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Refined identification of the key
parameters of power system
synthesis load model based on
the improved butterfly algorithm

Zongyao Wang, Gaoyang Yan*, Yi Rong and Han Wang

Department of Electrical Engineering, Nanchang Institute of Technology, Nanchang, China

With the improvement in power grid simulation accuracy requirements, the
existing typical load model parameters can no longer meet the accuracy
requirements and become the short board that restricts the stable operation of
power system. This paper mainly proposes an improved butterfly optimization
algorithm based on the population optimization and dynamic strategy
(PODSBOA) for commonly used synthesis load model (SLM) parameters to
realize the refined and personalized identification of SLM key parameters:[pu,
qu, Rs, Xs, Rr, Xr, Km, and Mi f ]. The results indicate that in the 2-s load data
experiment, the identification error is 0.02, the identification accuracy is 4.09,
and the convergence time of the PODSBOA is 12.048 s. In the 5-s load data
experiment, the identification error is 0.013, the identification accuracy is 6.65,
and the convergence time of the PODSBOA is 23.405 s. The identification errors
in the two sets of experiments are reduced by 0.02023–0.06443 compared with
other algorithms. The comparison results of different load model parameter
identification algorithms indicate that the improved PODSBOA proposed in this
paper has high recognition accuracy and fast convergence speed and solves
the problem of low accuracy and instability of the identification results of the
existing identification schemes.

KEYWORDS

grid simulation accuracy, improved butterfly algorithm, synthesis load model, key
parameters, refined identification

1 Introduction

The planning, designing, scheduling, and operation decisions of the power system
are based on the theoretical support of power system simulation calculation, which is
based on the load model of the power system. The accuracy of calculation is closely
related to the accuracy of load model parameters. Due to the complex and scattered
characteristics of the load, the mathematical model used for the load part in the
simulation calculation and analysis of large-scale power systems at this stage is usually
based on versatility rather than accuracy. The simulation results obtained by using these
rough load models cannot meet the accuracy requirements and the requirements for
guiding power system dispatching, operation, and decision-making in the current complex
grid environment. In order to ensure the stable operation of the power system, we
propose higher requirements for the accuracy of the simulation analysis and calculation
of the power system. The load model cannot continue to use typical parameters but

Frontiers in Energy Research 01 frontiersin.org

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1419830
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1419830&domain=pdf&date_stamp=2024-11-20
mailto:institutional176@163.com
mailto:institutional176@163.com
https://doi.org/10.3389/fenrg.2024.1419830
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1419830/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1419830/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1419830/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1419830/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Wang et al. 10.3389/fenrg.2024.1419830

needs to establish a new load model for the load nodes through the
identification of actual measured data with the short-term and long-
term changes in the load (El-Shimy et al., 2018; Kosterev et al., 1999).

At this stage, modeling by identification is gradually becoming
the mainstreammodeling method, but there are still some problems
in obtaining accurate load model parameters through identification
(Ma et al., 2008). Power system simulation analysis and decision-
making pay more attention to the overall characteristics of load
clusters. However, due to the complexity of load characteristics in
the actual power grid and the huge differences between different
nodes, it is difficult for the load model to accurately describe the
overall load characteristics and have good generalization ability
in different operating environments in practical applications. It
is mainly reflected in two aspects: load data and identification
parameters. Specifically, there are few measured data and
many parameters to be identified in the synthesis load model
(SLM), which is prone to the dispersion problem of unstable
identification results and limits the accuracy of model parameter
identification. Identifying the load model parameters under less
known conditions will cause the problem of the model parameters
being unable to be uniquely identified or unidentifiable, and
when there are too many identified parameters, the model
parameter identification results will have dispersion problems
(Zad et al., 2017).

In recent years, the research focus in the field of load
modeling has gradually developed with regard to the use of
multi-source data and the establishment of generalized synthesis
load models for wide-area load modeling problems (Zhao et al.,
2020; Ju et al., 2007). At this stage, better results have been
achieved in terms of positive deterministic model structure and
accurate quantitative model parameters through new techniques
and multiple methods (Zhou et al., 2018). Based on the SLM
structure, the strategy of identifying only part of the parameters
has become one of the most important research directions; setting
the parameters with low sensitivity or unimportant parameters as
typical parameter values can effectively improve the identification
speed (Wang and Han, 2010; Yuan et al., 2021). An effective
reconfiguration framework can minimize the distribution loss
while the energy demand and load change (Mahdavi et al.,
2021). An isolated microgrid dynamic economic load-dispatching
method based on particle swarm optimization (PSO) algorithms
is studied (Jordehi et al., 2020). Bu et al. (2020) proposed a
method combining deep learning to adjust parameter weights to
efficiently identify parameters. Simulation evolutionmethods can be
used to solve the problem of load model-parameter identification.
Intelligent optimization algorithms in simulation evolutionmethods
are increasingly used in model-parameter identification. The
introduction of intelligent optimization algorithms such as particle
swarm algorithm, genetic algorithm, and butterfly algorithm into
the field of power system-load model-parameter identification
results in a notable performance (Bai and Jing 2015; Chen et al.,
2022; Kang et al., 2021). However, the intelligent optimization
algorithm has problems such as insufficient optimization efficiency
and easily falls into local optimality. Therefore, how to improve
the algorithm is the key to improving the parameter-identification
effect of the synthesis load model. In this novel research, swarm
intelligence algorithms such as the improved firefly algorithm
(Zivkovic et al., 2022; Bacanin et al., 2021) have successfully

combined machine learning and been applied to scenarios such
as hyperparameter optimization and feature selection. They yield
excellent results and show significant potential. They yield excellent
results and show significant potential.

In a word, the difficulty of obtaining load identification data and
the inherent structure and parameter limitations of the load model
make parameter identification very complicated. The problems of
the parameters being unable to be uniquely identified or even
unidentifiable and the dispersion of identification results need to
be solved urgently (Cheng and Ju 2003). In order to obtain more
accuratemodel parameters and improve the practicability of the load
model in the actual power grid, based on the overall measurement
method and the related technology of identification modeling using
the intelligent optimization algorithm, it is necessary to further
carry out more specific research on the identification strategy and
the model-parameter identification algorithm of the load model
to improve the accuracy and stability of the model-parameter
identification results and obtain a more accurate load model to
improve the accuracy of the power system simulation calculation. In
summary, for solving the problems of low accuracy and instability in
parameter identification, it is necessary to carry out further research
on the identification strategy of load models and model parameter
identification algorithms.

Existing parameter identification schemes have problems such
as insufficient identification accuracy and instability caused by
scattered identification results.This paper solves the above problems.
The main contributions are as follows:

(1) The butterfly optimization algorithm (BOA) is improved based
on the population optimization strategy and adaptive dynamic
parameter strategy.The search performance of the algorithm is
optimized; it has higher convergence accuracy and speed than
other algorithms.

(2) An identification scheme for key parameters of the SLM
is proposed based on the importance of parameters,
which improves the stability and accuracy of the
identification scheme.

The paper is organized as follows: Section 1 introduces and
reviews the research results related to the load model parameter
identification of the power system; Section 2 introduces the
structure of the traditional SLM and its parameter identification
method; then introduces the theoretical principle, optimization
strategy, and calculation process of the improved butterfly
algorithm; and finally presents the overall process of SLM
parameter identification using the proposed improved butterfly
algorithm; Section 3 verifies the recognition accuracy, recognition
error, and convergence time of the SLMparameter recognition based
on practical cases, which confirms the superiority of the method.
The proposed identification scheme sets the parameters that are
insensitive to the output as typical parameters, which reduces the
parameters to be identified, improves the identification accuracy
of the model, and solves the problem of result dispersion that is
prone to occur in the process of identifying all parameters. The
improved butterfly algorithm has a superior effect on the parameter
identification of the SLM. It solves the problems of complexity and
low accuracy of parameter identification caused by the acquisition
of current load identification data and the limitation of the load
model structure and parameters.

Frontiers in Energy Research 02 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1419830
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Wang et al. 10.3389/fenrg.2024.1419830

FIGURE 1
Structure diagram of the SLM.

FIGURE 2
Equivalent circuit diagram of the synthesis load model.

TABLE 1 Typical values of non-key parameters.

Parameter A B H Xm XD P0 Q0 RD

Typical values 0.85 0.0 2.0 3.5 0.085 1 1 0

TABLE 2 Identification interval range of key parameters.

Parameter Rs Xs Rr Xr pu qu Km Mi f

Upper limit 0.5 0.2 0.5 0.5 2.0 2.0 0.8 0.8

Lower limit 0.1 0.08 0.05 0.01 0.1 0.1 0.1 0.3

2 Materials and methods

2.1 Synthesis load model identification

In the actual grid structure, the load is indirectly connected
to the substation outlet busbar through the distribution network
formed by 110-kV and 35-kV transformers and transmission lines.
The load model needs to consider the influence of the impedance in
the distribution network at all levels. In order to make the model
load characteristics closer to the requirements of the actual grid

FIGURE 3
Schematic diagram of population symmetric amplification.

and to the premise of “qualitative accuracy” of the model structure,
the SLM, which directly considers the influence of distribution
network impedance, is proposed (Ju et al., 2010; Tang et al., 2009).
In the SLM, the actual injected power at the 110-kV node flows
into the lower load through the distribution network equivalent
impedance, which truly reflects the influence of the impedance in
the distribution network.

The SLM consists of six parts in total, as shown in Figure 1,
namely, the 110-kV busbar connected to the load model, the
distribution network equivalent impedance, the virtual busbar
connected to all loads, the static load section (ZIP), the dynamic
load section (motor), and the reactive power compensation device
(reactive power compensation in the form of capacitors in the
model). The equivalent circuit of the synthesis load section in the
SLM is shown in Figure 2, where the equivalent circuit port voltage
is equal to the virtual busbar voltage UL.

The third-order induction motor state equation describing the
dynamic load of the SLM is shown in Equation 1:

{{{{{{{{{
{{{{{{{{{
{

de′imx

dt
= − 1

T′d0
[e′imx + (X−X

′)iimy] + se
′
imy

de′imy

dt
= − 1

T′d0
[e′imy − (X−X

′)iimx] − se
′
imx

ds
dt
= 1
2H
(TM −TE)

. (1)

The relevant parameters are defined in Equation 2:

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

X = Xs +Xm

X′ = Xs +
XmXs

Xm +Xs

T′d0 =
Xm +Xr

Rr

Xrm = Xm +Xr

Xp = XsXr +XsXm +XrXm

. (2)

Among them, the electromagnetic torque coefficient and
mechanical torque parameters are shown in Equations 3, 4:

TE = e
′
imxiimx + e

′
imyiimy, (3)
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TM = (A(1− s)2 +B(1− s) +C)TL. (4)

Among them, e′imx is the direct axis component of the transient
potential of the induction motor, e′imy is the cross-axis component
of the transient potential of the induction motor, iimx is the direct
axis component of the induction motor current, iimy is the cross-
axis component of the induction motor current, T′d0 is the rotor
branch time constant,H is the motor inertia time constant, TE is the
electromagnetic torque, TM is the mechanical torque, f is the system
frequency, TL is the initial mechanical torque, and A, B, and C are
the mechanical torque coefficients.

There are 17 parameters in the SLM, without considering
the effect of frequency, which are divided into static parameters,
motor parameters, distribution network impedance, and dynamic
and static proportional parameters, as follows:[ Rs, XsXm, Rr, Xr,
A, B, H, P0, Q0, pu, qu, Km, Mi f , RD, XD, and XC]. Rs and Xs
are the stator branch resistance and reactance, respectively; Xm is
the excitation branch reactance; Rr and Xr are the rotor branch
resistances and reactance, respectively; P0 and Q0 are the static
initial load coefficients in the range of 0–3; pu and qu are power
and voltage characteristic coefficients, respectively; Km is the initial
power distribution coefficient; Mi f is the rated initial load rate
coefficient; RD and XD are the equivalent resistance and reactance of
the distribution network, respectively; and XC is the compensation
reactance.

For the complex structure of the SLM, the identification scheme
that only relies on the measured voltage and power to identify all
parameters will lead to the parameters not being uniquely identified,
and thus it is necessary to change the identification scheme and
select important parameters for identification.

By setting the insensitive parameter values as typical parameters
and identifying only the remaining part of important parameters,
the set of key parameters to be identified in the SLM is revealed to
be [pu, qu, Rs, Xs, Rr, Xr, Km, and Mi f]. Among them, distribution
network impedance is a non-critical parameter, and the typical value
(RD and XD) of the 110-kV line distribution network impedance
is directly used, and the influence of reactive power compensation
capacity XC is considered, which is combined and attributed to the
static model reactive power characteristics. In order to reduce the
number of identification parameters and improve the identifiability
of the model parameters, the mechanical torque parameters (A,
B, and H), excitation reactance parameters (Xm), and static initial
load coefficients (P0 and Q0) in the model, which are insensitive
to the output, are set as typical parameters. These immaterial
parameters with low sensitivity and little impact on the output are
set to typical parameter values. The typical parameter values are
shown in Table 1, and the identification range of the key parameters
is shown in Table 2.

2.2 Improved butterfly algorithm

2.2.1 Basic butterfly algorithm flow
Thebutterfly optimization algorithm is a simulated evolutionary

class of intelligent optimization algorithms that searches by imitating
a butterfly’s foraging behavior of finding themost scented individual
and moves toward the optimal individual for location update by
imitating the butterfly’s mating behavior (Arora and Singh 2019).

FIGURE 4
Algorithm search parameter dynamic adaptive trend.

FIGURE 5
Dynamic trend of the location update weighting factor.

The butterfly location-update mechanism is as follows: when a
butterfly receives information from a higher-scented butterfly, it
moves toward the higher-scented butterfly for global search; when
a butterfly does not perceive that there is a higher-scented butterfly,
it moves randomly in the current range for local search.

The scent intensity of butterfly f is characterized by three
parameters: power function exponential term α, stimulus intensity
I, and sensory modality c, as shown in Equation 5.

f = cIα. (5)

The global update and local update of individual butterfly
positions are shown in Equations 6, 7.

Iterative population individual global position update:

xt+1i = x
t
i + (r

2 ∗ g∗ − xti) ∗ fi, (6)
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FIGURE 6
Flowchart of the PODSBOA.

and iterative population individual local position update:

xt+1i = x
t
i + (r

2 ∗ xtj − x
t
k) ∗ fi, (7)

where xti is the ith butterfly in the tth iteration, r is a random amount
between [0,1], g

∗
is the current optimal butterfly, xtj and xtk are two

random butterflies in the current iteration, fi is the current scent of
this butterfly, and xt+1i is the ith butterfly in the (t+1)th iteration after
the update.

2.2.2 Improved butterfly algorithm based on the
population optimization and dynamic strategy
2.2.2.1 Population optimization

The convergence speed and accuracy of the butterfly algorithm
are sensitive to the initial state. The initial population established

by the pseudo-random number generator (PRNG) is usually not
uniformly distributed in the high-dimensional space. The initial
population optimization is achieved by using symmetric population
amplification to increase the coverage area of the search space and
retain the dominant population through the elite retention strategy.
First, the initial population is established based on the pseudo-
random number generator, and the population spatial distribution
center is calculated. Then, the symmetric population is obtained
through Equation 8 to achieve symmetric amplification of the
population. The process of symmetric population amplification is
shown in Figure 3. The black points are the initial population
established by the pseudo-random number generator, the blue
points are the symmetric population obtained by Equation 8, and
the red point is the spatial center of the population distribution.
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FIGURE 7
Dynamic model parameter identification criteria of the SLM.

FIGURE 8
SLM dynamic model parameter identification scheme.

Population symmetric amplification:

X2 = 2∗X1 −C, (8)

where X1 is the initial population of size n∗dim created by the
pseudo-random number generator, n is the number of populations,

dim is the dimension of the population individuals, C is the center
of the population distribution space, and X2 is the new population
generated symmetrically by the center point.

When the current iteration ends, before starting the next
iteration, two butterflies with the worst fitness in the current
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FIGURE 9
Process of identifying the parameters of the dynamic model by
the PODSBOA.

iteration population are processed for crossover variation (the
number of butterflies in the population is 30; the reason for
selecting 2 is because the selection of too many butterflies affects
the convergence path of the algorithm, and it is more appropriate to
select the number of individuals at approximately 1/10). Crossover
processing is used for butterfly whose random generation number
is less than the crossover probability pc, and all pairs of crossover
methods are used after the crossover point. Uniform variation is
used for butterfly whose random generation number is less than
the variation probability pm, and the values of each dimension are
replaced with random quantities that meet the boundary range.
The iterative population after crossover and variation processing
improves the diversity and provides the algorithm search a certain
ability to jump out when it is caught in the local optimum problem.

FIGURE 10
Sampling data of the disturbance fault recorder.

TABLE 3 Key parameters of each algorithm.

Algorithm Key parameters

PODSBOA pc = 0.8; pm = 0.05; α = [0.0432,1]; c = [0.1353,1]; p = [0.1–1];
w1 = [1.3679,2]; and w2 = [0.3679,1]

BOA α = 0.01; c = 0.01; and p = 0.8

MWOA α = [0,2] and b = 1

GWO α = [0,2]

SCSO S = [0,2]

FIGURE 11
Fault disturbance sampling data (0.5 s–2.5 s).
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TABLE 4 Parameter identification results of the dynamic load model (0.5 s–2.5 s).

Parameter Rs Xs Rr Xr pu qu Km Mif Error Convergence time/s

PODSBOA 0.479 0.203 0.425 0.411 0.926 0.973 0.639 0.728 0.02 12.048

BOA 0.382 0.197 0.242 0.336 0.828 1.77 0.143 0.788 0.085 11.095

MWOA 0.344 0.155 0.417 0.413 1.871 0.822 0.715 0.802 0.056 25.042

GWO 0.383 0.172 0.435 0.494 0.931 0.886 0.609 0.682 0.047 15.922

SCSO 0.34 0.193 0.556 0.496 0.835 0.8 0.133 0.635 0.081 9.795

TABLE 5 p-value of the Wilcoxon signed rank test between each
algorithm and the PODSBOA.

Algorithm BOA MWOA GWO SCSO

p-value 3.0199e-11 2.7664e-08 1.9824e-08 9.7839e-11

2.2.2.2 Dynamic strategy
The values of sensory modality c and power function

exponential term α are all positive correlation parameters of
adaptation degree. The larger the value taken in the early stage, the
higher the fragrance, that is, the more clearly the optimal solution
can be perceived by the rest of the global population individuals.
The individual adaptation degree is adjusted by the global position
update and local position search. The larger the step size, the easier
it is to lock the optimal population range and thus speed up the
convergence of the algorithm.

The size of the switching probability p-value determines the
probability distribution of the global search and local search, and
the control algorithm has a different emphasis on global and local
search probabilities in different search periods. The first stage of
the algorithm needs to quickly lock the region where the optimal
solution is located and set a larger p-value for the first stage, focusing
on global search; the later stage requires a deeper search in the region
of the current better solution and set a smaller p-value for the later
stage, focusing on local search.

Combined with the demand for different search modes in
different periods of the algorithm to improve the convergence speed
and convergence accuracy, the dynamic change curves of sensory
modality c, power function exponential term α, and switching
probability p are constructed, as shown in Figure 4.

Sensory modality c dynamically updated with the iterative
process as shown in Equation 9:

c = −0.225(2t
N
)
2
+ 1. (9)

Power exponent α that updates dynamically with the iterative
process as shown in Equation 10:

α = e−π∗(
2t
N
−1)2 . (10)

The switching probability p that updates dynamically with the
iterative process as shown in Equation 11:

p = e−
2t
N , (11)

where t is the current number of iterations and N is the maximum
number of iterations.

In order to meet the location update requirements of the
algorithm to increase the global location update breadth in the early
stage and the random search depth of the local location range in the
later stage, the location update strategy for increasing the dynamic
weight operator is constructed, and the overall trend of the dynamic
update weight operator of the location is shown in Figure 5.

Global position update operator w1 as shown in Equation 12:

w1 = e
− t

N + 1. (12)

Local position update operator w2 as shown in Equation 13:

w2 = e
− t

N . (13)

Global position update after the introduction of the weight
operator as shown in Equation 14:

xt+1i = w1 ∗ x
t
i + (r

2 ∗ g∗ − xti) ∗ fi. (14)

Local position update after the introduction of the weight
operator as shown in Equation 15:

xt+1i = w2 ∗ x
t
i + (r

2 ∗ xtj − x
t
k) ∗ fi. (15)

2.2.2.3 Algorithm flow
The initial population is optimized, and the disadvantaged

population and other population optimization strategies are
improved, combined with adaptive dynamic search parameters
and a variable weight position update factor strategy to optimize
the butterfly algorithm. The advantages of the two optimization
strategies are combined to form a PODSBOA based on the
population optimization and dynamic parameter strategy, and the
complete flow of the algorithm is shown in Figure 6.

Step 1: The butterfly algorithm search parameters are initialized,
the number of butterfly populations is set to n, the
maximum number of iterations of the algorithm is set to
N, the population boundary conditions [Lb, Ub], and the
dimension of the optimization search problem dim.

Step 2: The initial butterfly population of size n∗dim is
generated by using random numbers according to
the boundary conditions in the boundary range, and
the initial population size is expanded to 2n∗dim by
spatial symmetry.

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1419830
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Wang et al. 10.3389/fenrg.2024.1419830

FIGURE 12
(A) Main process variables of motor model identification and calculation. (B) Active power response of SLM identification. (C) Reactive power response
of SLM identification. (D) Iterative convergence curve (comparison of five algorithms).

Step 3: Fitness calculation—the fitness of butterflies in the
expanded population is calculated according to the fitness
criterion function.

Step 4: Population recovery—n individualswith the best fitness are
selected by an elite retention strategy and recorded as the
recovery population, and the best individuals of the current
recovery population are found and recorded.

Step 5: Disadvantaged population update—the two butterfly with
the worst fitness are selected, and crossover and mutation
operations are performed on them.

Step 6: Dynamic update of algorithm parameters—sensory
modality c, power function exponential term α, switching
probability p, and position update operators w1 and w2 are
updated according to the current number of iterations t.

Step 7: The current fragrance of each butterfly is calculated
according to the updated parameters.

Step 8: Iterative optimization search—a random number between
0 and 1 is generated, denoted as rand. If the switching
probability p >rand, the position of the individual is
updated globally; if the switching probability p <rand, the
position of the individual is updated locally.

Step 9: The global optimal value is calculated after
individual updates.

Step 10: Out-of-bounds check—it is checked whether the updated
individual is out of bounds, and the position of the new
individual that is out of bounds is corrected.

Step 11: It is determined whether the current end condition of the
iteration of the algorithm is satisfied. If the end condition is
not satisfied, the algorithm turns to step 5 to continue the
execution; conversely, the current optimal result is output,
and the algorithm ends.

3 Results

3.1 Synthesis load model identification
process

3.1.1 Identification scheme
3.1.1.1 Identification criteria

The data used in the identification process are in the case of self-
disturbance, including the data collected in the whole process of the
load node before the disturbance, the disturbance process, and the
gradual recovery to the steady state after the disturbance. The data
type is the dynamic operation data of voltage and power.

The identification criterion is to find the parameter group that
can make the synthesis power response of the power function
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FIGURE 13
Box and whisker plot diagrams of identification errors of each
algorithm (0.5 s–2.5 s).

model and the motor model closest to the disturbance sampling
data under the same voltage input. The parameter group that can
achieve the optimal response is the parameter identification result.
The dynamic model parameter identification criteria of the SLM
are shown in Figure 7.

3.1.1.2 Objective function
According to the output relationship of the SLM, it is known

that according to the power composition of the model, the total
load power is characterized by static load power Ps, Qs, and motor
load power Pim,Qim, and the active and reactive power are identified
simultaneously. The SLM identification objective function is shown
in Equations 16, 17.

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

J(θ∑P) =

√√√√√

√

(

N

∑
i=1
(PS + Pim − P)

2

N
)

J(θ∑Q) =

√√√√√

√

(

N

∑
i=1
(QS +Qim −Q)

2

N
)

, (16)

{
{
{

J(θ) = √J(θ∑P)
2 + J(θ∑Q)

2

ε = J(θ) ∗N
, (17)

where Ps and Qs are power responses of the power function model;
Pim and Qim are power responses of the motor model; P and Q are
actual power data; N is the number of sample data points; J(θ∑P) and
J(θ∑Q) are model active and reactive power discrimination errors,
respectively; J(θ) is the model synthesis identification error; and ε is
the identification accuracy and is numerically equal to the absolute
error accumulation sum of single point data.

3.1.1.3 Identification process
First, the motor parameters and voltage power data are

input, and then the slip and transient potential are initialized
according to the known parameters such as static model parameters,
motor model parameters, dynamic and static load ratio, and
motor load rate. Finally, the terminal current, terminal power,
and total active and reactive power output of the model are
solved. Based on the power response identification criterion, the
minimum synthesis power response error of the model is taken
as the goal, the parameter group to be identified is continuously
modified by the PODSBOA, and the final identification result
is output.

The dynamic load model adopts the SLM structure of motor
load in parallel with static load, and the SLM parameters are
identified by an intelligent optimization algorithm, in which
the SLM identification process using the optimization algorithm
is shown in Figure 8.

3.1.2 Dynamic model parameter identification
process using the PODSBOA

The PODSBOA is used to complete the identification of the
dynamic model parameters, and the specific steps of the PODSBOA
for dynamic model parameter identification are shown in Figure 9.
The insensitive parameters are set as typical parameters values, and
only the important parameters of the remaining part are identified.
The set of key parameters to be identified for the SLM is [pu, qu, Rs,
Xs, Rr, Xr, Km, andMi f].

3.2 Result verification and performance
comparison

3.2.1 Identification data source
Dynamic model parameter identification uses the dynamic load

characteristic data shown in Figure 10; a single-phase short-circuit
fault occurs at 1.12 s, the data sampling time interval is 0.01 s, and
the voltage starts to decrease when the fault occurs at 1.12 s and
starts to recover at 1.20 s. The collected data types include voltage
and active power, reactive power, and fault recording data lasting
5 s in total.

The simulation environment of the algorithm test experiment
is as follows: the computer operating system is Windows 10, and
the CPU is Intel@Core TM i5-6200U. The main frequency of the
system is 2.30 GHz, the memory is 8.0 GB, and the simulation
software version is MATLAB 2019a. The basic parameters of the
five algorithms PODSBOA, BOA, modified whale optimization
algorithm (MWOA) (Zhang and Chen 2018), gray wolf optimizer
(GWO), and sand cat swarm optimization (SCSO) are the
same. The population number is set to 30, and the maximum
number of iterations is 500. The key parameters of the five
algorithms PODSBOA, BOA, MWOA, GWO, and SCSO are set
as shown in Table 3.

In the PODSBOA, the power exponent α is a Gaussian
kernel function varying with the number of iterations, the sensory
modality c is a parabolic function attenuating with the number
of iterations, and the switching probability p is a power function
attenuating with the number of iterations. The global position
update weight operator w1 attenuates from 2.0 to 1.3679 with
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FIGURE 14
(A) Main process variables of motor model identification and calculation. (B) Active power response of SLM identification. (C) Reactive power response
of SLM identification. (D) Iterative convergence curve (comparison of five algorithms).

FIGURE 15
Box and whisker plot diagrams of identification errors of each
algorithm (0 s–5 s).

the number of iterations, and the local position update weight
operator w2 attenuates from 1.0 to 0.3679 with the number
of iterations.

3.2.2 Identification process and results
The complete disturbance data lasting 5-s and the disturbance

data from 0.5 s to 2.5-s are selected separately as the identification
data for the iterative identification and optimization of the model
parameters, as shown in Figures 10, 11. In the 2-s disturbance data
recognition experiment, the data proportion of the steady-state
process before disturbance and the process of recovery to the steady-
state after the disturbance are reduced, and the data proportion of
the disturbance process is increased, focusing on the tracking ability
of the load model for the changes of the load characteristics during
the disturbance.

The PODSBOA, BOA, MWOA, GWO, and SCSO are used
to identify the model parameters, and the identification results
are shown in Tables 4, 5. The error is the single-point average
absolute error of the synthesis power response of the model. In the
experiment where disturbance data from 0.5 s to 2.5-s is selected as
the identification data are shown in Figure 12A; the power response
of SLM parameter identification is shown in Figures 12B, C, the
iterative convergence process of the five algorithms is shown in
Figure 12D, and the box and whisker plot diagrams of identification
errors of each algorithm are shown in Figure 13. In the experiment
of all 5-s disturbance data, the solution of the transient potential of
the dynamically changing motor and the calculation results of the
machine end current are shown in Figure 14A; the power response
of SLM parameter identification is shown in Figures 14B, C, the
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TABLE 6 Parameter identification results of the dynamic load model (0 s–5 s).

Parameter Rs Xs Rr Xr pu qu Km Mi f Error Convergence time/s

PODSBOA 0.4769 0.154 0.383 0.496 1.119 1.122 0.533 0.71 0.013 23.405

BOA 0.116 0.068 0.261 0.483 0.811 1.366 0.518 0.767 0.059 20.724

MWOA 0.493 0.101 0.123 0.484 1.963 1.971 0.613 0.79 0.034 38.026

GWO 0.477 0.191 0.296 0.487 0.924 1.116 0.442 0.8 0.026 28.665

SCSO 0.536 0.151 0.505 0.498 0.984 0.8 0.568 0.636 0.052 22.512

TABLE 7 p-value of the Wilcoxon signed rank test between each
algorithm and the PODSBOA.

Algorithm BOA MWOA GWO SCSO

p-value 3.3457e-11 1.3909e-07 1.0072e-08 9.2789e-10

iterative convergence process of the five algorithms is shown in
Figure 14D, and the box and whisker plot diagrams of identification
errors of each algorithmare shown in Figure 15. In order to prove the
significance of the algorithms’ identification results, the Wilcoxon
signed ranks test was performed on each algorithm, and the p-value
results are shown in Table 5 (0.5 s–2.5 s) and Table 7 (0 s–5 s).

3.2.3 Analysis of the results
Based on the 2-s duration load data and 5-s duration load data

formodel parameter identification, by analyzing the results obtained
by identifying load model parameters using the five algorithms, it
can be concluded that

(1) According to Figures 12, 14D, by comparing the convergence
curves, it can be found that the SLM identification
results obtained based on the PODSBOA have the highest
convergence accuracy compared to those obtained using
the BOA, MWOA, GWO, and SCSO, and the model
identification error based on the 2-s duration data is 0.02017,
and the identification accuracy is 4.09, which is better than
4.6215 obtained using the mutational PSO with S-curve
inertia weight (S-MPSO) (Shen 2013), Similarly, the model
identification error based on the 5-s duration data is 0.01337,
and the identification accuracy is 6.65, which is better than
6.6842 obtained using the S-MPSO, which illustrates the
excellent effect of the PODSBOA proposed in this paper for
load model parameter identification, and the dynamic model
parameter identification scheme based on the PODSBOA to
identify the key parameters of SLM: [pu, qu, Rs, Xs, Rr, Xr, Km,
Mi f], realizes the refined identification of SLM parameters.

(2) According to Figures 12B, C, based on the power response
of the model, the power response of the SLM identification
model of the PODSBOA starts to decrease at 1.12 s, lasts
0.08 s, and then starts to recover and gradually returns to
smooth operation from 1.2 to 2.0 s, which is consistent with
the actual fault recording data situation and can accurately

reflect the real level of the actual load, and realizes the fine
identification of load model parameters, and from the box
and whisker plot diagrams of identification errors of each
algorithm in Figures 13, 15, it can be seen that the PODSBOA
has the best robustness in the identification process of 2 and 5 s
sampling data.

(3) Tables 4, 6 show that in the 2-s load data experiment, the
convergence time of the PODSBOA is 12.048 s, which is lesser
than that of MWOA and GWO and slightly larger than that
of BOA and SCSO. The same is true in the experiment of 5 s
load data, which is determined by the increased computational
effort of the improved algorithm itself, and illustrates that
the improved butterfly algorithm ensures faster convergence
speed. Tables 5, 7 list the p-values of the PODSBOA and other
algorithms at the 5% significance level. When p is less than
5%, it indicates that there is a significant difference between
the two comparison algorithms, and when p is greater than
5%, it means that the difference between the two algorithms
is not obvious. It can be seen that the p-values of the four
comparison algorithms are all less than the significance level of
5%, which means that there is a significant difference between
the PODSBOA and other algorithms, and the PODSBOA is
statistically superior.

(4) Comparing the results of identification using load disturbance
data of two pre- and post-steady-state processes with different
time lengths, when the same identification method is used,
the identification accuracy of the PODSBOA is 4.09 based on
2-s data, and the identification accuracy of the PODSBOA
is 6.65 based on 5-s data. By appropriately increasing the
proportion of the disturbance process in the total data
and reducing the sampling time of the process data before
and after steady state, the identification accuracy of the
load model can be improved. This is because in the load
model parameter identification, more attention is paid to
the load change of the disturbance process. The data before
and after steady state should not be selected too long to
avoid interference with the disturbance data during the
identification process.

4 Discussion

This paper proposes the improved butterfly algorithm by
combining the basic population optimization and dynamic strategy
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optimization, which solves the SLM parameter identification
problem, reduces the identification error of SLM parameters,
and improves the accuracy and stability of the model parameter
identification results.Themodel identification error of the proposed
algorithm in 2 s load data is 0.02, which is better than the
identification errors of BOA, MWOA, GWO and SCSO. Similarly,
the model identification error of the algorithm proposed in this
paper in 5 s load data is 0.013, which is also better than the
identification errors of BOA, MWOA, GWO and SCSO, and the
convergence speed is much higher than that of the improved
algorithm MWOA. The identification situation is also consistent
with the actual fault recording data, which shows that the proposed
algorithm can accurately reflect the real level of the actual load
and realize the fine identification of SLM parameters quickly and
accurately. However, there are still shortcomings. The proposed
improved algorithm is based on the number of iterations to adjust
the dynamic parameters, and the next step is to consider combining
fitness to further optimize the search mode of the algorithm.
Due to the limitation of space, only the effect of dynamic load
model parameter identification based on the perturbed data of
single-phase grounded short-circuit fault type is explained, and
the effect of model identification based on the perturbed data of
the remaining fault cases is not explained. In the next step, a
variety of identification studies can be carried out for different
fault disturbances to further verify the generalization ability of the
proposed method.
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