional energy disputes.
Additionally, the study mentioned in ang et al. (2024)
demonstrates how integrated solar electricity can contribute to
sustainable urban growth. In addition, the utilization of solar
energy in various systems has been examined in Gao et al.
(2024), Yan et al. (2024) through the optimization of hybrid
microgrids and renewable-based systems. In addition, the
influence of solar energy on the control and dynamic economic
dispatch in microgrids has been examined in references (Duan et al.,
2023; Shirkhani et al., 2023). These contribute to the enhancement of
our comprehension regarding the influence of solar energy on the
formation of future energy environments.

With the increasing popularity of PV systems, their
production costs have decreased, although inefficiency
continues to be a persistent issue. Both the temperatures of
the cells and the intensity of sunlight have a crucial influence
in determining the power output of photovoltaic (PV) systems.
Due to the reliance of PV energy output on factors such as sun’s
irradiance, ambient temperature, and load, there is no assurance
of consistent energy delivery. MPPT, or Maximum Power Point
Tracking, is the method used to identify the optimal operating
point for a solar PV cell based on certain environmental
conditions. By utilizing the Maximum Power Point Tracking
(MPPT) technology, the photovoltaic (PV) module achieves
enhanced performance and increased longevity. These tactics
are employed to optimize the power output of a photovoltaic
(PV) module by enhancing its operational efficiency. Figure 1
illustrates the relationship between output power and voltage,
and demonstrates how it varies with different levels of solar
irradiation. Figure 1 demonstrates that there is a specific point
during operation where the PV module reaches its maximum
usable power. At that instant, the system must be operated using
a Maximum Power Point Tracking (MPPT) technique. Creating
sustainable, efficient, and environmentally-friendly energy
sources is a top priority in contemporary science and

technology (Hasaneen and Mohammed, 2008). Solar power
systems, due to their extensive availability, are leading the way
in renewable energy research. Although the cost of photovoltaic
systems has decreased, improving efficiency continues to be a
difficult task. Both the ambient temperature and sunshine
intensity have a considerable impact on the output power of
these devices.

Unlike traditional power plants, solar energy production relies
heavily on unpredictable factors like sunlight irradiance and
temperature. This variability necessitates the use of Maximum
Power Point Tracking (MPPT) techniques. MPPT ensures a solar
photovoltaic (PV) cell operates at its optimal point for a given set of
environmental conditions. This optimization extends the lifespan
and improves the overall performance of the PV module. Figure 1
illustrates the relationship between output power, voltage, and
varying solar irradiation levels. It clearly demonstrates a specific
operating point where the PV module delivers maximum power.
MPPT algorithms are crucial for operating the system at this
optimal point.

Researchers worldwide are constantly striving to extract the
most energy possible from renewable resources, particularly PV
panels. Numerous MPPT algorithms have been proposed for both
standalone and grid-connected PV systems (Bendib et al., 2015).
Selecting the most suitable technique can be challenging as each
offers advantages and drawbacks (Bhatnagar and Nema, 2013).
Broadly, these methods can be categorized as traditional and
intelligent approaches.

Traditional MPPT algorithms, such as Incremental
Conductance (INC) and Perturb and Observe (P&O), are widely
used due to their simple implementation and minimal sensor
requirements (Teulings et al., 1993). The INC algorithm tracks
the maximum power point (MPP) by monitoring the incremental
and transient conductance of the PV system, efficiently delivering
power to the load (Wasynezuk, 1983). Studies have shown that P&O
and INC algorithms perform similarly under specific conditions
(Sera et al., 2013).

However, with advancements in Artificial Intelligence (AI)
and machine learning, researchers are exploring the potential of
incorporating AI techniques into PV MPPT algorithms for
improved accuracy, efficiency, and adaptability. AI-based
MPPT solutions leverage the processing capabilities of AI
algorithms to enhance MPP tracking and overcome limitations
of conventional methods. AI facilitates modeling and

FIGURE 1
The effect of solar radiation variation on the output of PV arrays.
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understanding the non-linear characteristics of PV panels under
various environmental conditions. Algorithms like Fuzzy Logic
Control (Dehghani et al., 2021), Artificial Neural Networks
(ANN) (Allahabadi et al., 2022), and Adaptive Neuro-Fuzzy
Inference System (ANFIS) (Ibrahim et al., 2021) introduce a
more dynamic and adaptable MPPT process. As shown in
Figure 2, these AI methods offer an alternative approach to
reaching the maximum power point by training on a dataset
to achieve optimal controller behavior. While AI-based methods
provide a promising alternative, they come with limitations such
as complexity, cost, and difficulties in handling partially shaded
irradiance scenarios.

The pursuit of developing more efficient and reliable Maximum
Power Point Tracking (MPPT) algorithms is still ongoing. Bio-
inspired algorithms inspired by natural phenomena hold significant
promise. Further exploration of bio-inspired approaches, like
improved versions of the Moth-Flame Optimizer for handling
diverse shading conditions (Zhao et al., 2023), could be a fruitful
avenue for future research. Additionally, metaheuristic optimization
techniques offer exciting possibilities. Advancements in algorithms
like the Novel Marine Predator Inspired Algorithm, focusing on
global MPP convergence, warrant further investigation, particularly
for complex shading scenarios (Qin et al., 2023). Finally, the
potential of hybrid approaches that combine the strengths of
traditional and intelligent techniques remains largely untapped.

Building upon works like the Hybrid Firefly and Grey Wolf
Optimization Algorithm, designed for rapidly changing
irradiance, researchers can explore even more sophisticated
hybrid models for a wider range of environmental challenges
(Babu and Hussain, 2023). These areas of exploration hold the
key to unlocking even greater efficiency and adaptability in future
solar power systems. Table 1 summarize the key aspect in the
literature.

Despite advancements in MPPT algorithms, there remains a
significant research gap concerning their performance when
interfacing with specific loads, such as the DC shunt motor,
which has not been extensively explored in existing literature.
Traditional MPPT techniques like Incremental Conductance
(INC) and Perturb and Observe (P&O) offer simplicity but may
exhibit limitations when connected to dynamic loads like the DC
shunt motor, which can introduce complexities due to its varying
characteristics and operational dynamics. Conversely, AI-based
approaches such as Artificial Neural Networks (ANN) and
Adaptive Neuro-Fuzzy Inference Systems (ANFIS) are known for
their adaptability but have not been thoroughly investigated in the
context of such loads.

This study aims to address this gap by analyzing the
performances of various MPPT algorithms (INC, P&O, ANN,
ANFIS) specifically when connected to a DC shunt motor load.
By focusing on this specific load type, the research aims to provide
valuable insights into how different MPPT algorithms perform in
real-world scenarios where dynamic loads play a crucial role in
system behavior.

The significance of this research lies in its contribution to
understanding how MPPT algorithms behave under the influence
of a DC shunt motor load, a scenario that has not been extensively
studied in the literature. By conducting a comprehensive analysis,
this study seeks to identify the strengths and weaknesses of each
algorithm in this particular context, thereby guiding the selection of
appropriate MPPT techniques for PV systems interfacing with DC
shunt motor loads.

The contributions of this research can be summarized as follows:

• Investigating the performance of various MPPT algorithms
(INC, P&O, ANN, ANFIS) when connected to a dynamic DC
shunt motor load.

• Providing valuable insights into how different MPPT
algorithms behave under the influence of a specific load

FIGURE 2
The traditional schematic diagram of operating DC shunt motors
with solar PV.

TABLE 1 Comparative tabular analysis of MPPT algorithms with references.

Algorithm Advantages Disadvantages Suitable for
conditions

Reference

Incremental Conductance (INC) Simple implementation Requires continuous sensor data Stable irradiance Teulings et al. (1993)

Perturb and Observe (P&O) Simple implementation Oscillates around MPP Stable irradiance Teulings et al. (1993)

Fuzzy Logic Control (FLC) Adapts to changing conditions Requires rule base development Rapidly changing weather Ansari et al. (2010)

Artificial Neural Network (ANN) Handles non-linearity Requires training data Diverse irradiance and
temperature

Allahabadi et al.
(2022)

Adaptive Neuro-Fuzzy Inference System
(ANFIS)

Combines ANN and FLC
benefits

More complex than other
methods

Complex operating conditions Wasynezuk (1983)
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type, facilitating informed decision-making in the selection of
MPPT techniques for PV systems.

• Bridging the gap in understanding the behavior of MPPT
algorithms in real-world scenarios where dynamic loads
like the DC shunt motor are prevalent, thereby contributing
to the advancement of MPPT technology in practical
applications.

These contributions hold significant implications for the design
and optimization of PV systems, particularly in scenarios where
dynamic loads play a critical role in system performance and
efficiency. By shedding light on the performance of MPPT
algorithms with a DC shunt motor load, this research aims to

pave the way for further advancements in the field of PV system
optimization and control.

The rest of this section will provide a detailed introduction to
various Maximum PowerPoint Tracking algorithms, including
Incremental Conductance, Perturb and Observe, Fuzzy Logic
Control, Artificial Neural Networks, and Adaptive Neuro-Fuzzy
Inference System. Section 2 delves into the configuration of the
Photovoltaic System, covering modeling, parameters used in this
research (Photovoltaic Array, Boost Converter, DC Shunt Motor),
and the methodology employed. Section 3 presents the obtained
results, analyzes the performance of the system under various
weather conditions with each algorithm, and discusses the key
takeaways from our research.

FIGURE 3
The maximum power point of the PV power.

FIGURE 4
The flowchart of the incremental conductance method.

Frontiers in Energy Research frontiersin.org04

Aifan G. Alsulami et al. 10.3389/fenrg.2024.1413252

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1413252


1.1 Incremental conductance method

Many traditional MPPT techniques rely on the principle that the
peak power point occurs when the P-V curve’s slope is zero (Ibrahim
et al., 2021). The rate of change as a measure of “power sensitivity” to
voltage adjustments.

• If the power increases with voltage (dPpv/dVpv) > 0, the
system is currently left of the optimal point, and raising the
voltage drives it closer to the peak.

• Conversely, if the power decreases with voltage (dPpv/dVpv) <
0, the system is to the right of the maximum point, and

lowering the voltage steers it in the right direction. This
concept is illustrated in Figure 3.

Based on this principle, algorithms like Incremental
Conductance (IC) continuously calculate (dP/dV), which
represents the “instantaneous conductance” of the system. It then
compares this value to the actual “incremental conductance”
calculated from voltage and current changes. Figure 4 visualizes
the process of adjusting voltage based on this comparison to
continuously track the MPP (Elbaset et al., 2020).

1.1.1 Perturb and observe
The system manipulates both current and voltage by adjusting a

converter’s operating cycle (Ebrahimi, 2017). When power falls
below peak efficiency, voltage is boosted. Conversely, if power
exceeds its optimum level, voltage is reduced. This “Perturb and
Observe” (P&O) approach is favored for its simplicity but suffers

FIGURE 5
The flowchart of the P&O method.

FIGURE 6
Membership function of E(K).

FIGURE 7
Membership function of ΔE(K).
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from power fluctuations around the peak point. See Figure 5 for a
visual representation of the algorithm (Hart, 2011).

1.2 Fuzzy logic control method

Fuzzy Logic Control (FLC) evaluates the data with varying
variables as opposed to explicit logic, which evaluates the data
using only true or false. In FLC, we have varying variables

between true or false which allows for a more accurate evaluation
of the data. The variables in fuzzy logic are converted into linguistic
variables to describe the different degrees of the data
(Eltamaly, 2020).

FLCs stand out in maximum power point tracking (MPPT) due
to their ability to perform effectively without requiring prior
knowledge of the photovoltaic (PV) system. This characteristic
makes FLCs particularly well-suited for scenarios with rapidly
changing weather conditions, where swift adaptation is crucial
(Ansari et al., 2010; AzzouziM, 2012).

During MPPT with FLCs, the system’s power output undergoes
continuous measurement and evaluation. To assess the trend
towards the MPP, the rate of change in power with respect to
voltage (dP/dV) is calculated. This information, along with the
current error (E(k)) and its rate of change (ΔE(k)), forms the
input to the FLC, guiding its decision-making process using Eqs
1, 2 as follows (Samosir et al., 2018):

E K( ) � P k( ) − P K − 1( )
V k( ) − V K − 1( ) (1)

ΔE k( ) � E k( ) − E k − 1( ) (2)
Analyzing the error signal, E(k), and its change, ΔE(k), helps

understand the location and movement of the MPP on the P-V
curve. The error value shows whether the MPP is to the left or right
of the present operating point, whereas the change in error reflects
the MPP’s direction of travel. Using these indications, a control
system may make smart modifications to approach the MPP and
maximize power generation (Elbaset et al., 2020; Ibrahim
et al., 2021).

Fuzzification converts the error E(k) and change of error ΔE(k)
into fuzzy inputs using a membership function, such as Negative Big
(NB) and Positive Big (PB). The inference engine will use the rule of
assessing the input to determine the FLC’s suitable linguistic value
output. The rules in the inference engine manage the boost
converter’s duty cycle and monitor power changes. De-
fuzzification converts the inference engine’s output from
linguistic variables to mathematical variables with crisp values, as
explained in (Wasynezuk, 1983). Figures 6–8 illustrate the
membership functions of E(K), ΔE(k), and the output
membership function. Table 2 shows the Fuzzy rules that were

FIGURE 8
Membership function of D(K).

TABLE 2 The fuzzy rules used in the inference engine stage.

E(k) ΔE(k)

NB NM NS ZE PS PM PB

NB NB NB NB NB NM NS ZE

NM NB NB NB NM NS ZE PS

NS NB NB NM NS ZE PS PM

ZE NB NM NS ZE PS PM PB

PS NM NS ZE PS PM PB PB

PM NS ZE PS PM PB PB PB

PB ZE PS PM PB PB PB PB

FIGURE 9
The architecture of a simple ANN.
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FIGURE 10
The structure of the ANN used in MPPT.

FIGURE 11
The Structure of used ANN in tracking the maximum power.

FIGURE 12
The structure of the used ANFIS.
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utilized in the inference engine stage that controlled the input and
output variables.

1.3 Artificial neural networks method

Artificial Neural Network (ANN) is an information processing
technique inspired by biological neurons to simulate the neurons in
human brains. ANN is a type of supervised learning algorithm,
which means that it learns by examples. When the ANN is subjected
to training sets, it adjusts the weights based on the learning rule
(Ebrahimi, 2017). The architecture of a simple ANN is shown
in Figure 9.

The simple ANN here consists of an input layer, hidden layer,
and output layer connected with the weights. Any layer may consist
of many neurons or nodes, as we see here in the hidden layer, which
contains five neurons. Multi-hidden layers can also be used in the
ANN. Any nonlinear system can be modeled using ANN with
suitable representation, making it useful for solving nonlinear
systems. Moreover, ANN is very useful for handling incomplete

or corrupted data because the ANN does not require any apriori
knowledge (Ebrahimi, 2017).

ANN can be used for pattern recognition and classification as
well as help in optimization problems, prediction, and control. In
power systems we can use ANN in Load forecasting, economic
dispatch, security assessment, fault location problems, and power
system stability and control (Hart, 2011). As in Eltamaly (2020), the
authors recommended using artificial neural networks (ANN) to
track the highest power point under various meteorological
circumstances. The ANN consists of three layers: the input layer,
which includes the irradiance and temperature, the hidden layer,
and the output layer, which estimates the voltage at the highest
power point, as shown in Figure 10. The temperature range is
25°C–55°C, and the sun radiation range is 0–1,000 W/m2. The
ANN was trained with the error back propagation approach.
Figure 11 depicts the structure used to track the MPP, with the
inputs being solar radiation (G) and temperature (T), and the
controller estimating the voltage at maximum power (Vmpp).
Then, the difference is attenuated based on the used system to be
the required change in the duty cycle ±ΔD.

FIGURE 13
The structure of the used ANFIS.

FIGURE 14
PV system, DC boost converter and DC shunt motor circuit schematic.
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1.4 Adaptive neuro fuzzy inference system

Instead of relying solely on human-created rules, the ANFIS
enhances performance by leveraging the capabilities of ANNs and
FLC. ANFIS employs an ANN to analyze input data, minimize error
[E(k)] and rate of change [ΔE(k)], and predict the desired output
voltage at the highest power point. This predicted output is supplied to
the FLC, which dynamically adjusts the duty cycle of the control
parameters to keep the system running at peak efficiency. Using
ANN in ANFIS serves two important purposes: first, it decreases
error when compared to completely hand-tuned rules, and second,
it automates the optimization process, removing the time-consuming
trial-and-error approach to rule and membership function creation.

Furthermore, FLC’s intrinsic tolerance for imperfect inputs improves
the overall robustness and efficacy of ANFIS (Wasynezuk, 1983).
Figure 12 shows the ANFIS architecture, which processes two input
signals [E(k) and ΔE(k)] using seven separate membership functions.
The resultant rule activations are then aggregated, and the output
membership function calculates the system’s maximum power voltage.

The construction of the ANFIS utilized to track the greatest
power point is depicted in Figure 13. The controller will estimate the
voltage at maximum power (Vmpp) from the inputs of solar
radiation (G) and temperature (T). Vmpp is then subtracted
from the voltage of the PV array, and the difference is attenuated
based on the used system to be the required change in the duty
cycle ±ΔD as discussed previously.

2 Configuration of the
photovoltaic system

The solar power generation unit, consisting of photovoltaic
panels and a controller, will harness the sun’s energy and provide
direct current electricity. This direct current will be electronically
adjusted by a dedicated converter before powering the DC motor
(detailed in Figure 14). Let’s delve deeper into the intricacies of this
solar power generation unit.

2.1 The Photovoltaic array

The PV system is comprised of semiconductor-based solar cells.
Solar cells convert solar energy (or sunlight) into electrical energy
(Ansari et al., 2010). The PV system’s current-voltage relationship is
as follows using Eq. 3:

Ipv � ID − Iph − Ish�Iph − I0 e
q

A.K.T Vpv+Ipv+Rs( )−1[ ] − Ipv.Rs + Vpv

Rsh
(3)

The equation illustrates how many critical elements influence
the current output of a photovoltaic (PV) cell. Here’s a breakdown of
every term:

Ipv: The overall electrical current generated by the solar cell,
measured in amperes (A).

Iph: The current produced by light shining on the solar cell, also
known as the photocurrent (A).

ID: The current that flows through the built-in diode of the solar
cell, typically in the opposite direction of the photocurrent (A).

Ish: The small amount of current that leaks through the solar
cell’s shunt resistance, usually negligible (A).

I0: The minute current that flows through the diode, even in the
absence of light, is known as the reverse saturation current (A).

K: Boltzmann constant, a fundamental physical constant related
to temperature and energy is equal to 1.38 × 10−23 (J/K).

q: The elementary charge of an electron is equal to
1.6 × 10−19 (C).

T: The temperature of the solar cell in kelvins (K).
VPV: The voltage measured across the output terminals of the

solar cell (V).
A: A quality factor that accounts for non-idealities in the diode

behavior, typically between 1.2 and 1.6 for crystalline silicon
solar cells.

TABLE 3 The parameter of the PV system including the PV array, dc-dc
Boost converter and DC shunt motor.

PV array data

Parallel strings 4

Series-connected modules per string 6

Maximum Power (W) 209.96

Cells per module (Ncell) 70

Open circuit voltage (V) 41.59

Short-circuit current (A) 7.13

Voltage at maximum power point (V) 33.81

Current at maximum power point (A) 6.21

Voc (%/deg.C) −0.36529

Isc (%/deg.C) 0.057097

Irradiances (W/m2) 1,000

Temperature cell (deg.C) 25

Model Parameter

Light-generated current (A) 7.1824

ID (A) 2.8024 × 10−10

Diode ideality factor 0.96937

Rsh (ohms) 55.2029

Rs (ohms) 0.40559

Boost Converter Data

DC Link Capacitance (mF) 1

Inductance (μH) 24

Outer Capacitance (mF) 5

Switching Frequency (kHz) 20

DC Shunt Motor

Armature circuit resistance of winding (ohms) 11.2

Field circuit resistance of winding (ohms) 281.3

Inductance of the armature circuit (H) 0.1215

Field circuit inductance (H) 156
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Rsh: The shunt resistance of the solar cell, a large resistance that
allows some current to leak (Ω).

Rs: The series resistance of the solar cell, a small resistance that
impedes the flow of current (Ω).

Simply expressed, the equation states that the solar cell’s output
current (IPV) is controlled by the balance of the light-generated
current (Iph) and the currents passing through the diode (ID) and
shunt resistance (Ish). The diode current is determined by the cell’s
temperature, voltage, and quality factor, whereas the shunt
resistance current is often minimal.

2.2 The boost converter

The power output of photovoltaic (PV) panels varies with the
amount of sunlight (irradiation). To remedy this, a DC-DC boost
converter is used. This device functions as a voltage regulator,
generating a constant output voltage regardless of irradiance. This

consistent voltage thus permits the use of the maximum power
point tracking (MPPT) approach. As previously stated, MPPT
optimizes a PV panel’s operating point to extract the most power.
The boost converter is crucial to this process because it changes both the
output voltage and current using the MPPT algorithm. The design of
the boost converter requires careful consideration of various elements.
These parameters may be computed using existing formulas, as
explained in Bendib et al. (2015).

Ca � D.Vpv
4.ΔVpv.f2. Id

D � 1 − Vpv

Vdc

La � Vpv. Vdc − Vpv( )
ΔILa.f.Vdc

ΔILa � 0.13 p Ipv p
Vdc

Vpv

FIGURE 15
Solar radiation in case 2.

FIGURE 16
PV (P, V, and I) when varying the W/m2.
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C1≥
Ppv

ΔVo.f. Vdc

where VPV (the input voltage), Vdc (the output voltage from the
converter), ΔVPV (the change in PV voltage), ΔV0 (the ripple of the
output voltage), IPV (the maximum current of the array A), Ia (the
boost converter inductor), ΔILa (the boost inductor’s ripple current),
PPV (the nominal power of the PV array (W), fs [the switching
frequency (Hz)], Ca (the PV array link capacitance (F), C1 (the DC
link capacitance), and D (the duty cycle of the boost converter that is
managed by the MPPT controller).

2.3 DC shunt motor

Instead of directly converting electrical DC power into
mechanical energy, this type of motor operates by interacting
with magnetic fields. Its unique parallel configuration, featuring
an armature winding directly connected to a field winding, enables it
to function. The complex behavior of this motor can be
mathematically modeled, as detailed in AzzouziM (2012).

Kϕ � ∑
7

n�1
α n If 7−n

FIGURE 17
Torque, speed, armature current and field current of the DC motor when varying the solar radiation.

FIGURE 18
Temperature variation in case 3.
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Lf
dif
dt

� Vf − if Rf + Radj( )

La
dia
dt

� Va − iaRa − Kϕω

J
dω
dt

� Kϕ ia − Tl

Where, La represents the armature circuit inductance, Ia represents the
armature circuit current, Va represents the armature circuit voltage, Ra
represents the armature circuit winding resistance, Lf represents the field
circuit inductance, Vf represents the field voltage, Rf represents the field
circuit winding resistance, ω represents the angular speed, Kϕ represents
the DC Shunt motor flux, and TL represents the motor torque.

The load torque (TL) would fluctuate in steps from 0 to 4 s. At t =
0 s, the motor works without load, with a maximum speed of
300 rad/sec and a starting current of 42 A. The field current
starts at zero and remains constant. At t = 0.5 s, the motor is
completely loaded, and the speed drops to around 130 rad/sec rather
than 250 rad/sec. In addition, the armature current rises from zero
to 7.2 amps. At 1.5 s, the motor is half loaded, and the speed
increases to 134 rad/sec due to the decreased load, while the
armature current reduces to 3.3 A. At = 2.5 s, the motor is
loaded at a fourth of its rated load, and the speed increases to
138 rad/sec while the armature current decreases to 1.6 A. Table 3
lists all of the PV system’s parameters, including the PV array, DC-
DC Boost Converter, and DC shunt motor.

FIGURE 19
PV (P, V, and I) under the C0 variation case.

FIGURE 20
Torque, speed, armature current and field current of the DC motor in the temperture variation case.
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3 Results and discussion

In this section we will study the performance of the system when
utilizing each algorithm under various weather conditions.

3.1 Case_1: solar radiation variation

A study investigated the performance of various algorithms for
MPPT in a solar power system under changing solar radiation levels,
Figure 15. The systemmaintained a constant temperature of 25°. The
algorithms were evaluated under full, half, and quarter loads of the
DC motor.

All algorithms performed well under the full rated load,
successfully tracking the maximum power point. However,
Figure 16 reveals significant drawbacks for P&O. P&O exhibited
slower response times compared to other algorithms. Fuzzy Logic
Control (FLC) introduced oscillations in the output power.

The limitations became more pronounced at lower loads. P&O
entirely failed to track the maximum power point when the DC
motor was loaded at half and a quarter of its capacity. In contrast,
Incremental Conductance (IC), Artificial Neural Network (ANN),
FLC, and Adaptive Neuro-Fuzzy Inference System (ANFIS) all
successfully tracked the (MPP). Notably, ANFIS excelled at
rapidly adapting to changing conditions. Under a quarter load
with a sudden increase in radiation, ANFIS tracked the MPP
within 2.4 s.

Furthermore, Figure 17 highlights the ability of ANN and
ANFIS to maintain the desired voltage level during fluctuating
radiation. P&O and IC, on the other hand, suffered from voltage
drops to minimum levels. All the findings we get in this case study

are like the findings of Chatterjee et al. (2008), Esmailian
et al. (2014).

3.2 Case_2: temperature variation

A study investigated the performance of various algorithms for a
system operating under steady solar radiation of 1,000W/m2

(Figure 18). As the motor load decreased from full to a quarter of
its rated capacity, the temperature rose from 25°C to 55°C. All
algorithms successfully tracked the maximum power point at all
load levels. However, P&O, IC, and FLC exhibited superior
performance compared to ANN and ANFIS. This advantage is
likely due to the limited temperature range (25°C–55°C) used to
train the ANN and ANFIS models (Figure 18). Interestingly, P&O,
IC, and FLC introduced current oscillations, whereas ANN and ANFIS
resulted in smoother current patterns. Electrical torque peaked at
roughly 19 N.m at full load and declined with reduced solar radiation
for all algorithms. All the findings we get in this case study, like the
findings of Fu et al. (2016), Gadalla et al. (2019) as shown in Figures 19,
20. The Results of the comparison will be shown in Table 4 below.

4 Conclusion

This paper investigated the performance of traditional
(Incremental Conductance and Perturb & Observe) and
intelligent algorithms (Fuzzy Logic Control, Artificial Neural
Networks [ANN], and Adaptive Neuro-Fuzzy Inference System
[ANFIS]) for maximum power point tracking (MPPT) under
rapidly changing environments. Traditional algorithms performed

TABLE 4 Comparison of MPPT algorithms.

Algorithm Pros Cons

(P&O) - Simple implementation - Slower tracking speed under full load with changing irradiance

- Good efficiency under full load with constant irradiance - Fails to track MPP under partial loads and changing irradiance

- May cause oscillations around MPP

(INC) - Simple implementation - Requires continuous sensor data

- Good efficiency under full load with constant irradiance - May struggle under rapidly changing irradiance

- May cause oscillations around MPP

(FLC) - Adapts well to changing conditions - Requires development of rule base

- Fast tracking speed under changing irradiance - May exhibit larger oscillations in output power

- Moderate complexity

(ANN) - Handles non-linearity effectively - Requires training data

- Very good efficiency under various conditions (except temperature variations) - Complex implementation

- No oscillations - May struggle under unforeseen operating conditions

(ANFIS) - Combines ANN and FLC benefits - Most complex of the presented algorithms

- Fastest tracking speed, especially under changing irradiance - Requires training data

- Very good efficiency (except temperature variations) - May struggle under unforeseen operating conditions

- No oscillations
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well under varying solar radiation, but Perturb & Observe struggled
at half and quarter loads. Intelligent algorithms excelled under rapid
solar radiation changes, with ANFIS achieving the fastest tracking
response. However, both ANN and ANFIS suffered limitations due
to limited temperature data used for training, hindering their
performance under temperature variations. Fuzzy Logic Control
(FLC) demonstrated the most consistent and reliable performance
across both changing solar radiation and temperature.

This study highlights the importance of considering training
data comprehensiveness for intelligent MPPT algorithms.
Additionally, the research focused on a DC motor load. Further
investigation is required to assess the generalizability of these
findings to other load types. The findings presented here hold
promise for various applications requiring efficient solar power
utilization, particularly those experiencing rapid environmental
changes. These include photovoltaic systems integrated into
buildings, electric vehicles, and autonomous mobile robots.

Future research should explore methods for incorporating real-
time temperature data into the training process for intelligent MPPT
algorithms. Additionally, investigating hybrid approaches that
combine traditional and intelligent algorithms could leverage the
strengths of each for broader applicability.
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