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With the increasing integrations of renewable energy resources into distribution
networks (DNs) and microgrids (MGs), the imperative for an effective market
scheduling mechanism becomes paramount to enhance the operational safety,
reliability, and economic efficiency of distribution grids. Taking advantage of bi-
level programming theory, this study meticulously formulates a comprehensive
optimization scheduling model for the multi-MGs distribution network. The
upper-level optimization objective is to minimize both the operational losses
and total costs of the DN. Concurrently, the lower-level optimization pursues the
maximization of daily operational revenue for MGs. Recognizing the pervasive
impact of the inherent uncertainty associated with renewable energy sources on
system safety and reliability, a cutting-edge scenario-based stochastic planning
framework is introduced. The methodology integrates a heuristic matrix
matching approach to effectively handle the intricate challenges posed by
uncertainties from wind and photovoltaic generations. Moreover, in
addressing the proposed nonlinear models, a sophisticated method is
employed, utilizing the second-order cone relaxation and linearization
methods. These methods meticulously transform the upper and lower-level
models into second-order cone planning and mixed-integer linear
programming issues, respectively. Finally, the proposed methodologies are
rigorously scrutinized and validated with intricate case studies, providing a
nuanced understanding of their efficacy. The empirical results underscore the
theoretical feasibility and superiority of the proposed scheduling scheme.
Notably, the operational performance of the DN as well as the economic
viability of multiple MGs can also be significantly improved.
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1 Introduction

Aiming at the targets of carbon emission peak and carbon neutrality, the large-scale
integrations of new energy generations is one of the important means to promote the
leapfrog development of energy structure transformation (National Energy Administration,
2021). Microgrids (MGs) can effectively integrate load clusters and distributed resources,
such as photovoltaics (PV), micro-gas turbine (MT), fuel cell (FC), wind turbine (WT),
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energy storage systems, etc., which are considered as an effective
form of renewable energy management and will play an important
role in future power distribution systems (Chen Q. et al., 2023; Chen
X. et al., 2023). However, with the continuous expansion of the
installed scale of renewable power generators, the proportion of
renewable energy generation and power electronic devices within
microgrids increases rapidly, leading to the prominent issues of
reduced inertia, frequency deviation, and power angle instability
(Chang et al., 2022; Elshenawy et al., 2022). As a result, advanced
intelligent scheduling and cooperative control methods are urgently
needed to improve the operational reliability and economy of MGs,
so as to better cope with emergencies, failures or bad weather and
meet the needs of the end users as well as the power grid (Bidgoli and
Ahmadian, 2022; Wang X. et al., 2023).

Microgrids, as systems integrating generation, distribution, storage,
and consumption, involve a plethora of uncertain information during
their planning and operation stages. These uncertainties can generally
be categorized into two aspects including uncertainties from renewable
generators and load, as well as uncertainties related to energy storage
and demand response (Prathapaneni and Detroja, 2019). To ensure the
efficient and stable operation of MGs under uncertainties, Nikmehr
et al. (Nikmehr et al., 2017) introduced an optimal scheduling approach
for MGs, emphasizing a microgrid-centric perspective. Their method
comprehensively addresses uncertainties in demand response andwind
power forecasting, offering a fresh angle to enhance the economic
viability and stability of MGs. Dixit et al. (Dixit et al., 2023)
concentrated on the energy management of MGs, with a thorough
consideration of integrating demand response and renewable energy,
aiming at enhancing the energy utilization efficiency of MGs through
optimal scheduling techniques. Shakti et al. (Singh et al., 2016)
incorporated renewable energy sources and energy storage systems
into the MGs, achieved cooperative operation among various
components within the MGs by coordinated scheduling strategy,
leading to an enhancement in overall performance of the system.
Wang et al. (Wang et al., 2018) achieved economically and reliably
operated MGs through prudent scheduling, taking demand response
into account. Lee et al. (Lee and Tuegeh, 2020) significantly enhanced
the robustness and stability ofMGs by optimizing scheduling strategies,
carefully considering the uncertainties associated with renewable
energy and load fluctuations. Shi et al. (Shi et al., 2021) utilized the
central limit theorem to describe the uncertainties from wind and PV
power output. Based on this, they established a multi-objective
scheduling model based on weakly robust optimization, with the
aims of minimizing MG’s operating costs and pollutant emissions.
Gao et al. (Gao et al., 2018) proposed a two-stage adaptive robust
optimization scheduling method for MGs, in which the K-means
clustering method was proposed to preprocess historical data and
obtain the probability distribution of wind power output. Qiu and
Xuan et al. (Xuan et al., 2017; Qiu et al., 2018) utilized confidence level
modeling to quantify the conservatism of wind power output
representation. They quantitatively analyzed the impact of wind
power output uncertainty on MG’s scheduling and constructed a
multi-objective optimization model with environmental and risk
costs as objectives.

The above-mentioned studies have provided profound insights
into the optimization scheduling of microgrids and distribution
networks (DNs), offering valuable references for future research in
this area. However, with the widespread adoption of renewable

energy sources, microgrids of various types now incorporate a
diverse mix of distributed energy resources. This evolution has
thrust the multi-microgrid-distribution system into the limelight
as a research focal point, offering prospects for heightened flexibility
and reliability within the DNs. In this complex landscape, MGs’
owners are compelled not only to coordinate among adjacent MGs
but also to collaborate closely with distribution system operators.
That is, MGs not only vie with each other for resources and market
share but also grapple with potential conflicts of interest in relation
to the distribution system. Consequently, the optimization
techniques tailored for individual MG can not be directly
employed to address the systemic optimization challenges
inherent in coordinating the operation of multi-MGs and the DNs.

In response to the aforementioned challenges, recently, two-
layer optimal scheduling models were proposed to achieve the
optimal operation of MGs and power systems. Scholars
worldwide have conducted extensive investigations on the
conceptual modeling (Wang K. et al., 2023; Jani and Jadid, 2023;
Lei et al., 2023; Luo et al., 2023), nonlinear solution algorithms
(Chen C. et al., 2023; Mi et al., 2023; Wu et al., 2023), and feasibility
verification (Li and Wang, 2023; Li et al., 2024) of these two-layer
optimal scheduling approaches. For example, Lei et al. (Lei et al.,
2023) developed a trading strategy for MGs within an intelligent
DN, taking into account the influence of carbon quotas. A bi-level
optimization method is employed to construct a trading model for
the distribution-side power market, with genetic algorithms and
sequential quadratic planning algorithms used to determine the
optimal clearing strategy for microgrids and the optimal scheduling
scheme for distribution system operators, respectively. Jani et al.
(Jani and Jadid, 2023) introduced a bi-level optimization approach
for day-ahead and real-time transactive energy markets in multi-
MGs, aiming to optimize the energy management schedules and
minimize operating costs, demonstrating significant cost reductions
through cooperative strategies and battery energy storage
integration. Wu et al. (Wu et al., 2023) proposed a cooperative
energy trading model for multi-MGs in DNs, integrating peer-to-
peer trading under network constraints. It employs a two-stage
approach utilizing CVaR-based risk quantification and Nash
Bargaining theory for cooperative welfare maximization and
market clearing, respectively, showcasing improved cost
reduction and voltage security through its suggested energy
trading model. Li et al. (Li et al., 2024) proposed an iterative bi-
level scheduling approach combining multi-step reconfiguration
and objective reduction to address challenges posed by
distributed renewable energy inDNs, resulting in significant
reductions in network losses, voltage deviations, and
improvements in peak shaving and valley filling. Nevertheless,
current optimization efforts concerning multi-microgrid and
distribution network primarily concentrate on fundamental
optimization issues related to system operation. Further
exploration is warranted to elucidate the impact of source-load
uncertainty on operational performance. Scenario-based stochastic
optimization and robust optimization techniques have
demonstrated certain advantages in handling uncertainties (Li
et al., 2019; Zhang and Xu, 2019; Wang Y. et al., 2023). But the
intrinsic correlations between different uncertainties remains
inadequately explored within the multi-layer optimization
operation scheduling problems.
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Therefore, taking into account the uncertainty associated with
PV/wind power output, power load, and electricity price, this paper
proposes a two-layer optimal scheduling scheme to facilitate the
operational decision-making for both multi-microgrids and the
distribution system incorporating an electrolytic hydrogen
production unit. The specific work and contributions can be
summarized as follows. (1) The proposed model can not only
minimize the operational losses and total costs within DNs but
also maximize daily operational revenue for MGs. Moreover, the
potential conflicts of interest of different MGs are considered. (2) To
effectively address uncertainties, a scenario matrix based on the
heuristic moment matching method is presented, enabling accurate
characterization of random moments and correlations among
historical scenarios. Additionally, to efficiently address the
nonlinear nature of the two-layer models, the second-order cone
relaxation and linearization methods are utilized to transform it into
second-order cone programming and mixed integer linear
programming problems, subsequently solved using commercial
solvers. (3) Ultimately, through simulation case studies, the
proposed scheme’s outstanding performance in enhancing the
economic, environmental, and operational stability of the system
is validated.

2 System architecture and
mathematical modeling

2.1 System architecture

Built upon the two-layer optimization theory, this paper delves
into addressing the intricate challenges of integrating multi-MGs
within distribution networks. In this framework, the upper level is
denoted as the leader optimization problem, while the lower level
constitutes the follower optimization problem. Each level
encompasses distinct objective functions, constraints, and
decision variables (Zhang and Xu, 2019; Li et al., 2024).
Specifically, the upper-level optimization aims to minimize
operational losses and the total cost of the regional distribution

system, whereas the lower-level optimization seeks to maximize the
daily operational profit of the MGs. To contend with uncertainties, a
scenario stochastic programming framework and heuristic moment
matching method are employed. Additionally, the second-order
cone relaxation and the linearization methods are utilized to
linearize both the upper and lower-level models. The structure of
the proposed optimization framework is illustrated in Figure 1, with
the detailed construction process of the distributed two-layer model
depicted in Figure 2.

2.2 Upper-level optimization model

2.2.1 Objective function
The objectives of upper optimization model are to minimize the

system operating losses and the total costs of DN.

1) The operation losses of distribution system primarily include
electrical energy conversion losses in resistors, inductors,
capacitors, and other components, as well as the losses in
transmission lines, transformers, and other equipment.
Reducing the operating loss of distribution system is a
crucial objective for enhancing power utilization efficiency
and lowering energy costs. The calculationmodel for operation
losses can be formulated as follows.

G1 t( ) � min∑T
t�1

∑
i,j( )∈L

P2
ij t( ) + Q2

ij t( )
U2

ij,N

Rij (1)

where, G1(t) is the operating losses of the distribution system; T the
total running time; L the branch circuit. Pij(t) and Qij(t) are
respectively the active power and reactive power of branch ij
(line from node i to node j) at the scheduling time t. Uij is the
rated voltage of branch ij; Rij the resistance of branch ij.

2) In addition to the operation losses, another optimization
objective function is also established to minimize the
operation costs of distribution network, so as to reduce the

FIGURE 1
Optimization scheduling framework of distribution network with multi-MGs.
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power costs and provide more economical and reliable power
services to the end users. The operating costs of distribution
network mainly include: CDM

t (the net cost of selling/
purchasing electricity from the DN to day-before wholesale
market during the scheduling time t) and CMGi

t (the cost of
power exchanged between the DN operator and the ith MG).

CDM
t � ρDM

t × PDM−DSO
t (2)

CMGi
t � ρRMt ∑N

i�1
PMGi−DSO
t( ) (3)

where ρDM
t and ρRMt are the electricity prices of wholesale market/

retail market at time t (¥/MWh) respectively; PDM−DSO
t is the

exchanged electricity (MW) between the distribution network
and the wholesale market at time t, and PMGi−DSO

t is the
exchanged electricity (MW) between the distribution network
and the i microgrid at time t. N indicates the total number of
microgrids.

Therefore, the objective function of minimizing the cost of the
distribution system is:

G2 t( ) � Min ∑24
t�1

CDM
t + CMGi

t( )⎡⎣ ⎤⎦ (4)

3) Considering the operating losses and total costs of the
distribution system comprehensively, the upper-level
optimization objective function model can be expressed as:

Fupper t( ) � min ω1G1 t( ) + ω2G2 t( )[ ] (5)
where Fupper is the upper objective function; ω1 and ω2 are the weight
coefficients utilized for balancing the two goals. Through extensive
consultations, along with rich literature references, it is concluded
that the operating losses and total costs are both important,
especially for DN with multi-MGs (Li and Wang, 2023; Wu
et al., 2023; Li et al., 2024). Consequently, in this paper, ω1 and
ω2 are determined as 0.5 through user settings.

2.2.2 Constraint functions
2.2.2.1 Node voltage constraints

In power systems, the voltage level of each node needs to be kept
within a reasonable range to ensure the stability and reliability of the
system. Namely,

Ui,min ≤Ui t( )≤Ui,max (6)
where Ui,min and Ui,max are the upper and lower limits of the
node voltage.

2.2.2.2 Power flow constraints
Power flow constraints prevent device overload and improve the

safety and reliability of distribution system. The power constraint
and voltage constraint equations are shown as (7) and (8),
respectively.

∑
i∈u j( )

Pij t( ) − P2
ij t( ) + Q2

ij t( )
U2

ij t( ) Rij[ ] + PPCC
j t( ) � ∑

h∈v j( )
Pjh t( ) + PLoad

j t( )

∑
i∈u j( )

Qij t( ) − P2
ij t( ) + Q2

ij t( )
U2

ij t( ) Xij[ ] + QPCC
j t( ) � ∑

h∈v j( )
Qjh t( ) + QLoad

j t( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(7)

U2
j t( ) � U2

i t( ) + P2
ij t( ) + Q2

ij t( )
U2

ij t( ) R2
ij +X2

ij( )
− 2 Pij t( )Rij + Qij t( )Xij[ ] (8)

where u(j) and v(j) are the branch first node sets, respectively
with node j as the end node and node j as the first node; Xij is the
reactance value of the branch ij; Pjh(t) and Qjh(t) are the active
and reactive power of branch jh at time t, respectively; PLoad

j (t)
andQLoad

j (t) are the active and reactive powers of the load node at
time t, respectively; PPCC

j (t) and QPCC
j (t) are the active and

reactive powers at the PCC junction point of distributed
generation equipment. Ui(t) and Uj(t) are the voltage of nodes
i and j at time t.

FIGURE 2
Flowchart of the bi-level scheduling framework of distribution network with multi-MGs.
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2.2.2.3 Power trading constraints in wholesale market
This constraint serves to restrict the maximum capacity of

power system to either sell or buy power, thereby ensuring that
transactions occur within a controlled range to uphold system
stability and security.

PDM−DSO
t ≤P DM−DSO

max (9)
where PDM−DSO

max is the maximum transaction power (MW) between
the distribution system operator and the wholesale market.

2.2.2.4 Microgrid power trading constraints

PMG−DSO
min ≤PMGi−DSO

t ≤PMG−DSO
max (10)

where PMG−DSO
min and PMG−DSO

max represent the minimum and
maximum allowable exchange powers (MW) between the
distribution system and the MGs.

2.3 Low-level microgrid optimization model

2.3.1 Objective function
Considering day ahead as the scheduling time scale, an optimization

model is formulated aiming to optimize the economy and environmental
sustainability of MGs. In the model, several economic objectives such as
the costs associated with starting and stopping electrolytic hydrogen
production equipment, fuel cell equipment, electricity buying and selling,
penalties for wind and solar abandonment, and equipment maintenance
costs are considered. Moreover, environmental objectives like the costs
associated with carbon, nitrogen, and sulfur oxide emissions are also
taken into account. Combining the requirements of both economy and
environmental protection, the lower-level optimization objective function
is defined as maximizing the daily operating income, as calculated with:

Flower � max f1 − f2 − f3 − f4 − f5 − f6( ) (11)
and,

f1 � ∑T
t�1

couttPout,t − cintPin,t( )
f2 � ∑T

t�1
αΔPpv,t + βΔPwt,t( )

f3 � ∑N
i�1

KOMi × Pi t( )[ ]

f4 � ∑N
i�1
∑3
j�1
γj · EPij · Pi t( )

f5 � ∑K
k

∑T
t�1

CM,bootAM
on,k,t + CM,shutAM

off,k,t( )
f6 � ∑J

j

∑T
t�1

CN,bootAN
on,j,t + CN,shutAN

off,j,t( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where f1 is the income from electricity sales of MGs and superior power
grid; f2 the cost of wind and light abandonment; f3 the operation and
maintenance costs ofMGs; f4 the environmental cost; f5 the start-up and
shutdown costs of electrolytic cell in hydrogen production system; f6 the
fuel cell start-stop cost. cint and coutt are the unit prices of the electricity
purchased and saled atmoment t.Pin,t andPout,t are the electricity power
purchased and saled at moment t. α and β are the penalty coefficients
from the abandonment of PV and wind power. ΔPpv,t and ΔPwt,t are the

abandonment power from PV and wind farms. KOMi is the unit power
maintenance factor of the ithMG’s supply; Pi(t) the output power of the
ith MG at time t; γj the conversion coefficient of the jth pollutant; EPij
the emission of pollutant j in the ithMG.CM,boot andCM,shut are the start-
up and shut-down costs of the Mth electrolytic cell. AM

on,k,t and AM
off,k,t

donate the start-up and shut-down action of the Mth electrolytic cell.
CN,boot and CN,shut are the start-up and shutdown costs of the Nth

hydrogen fuel cell. AM
on,l,t and AM

off,l,t represent the start and
shutdown action of the Nth hydrogen fuel cell.

2.3.2 Constraint functions
2.3.2.1 Power balance constraints

Pmg,t + Ppv,t + Pwt,t + Pin,t + Pdis,t +∑K
k

PM
k,t

� ∑J
j

PN
j,t + Pch,t + Pout,t + Pload,t (13)

where Pdis,t is the discharge power of the battery at time t; Pch,t the
charging power of the battery at time t. Pmg,t, Ppv,t and Pwt,t are the
absorbed power of turbine units, photovoltaic and wind power at
time t, respectively. Pload,t the electricity load at time t; PN

k,t the
working power ofM electrolytic cell at time t; PN

l,t the working power
of the N fuel cell at time t. Pin,t and Pout,t are the powers of MGs
received from and output to distribution network.

2.3.2.2 Power exchange constraints:

0≤ Pgrid t( )∣∣∣∣ ∣∣∣∣≤PPCC
i,max t( ) (14)

where Pgrid(t) is the power exchanged between the MGs and power
grid at time t; PPCC

i,max(t) the maximum power interaction of
the PCC node.

2.3.2.3 Start and stopmodel constraints of multiple types of
electrolyzers and fuel cells

∑T
t�1
AM

on,k,t ≤AM,max
on

AM
on,k,t−αM − AM

off,k,t � UM
k,t − UM

k,t−1
AM

on,k,t ≤ 1 − UM
k,t−1

AM
off,k,t ≤UM

k,t−1∑T
t�1
AM

off,k,t ≤AM,max
off

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(15)

2.3.2.4 Start and stop frequency constraints of multiple
types of electrolyzers and fuel cells

∑T
t�1
AN

on,j,t ≤AN,max
on

AN
on,j,t−αM − AN

off,j,t � UN
j,t − UN

j,t−1
AN

on,j,t ≤ 1 − UN
j,t−1

AN
off,j,t ≤UN

j,t−1∑T
t�1
AN

off,j,t ≤AN,max
off

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)
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where AM,max
on , AM,max

off and AN,max
on , AN,max

off are the upper limits of
startup and shutdown times of the electrolytic cell and hydrogen fuel
cell within a day, respectively.

2.3.2.5 Operating power limits of multiple types of
electrolyzers and fuel cells

PM
k,t ≥ UM

k,tP
M,min + ∑αM−1

τ�0
AM

on,k,t−τP
M,boot⎛⎝ ⎞⎠

PM
k,t ≤ UM

k,tP
M,max + ∑αM−1

τ�0
AM

on,k,t−τP
M,boot⎛⎝ ⎞⎠

PM
k,t − PM

k,t−1
∣∣∣∣ ∣∣∣∣≤ UM

k,tΔPM,max + 1 − UM
k,t( )PM,max( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)

2.3.2.6 Ramping rate constraints of multiple types of
electrolyzers and fuel cells

PN
j,t ≥ UN

j,tP
N,min + ∑αN−1

τ�0
AN

on,j,t−τP
N,boot⎛⎝ ⎞⎠

PN
j,t ≤ UN

j,tP
N,max + ∑αN−1

τ�0
AN

on,j,t−τP
N,boot⎛⎝ ⎞⎠

PN
j,t − PN

j,t−1
∣∣∣∣∣ ∣∣∣∣∣≤ UN

j,tΔPN,max + 1 − UN
j,t( )PN,max( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(18)

where PM,min and PM,max are the upper and lower limits of the
working powers in the Mth electrolytic cell when it is turned on.
PM,boot is the electrolytic cell load; ΔPM,max the maximum climbing
power per time unit of the Mth electrolytic cell in working state; αM

the start-up delay; UM
k,t the switching state of the electrolyzer. P

N,max

and PN,min are the upper and lower limits of the operating power of
the hydrogen fuel cell in the startup state. PN,boot is the hydrogen
power consumed during startup; ΔPN,max the maximum climbing
power per time unit under startup state; αN the fuel cell startup delay;
UN

l,t the switching state of the fuel cell.

3 Uncertainties modeling and
optimization model solving algorithm

3.1 Uncertainties modeling

To address the uncertainties in the input data such as wind and
PV output power, load demand and electricity price, in this paper, a
scenario-based stochastic programming method is employed, in
which a heuristic moment matching method is utilized to
construct the scenario matrix that approximates the stochastic
properties of historical scenarios by reducing the number of
scenarios. While the inclusion of additional scenarios may
enhance the fidelity of the model approximation, it also leads to
a significant increase in computational complexity. To capture
random moments and correlations effectively, the heuristic
moment matching method employs cubic transformation and
matrix manipulation, wherein the first four random moments
including expectation, standard deviation, skewness, and kurtosis
are selected to preserve the stochastic nature of the scenarios (Ehsan
et al., 2019).

For a sample scenario matrix that includes M PV outputs, wind
power outputs, load demands and electricity price scenarios, firstly,
the correlation matrix (R) of hourly PV output, wind power output,
load demand and electricity price and the target time (Mi,k) are
calculated. Then, the relevant standardized value (MNT

i,2 ) can be
calculated as follows.

MNT
i,1 � 0, MNT

i,2 � 1

MNT
i,3 � MT

i,3����
MT

i,2

√( )3, M
NT
i,4 � MT

i,4

MT
i,2( )4

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (19)

where i = 1, 2, 3, four represents the four considered uncertain
parameters, and k = 1, 2, 3, four represents the first four
random moments.

Furthermore, Nm scenarios are randomly generated from Nw

uncertainties, and the normal distribution N (0, 1) is considered to
determine the matrix XNm×Nw. Use the matrix transformation
shown as (20) to satisfy the correlation matrix R by converting
XNm×Nw to the matrix YNm×Nw.

γ � L × X � ∑i
j�1
Lij × Xi

R � LLT

⎧⎪⎪⎨⎪⎪⎩ (20)

where L is the lower triangular matrix of the correlation matrix
determined by Cholesky decomposition.

FIGURE 3
Solution flowchart for bi-level optimization scheduling models.
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The standard normal random variable YNm×Nw is converted to a
non-normal random variableZNm×Nw using the cubic transformation to
satisfy the standardized target moment of the historical scenario.

Zi � αi + βiγi + κiγ
2
i + λiγ

3
i (21)

Since, the constants αi, βi, κi and λi can be calculated.
Then, the correlation error (εc) and the time error (εm) are

calculated. And the proposed algorithm tends to converge when the
calculated error is less than the predefined threshold (5%).

εc � ∑Nm

i�1

������������������������
2

Nω Nω − 1( )∑Nf

i�1
∑Nf

i�1
RG
il − RNT

il( )√√
(22)

εm � ∑Nm

i�1
MG

il −MNT
il

∣∣∣∣ ∣∣∣∣ +∑4
k�2

MG
ik −MNT

ik

∣∣∣∣ ∣∣∣∣/MNT
ik

⎛⎝ ⎞⎠ (23)

Finally, the scenario matrix Ω that includes PV output, wind
power output, load demand and electricity price can be calculated
with (24).

ΩM �
����
MT

i,2

√
× Zi +MNT

i,3 (24)

3.2 Solving algorithm for
optimization models

The constraints within the upper-level optimization model
encompass nonlinear component, such as power flow constraints,
rendering the upper-level scheduling a high-order non-convex

problem. Traditional methods often struggle to attain the global
optimal solution due to this complexity. To address these challenges,
in this paper, the second-order cone relaxation technique is
employed to linearize the power flow equations and other related
constraints and inequalities within the distribution network
containing multiple microgrids, thereby transforming them into
linear second-order cone programming equations for solution (Guo
et al., 2013). Simultaneously, the lower-level optimization model
entails the determination of output ranges and optimization
operation problems, in which the nonlinear components are
addressed through piecewise linearization. Subsequently, the
lower-level optimization problem is reformulated as a mixed-
integer linear programming problem to be solved (Zhao et al., 2014).

Once the upper-layer and lower-layer models are transformed
into second-order cone programming and mixed integer linear
programming problems, respectively, the proposed two-layer
optimal scheduling model can be efficiently solved using the
commercial solver CPLEX. The PCC power calculated by the
upper-layer optimization model serves as the scheduling
instruction for the purchase/sale of power by the lower-layer
MGs allowing the lower-layer MGs’ optimization model to
conduct optimization calculations under specified PCC power
conditions. If a solution is found, the optimization process is
completed, and the final scheduling result is generated. However,
if no solution is obtained, the optimization results will be fed back to
the upper-level model, which adjusts the upper and lower limits of
PCC power and recalculates until a convergent optimal feasible
solution is achieved. The solution flow of the adopted two-layer
optimization model is illustrated in Figure 3.

In Figure 3, the specific implementation process of the mixed
integer linear programming algorithm mainly includes four aspects.
1) Define optimization problems and objective functions, 2) define
the decision variables; 3) define the constraints and add them to this
optimization problem; 4) solve the optimal value using MATLAB
software. The CPLEX solver employs the branch and bound method
as its fundamental framework for solving mixed integer linear
programming problems. Within this framework, the solver
initially branches integer variables to construct a search tree.
Subsequently, it utilizes a linear programming solver to address
the linear relaxation problem for each node in the search tree.
Finally, the search process is optimized through pruning strategies,

FIGURE 4
Structure of the IEEE33 node test network.

TABLE 1 Output parameters of each unit in DN.

Equipment Access node Pmin/kW Pmax/kW

MT1 24 100 1,000

MT2 27 100 1,000

DE1 22 200 1,500

DE2 7 200 1,500
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heuristic methods, and other advanced technologies to efficiently
locate the optimal solution or ascertain the infeasibility of the
problem. Upon completion of the solution process by the CPLEX
solver, the initial scheduling strategy is derived. This includes
determining the exchange power be-tween the microgrid and the
main grid for each time period, specifying the output of wind
turbines and photovoltaics, and regulating the charging and
discharging power of the energy storage system.

4 Case studies

4.1 Structure and parameters of case studies

To validate the effectiveness of the proposed scheduling strategy,
enhancements are made to the standard IEEE33 node example, with
a comprehensive analysis conducted on the distribution system
featuring multiple MGs. The basic structure of this system is
established as Figure 4. The upgraded IEEE33-node system
comprises 3 MGs, namely, MG1, MG2, and MG3, with the
distributed power sources connected to nodes 7, 22, 24, and 27,
and the MGs linked to nodes 11, 18, and 31. The MGs configuration
encompass various components such as PVs, WTs, MT, hydrogen
storage systems (HES), FCs, and battery energy storage (BES). The
parameters of the distributed power supplies in the DN are detailed
in Table 1, while the MGs’ parameters are provided in Table 2. It
should be noted that in this paper, a satellite time synchronization-
based dual-mode switching strategy for MGs is used (Bi et al., 2022).

Based on the time-of-use electricity prices and the on-grid
electricity prices of renewable energy in China, the electricity
purchase and sales prices for each period are presented in

Table 3. Additionally, Table 4 outlines the pollutant emission
factors of various micropower sources along with their
corresponding conversion costs. Utilizing a scheduling period of
24 h, the PV and wind output prediction curves within the MGs, as
well as the load demand curves between the DN and each MG, are
normalized, as depicted in Figure 5. To conduct testing on the
network, Figure 4 was utilized, and MATLAB software was
employed for solving and verification purposes.

4.2 Optimization scheduling result analysis

Utilizing the output and load curves depicted in Figure 5 as
input, the proposed dual-layer optimal scheduling model is solved
following the process outlined in Figure 3. Subsequently, the optimal
scheduling results for the distribution network nodes and internal
component of the 3 MGs are obtained, as illustrated in Figure 6.

Based on the data analysis, owing to the consideration of
environmental protection and economic objectives, the load of
the MGs is primarily fulfilled by controlled FCs and renewable
energy sources. The load demands of the 3 MGs steadily increase
over time. During low-load valley price periods from 00:00 to 06:
00 and from 21:00 to 24:00, the HESs absorb electrical energy from
the MGs to produce hydrogen, resulting in a total scheduling power
of 610.38 kW. Conversely, during peak hours, the FCs discharge
power to the system while the HESs stop working. This enables the
MGs to achieve output power balance and fully capitalize on the
time difference in electricity prices to minimize the respective
operating costs.

Furthermore, overall, the MGs export surplus power to
distribution system, thereby alleviating the grid’s burden during

TABLE 2 Output parameters of each unit in DN.

Power source Pmin/kW Pmax/kW Maintenance cost/¥·kW-1 Climbing speed/kW·min-1

FC 10 150 0.03 2

MT 10 100 0.05 2

DE 10 120 0.05 —

HES −150 −10 0.05 —

PV 0 150 — —

WT 0 150 — —

TABLE 3 Electricity purchase and sale prices in each period.

Cycle type Time Purchase price/(¥/kWh) Selling price/(¥/kWh)

Peak price 11:00–14:00 0.83 0.65

18:00–21:00

Block price 06:00–11:00 0.49 0.38

14:00–18:00

21:00–24:00

Valley price 00:00–06:00 0.17 0.13
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periods of high load, and contributing to the smooth operation of
the distribution network. Meanwhile, due to the low maintenance
costs and minimal pollution emissions, FCs exhibit the lowest
operating and environmental protection costs. For instance, the
unit nitride emissions amount to only 0.152% of those from gas
turbines, while the unit sulfur dioxide emissions are just 36.76% of
MTs. Thus, as depicted in Figure 6, during MGs’ operation, taking
MG 1 as an example, the fuel cell power generation (1846.72 kW) is
pretty after wind power (1931.44 kW), accounting for 39.8% of the
total power generation.

Figure 7 shows the power exchange curves (PCC power) between
the 3 MGs and the DN. It can be seen that when the loads of MGs are
low relative to the power generations, the PCCpower is positive, and the
MGs output power to DN.On the contrary, when the load demands are
relatively large, the MGs purchase power from DN through the PCC,
mainly in the 11:00-18:00 period. The PCCpower output can reduce the
output of other power supplies, and which can coordinate the power
flow balance of the network and maximize the use of renewable energy.
TakingMG 1 as an example, the total positive power is 966.45 kWwith
PCC positive power time accounting for 83.33%, the negative total
power is 237.18 kW with the PCC negative power time accounting for
only 16.67%.

Upon solving the two-layer optimal scheduling model, the
specific numerical optimization results for the DN are acquired,
depicted as Figure 8. Additionally, the network’s operating loss and
voltage offset are also investigated, as given in Figure 9. In scenario 1,
multiple MGs are integrated into the DN, whereas in scenario 2,
these MGs remain unintegrated.

As depicted in Figure 8, the line losses of the distribution system
exhibit a positive correlation with the load demands, with the daily
optimization operation of the DN primarily catering to the load
demand through the output of each power supplies. In scenario 1,
the maximum power loss is reduced from 72.5 kW in scenario
2–68.1 kW. This represents a reduction of 10.2% in the sum of
power losses and a 6.8% decrease in the total sum of power losses.

As seen from Figure 9, in scenario 1, the maximum voltage offset is
0.132 p. u, compared to 0.103 p. u in scenario 2. This reduction to

TABLE 4 Pollutant emission factors.

Emission type Converted cost/(¥/kg) Emission coefficient/(kg/kWh)

MT DE FC

NOx 25.563 3.6 × 10−2 2.2 × 10−3 4.0 × 10−6

CO2 0.064 1.6 × 10−3 1.8 × 10−3 4.2 × 10−3

SO2 6.432 6.8 × 10−6 4.5 × 10−4 2.5 × 10−6

FIGURE 5
Typical daily output and load curves. (A) is “Forecast curves of the
output power from WTs and PVs.” (B) is “Load demand curves of DN
and MGs.”

FIGURE 6
(A) is Microgrid 1 scheduling optimization results, (B) is Microgrid
2 scheduling optimization results and (C) is Microgrid 3 scheduling
optimization results.
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0.103 p. u results in approximately a 25.6% decrease in the sum of node
voltage offsets compared to scenario 2. During the peak period of MGs’
load, the DN must supply electricity to the MGs, leading to significant
network losses and voltage fluctuations. Conversely, during the low-
load period, the MGs deliver electricity to the DN, thereby reducing the
output of DN units and subsequently minimizing network losses and
voltage fluctuations. In comparison with the optimal operation results,
it is evident that although the integration of multiple MGs may slightly
increase the overall operational costs of DN (13,356 yuan for scenario
1 and 11,390 yuan for scenario 2), it significantly reduces the operation
losses and voltage fluctuations of the DN system.

For sensitivity analysis, during the 01:00-06:00 period, the exchange
power between the microgrid and the PCC of DN remains relatively
stable. However, as depicted in Figures 7–9, an increase in electricity
prices and PV output leads to a corresponding rise in exchange power of
the 3MGs. Notably, during 11:00-14:00 period, the predicted PV
output exhibits a continuous increase, resulting in a 2–4 kW rise in
power loss within DN under both scenarios. Additionally, a voltage
deviation for 0.016-0.018 p. u. is observed. This phenomenon is
attributed to the fluctuation of renewable energy, coinciding with
peak electricity prices. Consequently, the exchange power between
MGs and the DN experiences varying degrees of decrease, with MG
two showing the most significant reduction from 9.46 kW
to −95.32 kW. Similarly, during the peak electricity price period
from 18:00 to 21:00, the exchange power between the MGs and the
DN decreases. However, during this timeframe, the predicted PV
output de-creases as well, resulting in a reduction in power loss and
voltage offset within the DN under both two scenarios.

5 Conclusion

This paper presents a bi-level optimal scheduling model for a
multi-MGs and DN system. By introducing a scenario-based
stochastic framework and the heuristic moment matching
method, the multi-source uncertainties are effectively addressed.
An improved IEEE33 node test system is established, and the
effectiveness of the proposed approaches is verified through case
studies. Specific conclusions are as follows.

(1) Despite that the integration of multiple MGs into the DN
leads to an increase in the overall operation costs, it
significantly reduces the operation losses (by approximately
6.8%) and voltage fluctuations (by about 25.6%). This helps
achieve an effective balance between the operational
economy, environmental protection, and stability of DN.

(2) Through the optimal scheduling scheme, the MGs’ load can
primarily be met by controlled FCs and renewable energy,
enabling smart utilization of electricity prices and consequent
reduction in respective operating costs.

(3) During the periods with low MGs’ load demands, the MGs can
function as a power source and sell electricity to the DN.
Conversely, during periods of high load, the MGs act as
consumers and purchase power from the DN through the
PCC. This process ensures power flow balance within the
network while maximizing the utilization of renewable
energy sources.
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