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The global energy demand is increasing due to climate changes and carbon
usages. Accumulating evidences showed energy sources using offshore wind
from the sea can be added to increase our consumption capacity in long term. In
addition, building offshore wind farms can also be environmentally advantageous
compared to onshore farms. The assessment of wind energy resources is crucial
for the site selection of wind farms. Currently, short-term wind forecast models
have been developed to predict the wind power generation. However, methods
are needed to improve the forecasting accuracy for ever-changing weather data.
So, we try to use deep learning methods to predict long-term wind energy for
identifying potential offshore wind farms. The experimental results indicate that
PredRNN++ prediction model designed from the spatiotemporal perspective is
feasible to evaluate long-term wind energy resources and has better
performance than traditional LSTM.
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1 Introduction

In the past centuries, fossil energy was the main source of energy for mankind. While
enjoying the high-quality life brought by the advancements of fossil energy, it also brings a
series of consequences such as resource depletion, environmental degradation and climate
changes. In particular to climate changes, our planet’s average surface temperature has risen
about 0.99°C from the late 19th century (Data source: NASA’s Goddard Institute for Space
Studies). In addition, a change driven largely by an increased carbon dioxide and other
human-made emissions into the atmosphere have been observed. Due to the increase of
human activities since the industrial revolution, the current global warming trend is
particularly significant (Doughty, 2013). Therefore, researching to meet global energy
demands can bring enormous opportunities to human society and the energy industry
(BUSINESS WIRE, 2017).

According to the latest assessment of global energy consumption by the International
Energy Agency (IEA), global energy demand is growing at the fastest rate in a decade, which
is an outstanding performance driven by a strong global economy. With the rapid growth of
energy consumption, renewable energy (including solar, wind and hydro power) is the
fastest growing energy source between 2018 and 2050 (S&P Global Market Intelligence,
2019). Among these fastest-growing energy sources, wind energy has become an important
source of zero-carbon power, which is inseparable from the sharp decline in wind turbine
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costs and increasing installed capacity. The global wind energy
distribution, as shown in Figure 1, illustrated there is huge
potential for wind energy resource over the water (Possner and
Caldeira, 2017). The evidence showed the offshore wind speed is
much higher than onshore wind speed, and the ocean area is also
much larger than the land area. Such aligns with the recent evidence
to utilize offshore wind to increase the capacity for the repository of
energy (Rusu, 2020).

From 2010 to 2018, the global offshore wind power market grew
by nearly 30% annually, thanks to rapid technological
improvements. In the next 5 years, about 150 new offshore wind
power projects are planned to be accomplished, which indicates that
offshore wind power is playing an increasingly significant role in
power supply. If the world’s optimum offshore wind farm site is
completed, it can exceed the current global electricity consumption
demand. Although offshore wind energy has the advantages of clean,
renewable, zero-carbon, etc., there are still great difficulties in the
utilization of offshore wind energy, especially for the construction of
offshore wind farm. Once these constraints are broken, offshore
wind power will greatly alleviate the global energy crisis and climate
problems. Especially for the densely populated and energy
demanding Asian regions, such as China, South Korea and Hong
Kong, the zero-carbon power generation technology of offshore
wind power is taken as the key planning project in the future to
reduce greenhouse gas emissions (FINANCIAL TIMES, 2018).

However, the wind as energy supply of offshore wind farm is
unstable and uncontrolled. So, how to control turbines and predict
the instability of wind power in advance has become an urgent
problem for wind farms. In recent development, machine learning
and deep learning in artificial intelligence technology supports the
great progress of prediction methods. It can be found that from the
above examples and related research literatures that the great
majority of the current wind power forecasting is based on a
very short-term prediction analysis (Heinermann and Kramer,
2016; Khan et al., 2019; Optis and Perr-Sauer, 2019). Usually

wind power or wind speed can only be predicted for the next
few days or weeks. But the studies for long-term wind energy
prediction and assessment are scarce. In fact, the accurate and
effective assessment of wind energy resources is of great
significance to the study of large-scale wind power grid
connection and demonstrating the feasibility of wind power
project construction. It is the basic work of wind farm
construction especially for the offshore wind farm.

The current assessment of offshore wind energy resources is
generally carried out in the history of 1–30 years, and the operation
period of offshore wind farms can reach more than 20 years at
present, so the assessment of offshore wind farm site selection
should be more concerned about wind energy potential in the
next few decades. Besides, the accuracy of the offshore wind
energy potential assessment results is directly related to the risks
and profits of offshore wind farm investment. So, the first thing to do
in building offshore wind farms is through the meteorological,
geographic conditions and other aspects of comprehensive
investigation to select the areas with rich wind energy resources.
Currently, the classification and assessment methods for in offshore
wind energy potential assessments are not uniform and difficult to
quantify. The uncertain factors of wind energy resource assessment
have not be classified and scientific enough, reasonable and operable
assessment methods should be proposed. From the perspective of
prediction methods, wind power prediction methods include:
physical model method, statistical model method, machine
learning method, and deep learning method, etc. The physical
modeling method mainly relies on numerical weather prediction
(NWP) to determine meteorological information for future periods.
This method does not rely on the accumulation of historical data
and can make predictions through high-precision numerical
weather forecasting. It is suitable for short-term forecasting and
the prediction model when there is sufficient meteorological
geographic location data. The statistical modeling approach,
grounded in statistics, integrates NWP with historical wind

FIGURE 1
Global wind energy distribution.

Frontiers in Energy Research frontiersin.org02

Zhang et al. 10.3389/fenrg.2024.1419549

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1419549


power data and employs fitting techniques to establish an input-
output mapping, ultimately achieving the objective of wind power
prediction. Traditional statistical models can capture linear
relationships well, but perform poorly in non-linear relationships.
Due to the wind power prediction is a highly nonlinear problem
relying on variations in meteorological data, the predictability of
features is harnessed to construct a model during input-output
mapping, thereby enabling the prediction of wind power.
Compared to traditional statistical methods, machine learning
methods can effectively predict nonlinear time series data with
significantly improved accuracy. The model performs well with
small sample data, but has certain limitations when dealing with
large amounts of data. On the basis of machine learning, deep
learning methods have been further proposed, which can better
process time series and spatial series predictions of large amounts of
data. A LSTM-CNN joint model is proposed for predicting the wind
power of multiple wind turbines to provide accurate power
scheduling (Chen et al., 2021). Wind power prediction based on
WT-BiGRU-attention-TCN model using deep learning methods
provides a new solution to high-precision forecasting of wind
power generation (Chi and Yang, 2023). And the digital twin of
wind farms via physics-informed deep learning is developed to
achieve the accurate in situ full field prediction including wind
farm assessment, monitoring, power forecasting and scheduling
(Zhang and Zhao, 2023). Learning from the experience of wind
power prediction, we can also try to introduce machine learning and
deep learning into the assessment of offshore wind energy resources
to predict the offshore wind speed to evaluate the offshore wind
energy potential.

In order to make more rational and efficient use of offshore wind
energy resources and maximize the economic benefits of offshore
wind farms and shorten its payback period of investment, optimize
the offshore wind farm site selection from a long-term point of view
is very necessary. Therefore, using deep learning methods to
improve the scientific and accurate estimation of wind energy
potential and predict its spatial distribution is a very worthwhile
study for wind power development.

2 Key parameters and data

As for the potential prediction of offshore wind energy, we
mainly consider the wind speed and wind energy density as the key
parameters to be measured. Wind energy density, also known as
wind power density, is the wind energy that the airflow passes
through the unit cross-section area vertically in unit time, and the
unit is watt per square meter. It is the most convenient and valuable
quantity for describing the wind potential of a place. Wind energy
density is directly proportional to the third power of wind speed and
air density. The calculation formula of wind energy density is shown
in Eq. 1.

ω � 1
2
ρυ3 (1)

ω express wind energy density (w/m2), ρ express air density (kg/m3),
υ express wind speed (m/s).

Additionally, the value of air density depends on temperature
and altitude. The formula is shown in Eq. 2.

ρ � 353.05/T( ) exp − 0.034 z/T( ) (2)
T in the above formula is the thermodynamic temperature scale
(Kelvin temperature scale or absolute temperature scale), and z is the
altitude of the wind turbine hub (m).

This calculation method can also be used for offshore wind
energy potential assessment. After identifying the key parameters,
we need to obtain accurate and reliable meteorological data. In this
paper, we have chosen the data provided by the ECMWF as the data
source. The meteorological dataset of the ECMWF is abundant and
can be selected and downloaded easily. With rich data, the
assessment of offshore wind energy potential has more reference
value. Moreover, we have chosen the dataset “ERA5 monthly
averaged data on single levels from 1979 to present” which is
downloaded from the Climate Data Store (CDS) was launched
online by the Copernicus Climate Change Service (C3S) operated
by the ECMWF. The dataset is mostly derived from the six-hourly
ERA-Interim reanalysis dataset by bias adjusting against
observations using different methods. Data are then aggregated
on daily, monthly, seasonal, and annual averages.

According to the research content and the above key parameters,
we select the variables, shown in Table 1, that we need to use from
the dataset. On the basis of the latest statistics abroad, the rotating
diameter of large-scale wind turbine blades (that is, the range swept
by the front blades) was nearly 100 m in 2014. Therefore, we select
an existing offshore wind turbine with a general height of 100 m to
evaluate the wind energy resources and because wind energy can
only be transformed from the airflow passing through the unit cross-
section area vertically. So, we need to calculate the horizontal speed
of air moving, which is the u component of wind. There is no air
density parameter for the atmosphere in the dataset, so we need to
calculate the air density from the temperature. The temperature
available in the dataset is that of air at 2 m above the sea surface and
needs to later be revised into 100 m’s temperature of air. As for the
ocean parameter, we can get the parameters of air density and wind
speed directly from the dataset.

In the geographical scope of the study, the North Sea of Europe
as the main object of offshore wind resource assessment is quite
suitable because the development of offshore wind power in Europe
is more advanced and large-scale. The geographical conditions of the
North Sea are also highly suitable for the construction of wind farms.
By 2019, the cumulative installed capacity of offshore wind power in
the North Sea had reached 16,908 MW, accounting for 77% of the
total offshore wind power in Europe (WindEurope, 2020). There are
many offshore wind farms under planning and construction.
Therefore, the potential assessment of offshore wind energy
resources in the North Sea area has important reference value.

The data we used in this dataset are of monthly averaged
reanalysis by hour of day from 1979 to 2018, with s total of
11,520 (24 h × 12 months × 40 years) time points of sub-
datasets for each variable. The geographical range is 51°N–61°N,
4°W–9°E, covering the entire area of the North Sea. And the data
have been regridded to a regular latitude–longitude grid of 0.25° for
the reanalysis of the variables for atmosphere and 0.5° for ocean
waves. Therefore, each sub-dataset contains 2,080 (40 × 52)
parameters of atmosphere and 1,040 (20 × 26) parameters of
ocean waves. The dataset can be regarded as a series of image
text composed of two-dimensional arrays; see Figures 2, 3.
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Of note is that the wind speed in the dataset is that at 100 m
altitude, but the temperature is at 2 m. Therefore, we need to correct
the temperature to 100 m so that we can calculate the air density
using Formula 2. According to the empirical formula, for every
100 m above sea level, the temperature drops 0.6°. So, the
temperature at 100 m is 2 m temperature subtract 0.588 K
(100–2)*0.6). The modified air density formula is shown in Eq. 3.

ρ100m � 353.05/ T2m − 0.588( )( ) exp − 0.034 z/ T2m − 0.588( )( )
(3)

Regarding data format, NetCDF was developed by the
Unidata project scientists of the University Corporation for
Atmospheric Research (UCAR), aiming at the characteristics
of scientific data. NetCDF format data are widely used in
atmospheric science, hydrology, oceanography, geophysics,
and many other fields. Mathematically, the data stored in
NetCDF comprise a single valued function with multiple
independent variables. In the function f (x, y, z. . .) = value,
the independent variables x, y, and z of the function are called
“dimension” or “axis” in NetCDF, and the value of function in

NetCDF is called “variables.” However, the NetCDF file cannot
be directly read by computer programming language. So, we need
to write a program to convert NetCDF format data into CSV
format, which stores data as plain text for subsequent input
model processing.

3 Methodology–deep learning

3.1 Prediction models

In the process of deep learning development, people have
established different types of neural networks with their own
characteristics through continuous innovation and optimization,
such as convolutional neural networks (CNN), generative
adversarial networks (GAN), recurrent neural networks (RNN),
deep belief networks (DBN), and so on (Pouyanfar et al., 2018).
Among them, CNN and RNN are the most widely used at this stage.
They constitute the basis of most of the pre-training models in
deep learning.

TABLE 1 Dataset of the key parameters.

Data type Monthly averaged reanalysis by hour of day

Year 1979–2018

Month January to December

Time 00:00–23:00

North Sea region North 61°N, West 4°W, South 51°N, East 9°E

Format NetCDF (Network Common Data Form)

Variables 100 m u-component of wind
2 m temperature

Air density over the oceans
Ocean surface stress equivalent 10 m neutral wind speed

Horizontal resolution 0.25° × 0.25° 0.5° × 0.5°

FIGURE 2
Data set of the atmosphere. FIGURE 3

Data set of ocean surface.
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The building block of CNN is a filter, called kernels. Kernel
function is used to extract correct and related features from input
data by convolution. The convolution of the image with filters
generate the feature map to capture spatial features from the
image (Krizhevsky et al., 2017). Therefore, CNN is often used in
image classification, recognition, and video processing projects.
While the RNN established a recurrent connection in the state to
state transfer. Therefore, the chain structure of RNN successfully
solves the problem of time sequence prediction and has been widely
used in audio recognition, machine translation and other sequence
data (Mandic and Chambers, 2001).

Although RNN can solve the time sequence problem, it also has
some deficiencies like gradient explosions and vanishing gradient
problems. To address the fact that the classical RNN cannot deal
with the long-term memory problem, an LSTM networks model is
proposed (Yu et al., 2019). LSTM establishes a long-term delay
mechanism on the basis of RNN, which can avoid gradient
vanishing or explosion problems by keeping a continuous error in
the memory unit. Therefore, LSTM is a more suitable neural network
for our wind energy potential prediction compared with RNN.

When evaluating the potential of wind energy resources, we should
not only pay attention to the changes in the time dimension but also the
spatial distribution. Therefore, Combined with the excellent
performance of CNN in spatial feature extraction, ConvLSTM
network was proposed in 2015 (Shi et al., 2015). ConvLSTM is
equivalent to using a convolution operation instead of the fully
connected method used as input to the state to state transfer process.

However, in ConvLSTM the time dimensions are independent
of each other. To solve this problem, the team from Tsinghua
University introduced a new building block called ST-LSTM in
2017 (Wang et al., 2017). It is equivalent to Adding an M state (the
state of spatiotemporal memory) to the original LSTM. In this way,
the drawback of ConvLSTM is solved.

Although the ST-LSTM already has a very good performance, some
problems remain, such as the recursion depth and the gradient vanishing.
Therefore, further improvement is made to put forward PredRNN++ in
2018 (Wang et al., 2018), which is themodel we choose to use. Compared
with ST-LSTM, the difference lies in the change of the cell fromST-LSTM
to Causal LSTM and the addition of the gradient highway unit (GHU)
structure between the first and second stack structures. The input of the
GHU is the output of the current lower layer and the input of the previous
time. It is similar to get the two inputs go through an update gate in GRU
(Gate Recurrent Unit) (Dey and Salem, 2017). Therefore, the GHU
connects the input of the current time and the previous time. The result of
adding this new unit is that the gradient is no longer a strand of line
propagation, but can directly spread between the first layer and the
second layer. In other words, the propagation distance is shortened. And
the network will not be as deep as before, which can effectively solve the
problem of gradient vanishing.

3.2 Experiments

After the comparison and analysis of the above prediction
models, we choose to bring our dataset into PredRNN++ (the
model with the best performance of those above) for training.
We use TensorFlow 2.0, which is more efficient and easy to
deploy, as a framework to build, train, and validate the models

(Singh and Manure, 2019). To take into account the accuracy of the
prediction results and the training speed, we build the neural
network model into five layers, which are composed of four
causal LSTMs and one GHU. The GHU is set between the first
and second layers. The structure is shown in Figure 4.

All kernel filter sizes in the model are set to 3, and the Adam
optimization algorithm was used in the training process (Wang and
Wang, 2020). As for the setting of the other hyper parameters, such
as the learning rate or step size factor, it controls the update ratio of
the weights. A larger value (such as 0.3) will have faster initial
learning before the learning rate is updated, while a smaller value
(such as 0.00001) will make the training converge to better
performance. So, we set 0.001 as the initial learning rate. As for
the objective function, we use the L1 + L2 loss to simultaneously
enhance the sharpness and the smoothness of the generated frames.
The L1and L2 are shown inEqs. 4, 5. As for the performance
measurement of the model, we use the mean squared error
(MSE) most commonly used in regression problems as the loss
function to measure the accuracy of the prediction results. The
calculation formula of the MSE is shown in Eq. 6, where ti is the true
value, and pi is the predicted value.

L1 � ∑
n

i�1 yi − f xi( )∣∣∣∣
∣∣∣∣ (4)

L2 � ∑
n

i�1 yi − f xi( )( )2 (5)

MSE � 1
N

∑
N

i�1 ti − pi( )2 (6)

On the division of datasets, we divided 11,520 time sequence
samples into a training set and a test set according to the ratio of 9:
1. As the change of wind speed is seasonal, we divide the data samples
according to the time series of 1 year. Therefore, the training set is
divided into 36 batches of 288 each, and the test set is divided into
4 batches of 288 each. All these batches are brought into the model for
iterative training. Finally, 40 years of wind energy data were brought
into the optimizedmodel, which was used to predict the wind energy in
the next 20 years which is the average operating period of an offshore
wind farm and visualize the data to create an average wind energy
density map of the North Sea in the next 20 years.

At the same time, we set up a typical LSTM model also using
TensorFlow and the same dataset to compare with the prediction
results of the PredRNN++.

4 Results and discussions

4.1 Results

We bring the 100 m u-component of the wind energy density
dataset calculated by wind speed and temperature, and ocean surface
stress equivalent 10 m neutral wind energy density dataset calculated
by wind speed and air density into PredRNN++ and LSTM models,
respectively, for training and testing.

The results are shown in Figures 5, 6 above. It can be seen from
the figure that the MSE of PredRNN++ and LSTM are very close at
the beginning of the training process. The MSE of LSTM in wind
speed prediction is even higher. With the increase of time steps, the
MSE of the two models are constantly improving, and the MSE of
PredRNN++ being smaller than that of LSTM. This illustrates that
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the PredRNN++ model considering spatial characteristics has more
accuracy results for wind energy density prediction in a given region
than the LSTM model which only considers the time sequence.

Moreover, we can see that with the extension of the time steps
PredRNN++ performs much better than LSTM. This is due to the
fact that the GHU layer in PredRNN++ can effectively transfer the

FIGURE 5
The prediction result of 100 m u-component wind
energy density.

FIGURE 6
The prediction result of ocean surface stress equivalent 10 m
neutral wind energy density.

FIGURE 4
The structure of PredRNN++ model.
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FIGURE 7
Average wind energy density over the next 20 years at 100 m

FIGURE 8
Average wind energy density over the next 20 years at 10 m above ocean surface.
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gradient in a very deep feedforward network and prevent the rapid
vanishing of the long-term gradient. Therefore, the performance of
PredRNN++ is more suited to long-term prediction.

Figure 7 is a map of wind energy density at 100 m altitude
horizontal direction for the next 20 years (2020–2039) predicted by
PredRNN++. The lighter the color, the greater the wind energy
density like the yellow area. And the darker the color, the lower the
wind energy density like the dark blue area. The wind energy density
in the central part of the North Sea is relatively high, which is
suitable for the construction of large-scale offshore wind farms. The
highest wind energy density is around 57.5 °N and 8°E, which can
reach 449.02W/m2. And Figure 8 is a map of wind energy density at
10 m above ocean surface for the next 20 years (2020–2039)
predicted by PredRNN++. The white area on the map represents
the land, the lighter the same color, the higher the wind energy
density. In the north central part of the North Sea, the wind energy
density is high, the highest wind energy density is up to 839.45 W/
m2. Because the wind speed measured 10 m above the sea surface is
the natural wind speed, it is higher than the wind speed at 100 m of
the atmosphere only considering u-component, and the wind energy
density is higher.

Combining the results of the atmosphere condition and ocean
surface condition, we can see that if you choose to build a large-
scale offshore wind farm in the future, it is more appropriate to
choose an area with a higher wind energy density at an altitude of
100 m in the atmosphere. If you choose to build an offshore wind
farm that integrates wind and wave energy, it is more rational to
choose an area with a higher wind energy density 10 m above the
sea surface, since the area with higher wind energy also has greater
wave energy.

4.2 Discussions

In future research, the accuracy rate of this model can be
further improved with more data. And the prediction model can
be further optimized. We can further improve the PredRNN++
model by combining it with other machine learning methods. For
example, using the machine learning model XGBoost to extract
corresponding temporal features, and using a CNN model to fuse
temporal features into sea surface temperature data, and
extracting spatial dependencies between the fused sea surface
temperature data. On this basis, the PredRNN++ model was used
to integrate spatiotemporal dependencies into the data sequence,
avoiding the problem of gradient vanishing (Du et al., 2022).has
used this method achieved better experimental results than the
PredRNN++model in predicting sea surface temperature. With
the latest advances in graph neural networks (GNNs), time series
analysis methods based on GNNs have significantly increased
(Jin et al., 2023). These methods can explicitly model the
relationship between time series and variables, while other
traditional deep neural network-based methods are difficult to
achieve. Many time series data have characteristics in time and
space, and different variables in the series capture information
about different locations (spaces), which means it not only
contains temporal information but also spatial relationships.
So, GNN can play an important role in wind speed and power
prediction, capturing the complex spatiotemporal dynamics of

wind speed patterns, providing accurate predictions, and helping
to effectively manage wind energy resources.

We can also add marine-related factors near the sea surface, such
as the significant height of wind waves and mean wave period as
variables put into the model. The model can also be applied to satellite
weather maps for weather and climate prediction, which may achieve
better results than a two-dimensionalmatrix dataset. Additionally, it is
possible to consider extending this predictionmodel to the assessment
of wind energy resources in onshore wind farms. Further extending
the application scenarios, this wind power prediction model can also
be applied in buildings equipped with wind and photovoltaic
distributed power sources (Li et al., 2024; Ding et al., 2024).

5 Conclusion

Based on the results and discussions presented above, the
conclusions are obtained as below:

(1) It is feasible to use deep learning to predict and evaluate long-term
wind energy resources, especially with the PredRNN++ model.

(2) PredRNN++ prediction model designed from the
spatiotemporal perspective, which has better performance
than a traditional LSTM.

(3) We can use the predicted wind energy map for the next
20 years as a reference to select the location of
the wind farm.
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