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Shared energy storage offers substantial savings on construction costs and
improves energy efficiency for users, yet its business model as an
independent economic entity remains unclear. An optimal scheduling method
for cooperative operation of shared energy storage among multiple user types is
proposed in this paper, which relied on asymmetric Nash bargaining to define
operational schedules and pricing strategies effectively. Initially, a cost-benefit
model for shared energy storage operators, along with power generation users,
demand-side consumers, and microgrid prosumers is developed. Then, a
cooperative game framework is established using asymmetric Nash bargaining
principles which decomposes the problem into two parts: minimizing social total
cost through cooperative operation scheduling and determining service fee
pricing for equitable benefit distribution. For benefit distribution, the
bargaining power of users is adjusted based on their alliance contribution,
ensuring revenue distribution is aligned with individual contributions and
improving fairness in pricing. Subsequently, the adaptive penalty factor
alternating direction multiplier method (ADMM) algorithm is employed for
distributed equilibrium solving, enhancing the convergence speed and
safeguarding user privacy. Finally, the economics and feasibility of the
proposed cooperation framework for shared energy storage are validated
through a numerical example.
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1 Introduction

In the context of rapid economic development, global electricity demand continues to
rise. However, environmental pollution becomes severe due to the increasing use of fossil
fuels. Promoting the transition towards a cleaner energy structure with a high proportion of
renewable energy has become a global consensus (Rehmani et al., 2018). Nevertheless, the
stochasticity and volatility of renewable energy still presents challenges for efficient
utilization and flexible scheduling in power grids and energy systems (Shivashankar
et al., 2016). Integrating energy storage systems into smart grids can be a potent means
to enhance the operational characteristics and stability of power systems by providing
buffering capabilities. In recent years, due to its adaptable control over charging and
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discharging, energy storage has been extensively applied in various
scenarios including mitigating fluctuations in new energy output,
regulating grid frequency, optimizing transmission flow, as well as
peak valley spread arbitrage for user-side (Li and Wang, 2021).

In traditional energy storage applications, individual
investments are typically made to construct energy storage
systems and optimize operation strategies for profitability (Ding
et al., 2021; Tsioumas et al., 2021; Shi et al., 2022). However, this
approach often leads to redundant capacity with low utilization
rates. Fluctuations in renewable energy sources and loads can result
in idle periods, leading to resource wastage. With the advent of
Internet of Things technology and the concept of “sharing
economy,” a “peer-to-peer” (P2P) trading model has emerged.
This model allows individuals with unused distributed energy
storage capacity or surplus stored energy to sell it to others for
their use (Tushar et al., 2020), decoupling ownership rights from
energy usage rights. This significantly improves upon the limitations
of traditional profit models and utilization rates associated with
energy storage (Xia et al., 2022). The economic advantages of P2P
models over user-grid transactions (P2G) are confirmed by (Yaldiz
et al., 2021), while discussing optimal configurations for
photovoltaic generation and energy storage among different
prosumers. The operational and configuration disparities among
energy storage systems with varying ownership structures in P2P
markets are studied by (Rodrigues et al., 2020), where user-owned
structure exhibit the highest net present value. Energy interaction
through distributed storage enables users to achieve significant cost
reductions. However, distributed energy storage sharing still
requires individuals to possess a certain proportion of stored
energy, and users still face the substantial investment and
construction costs associated with energy storage.

Operators of “shared energy storage (SES)” have emerged as
independent economic agents that invest in and manage large-scale
energy storage stations (Liu et al., 2017). These operators are obliged
to design market mechanisms that properly facilitate transactions
with users. Through these mechanisms, users can lease energy
storage to fulfill their specific needs such as peak shaving,
frequency regulation, and optimizing demand curves without
incurring the costs associated with constructing energy storage
facilities. SES efficiently addresses challenges like high costs and
low utilization rates through expenses sharing and economies of
scale. The installation and operation costs, allocation of energy
storage capacity, and profitability between SES and distributed
energy storage systems are compared in literature (Lombardi and
Schwabe, 2017; Walker and Kwon, 2021), clearly illustrating the
economic advantages and development prospects of SES.

At present, the methods of energy storage sharing can be broadly
categorized into capacity sharing and energy sharing. The capacity-
based allocation scheme involves dividing the total energy storage
capacity into blocks and assigning them to users. In the mechanism
proposed in (Jo and Park, 2020), users initially have an equal share of
energy storage capacity, which they can dynamically adjust through
additional capacity trading among users. In reference (Zhao et al.,
2019), energy storage aggregators possess physical energy storage
and distribute it as virtual capacity to users, determining the
allocated capacity for each user through a two-stage algorithm.
However, a simple division of capacity alone cannot facilitate
energy interaction between users or optimize social benefits. On

the other hand, employing an energy-sharing scheduling strategy
allows for better utilization of complementarity in energy
distribution among users over flexible time scales, thereby
enhancing both energy efficiency and integration of renewable
sources. In (Zhang et al., 2022), the equilibrium of a peer-to-peer
market between SES operators acting as energy suppliers and
residential users is investigated, where the pricing of energy is
determined by the supply-demand relationship in the market.
Furthermore, prosumers interactions with SES to achieve
minimal overall societal cost are explored in (He et al., 2022),
while considering ideal profit realization ratio for equitable
benefit distribution purposes. Nevertheless, most existing
literature primarily focus on establishing mechanisms for energy
transactions with prosumer-type users.

SES has multiple application scenarios. The rapid growth of
distributed energy has transformed many consumers into
prosumers (Parag and Sovacool, 2016), necessitating an urgent
improvement in renewable energy consumption. Emerging energy
entities like virtual power plants and integrated energy systems
actively participate in grid optimization (Yu et al., 2019), while
demand response facilitates user-side active involvement in source-
grid interaction (Hui et al., 2020). These diverse energy interaction
demand scenarios offer significant application prospects for SES. SES
provides multiple profit-making opportunities that conventional
storage cannot combine concurrently, including peak-valley price
arbitrage (Li et al., 2021), participation in ancillary services (Ma
et al., 2022), assist market bidding (Zhang et al., 2023), as well as
optimizing the output of wind farm groups (Song et al., 2023). SES is
applied by (He et al., 2023) to frequency regulation in microgrid
clusters while ensuring frequency safety and increasing economic
benefits from storage. SES is utilized to lower operating costs and
reduce carbon emissions on integrated energy systems in (Hu et al.,
2024). However, existing literature only focuses on a single scenario
for using SES without exploring its full commercial potential
extensively. Therefore, developing fair and sustainable scheduling
methods along with benefit distribution mechanisms becomes
crucial when dealing with multi-user application scenarios to
ensure stable operation of SES.

Game theory provides a valuable framework for resolving
conflicting interests among multiple stakeholders (Tushar et al.,
2018). Control strategies for SES can be categorized into non-
cooperative games and cooperative games, depending on the
presence of position conflicts or cooperation between entities. In
non-cooperative games, users and SES operators are assumed to
have contradictory interests, with each party making decisions solely
based on their own benefit. Equilibrium is attained when members
cannot increase their individual utility by altering their own
strategies alone. Consumers involved in SES capacity allocation
as a generalized non-cooperative game are modeled in (Xiao
et al., 2022), using the alternating direction multiplier method
(ADMM) and heavy ball method to optimize both capacity and
energy distribution. In reference (Li et al., 2023), under the
stackelberg game framework, SES sells energy to users at specific
prices while users adjust their electricity consumption strategies
accordingly. The double-layer model is transformed into a mixed
integer linear programming model through the mathematical
programming with equilibrium constraints and linearizing
techniques.
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Reaching global efficiency with individual optimal equilibrium is
challenging in non-cooperative games. Therefore, operators and
users can adopt a cooperative game control strategy by signing
agreements with the common interest goal of maximizing social
welfare. Cooperative games necessitate fair and reasonable
mechanisms to redistribute the cooperative surplus before and
after the cooperation, determining the final benefits for each
participant. Common methods of profit distribution include the
nucleolus method (Yang et al., 2021), Shapley value method (Xie
et al., 2022), Nash bargaining (Wang et al., 2024), etc. Constraint
generation technology is introduced by (Chen et al., 2023) to
enhance the nucleolus method and obtain a cost allocation
approach for collaborative alliances of energy storage users (Chen
et al., 2023). An improved Shapley algorithm is employed under
blockchain technology to allocate SES operating costs among
different nodes (Yu et al., 2023). However, when there are
numerous agents involved, the Shapley method encounters
dimension explosion issues while solving the nucleolus method
becomes more complex. The Nash bargaining method effectively
achieves global optimality with low computational complexity,
making it a commonly used approach for addressing benefit
allocation problems. Nash bargaining is utilized to resolve
payment issues in electricity-gas energy-sharing between micro-
energy grids and energy storage and initial distribution results are
adjusted based on investment return periods of energy storage
(Wang et al., 2023). The scheduling of SES in local integrated
energy systems is explored, using Nash bargaining to allocate
benefits (Chen et al., 2022). Nevertheless, the above literature
exclusively employs the general Nash bargaining, which ensures
that all members have equal profit increase ratios, neglecting
individual members’ distinct contributions to overall energy
interaction. Some asymmetric Nash bargaining models are
characterized by single factor, which is still not being
comprehensive enough.

For multi-agent games, protecting individual privacy while
solving optimization problems has become particularly
important. The ADMM algorithm has received attention because
it allows the decomposition of variables for distributed problem-
solving, enabling each agent to solve independently and couple to
the global optimum. The ADMM algorithm is used for decentralized
solving of peer-to-peer transaction frameworks of interconnected
microgrids in (Wei et al., 2021). In (Xia et al., 2023), ADMM is
employed to solve the inter-microgrid market while preserving
privacy, based on the model of the objective uncertainty and risk
preference inside microgrids. However, the convergence of the
ADMM is quite sensitive to the choice of penalty factors.
Selecting appropriate penalty factors can significantly accelerate
the convergence speed.

Based on the existing literature, this study investigates an
optimization strategy for cooperative operation of SES based on
asymmetric Nash bargaining, aiming to enhance various benefits
and improve the economic efficiency of energy storage operators.
Firstly, the user types are further refined, including three categories:
power generation users, demand-side consumers, and microgrid
prosumers. Subsequently, a cooperative game model based on
asymmetric Nash bargaining is developed and decomposed into
two sub-problems: cooperative operation scheduling and benefit
allocation. Pricing negotiations for SES services are conducted based

on criteria such as marginal contribution, inter-energy interaction
contribution, and peak-time energy contribution as measures of
bargaining power, ensuring that each user’s interests are enhanced
after cooperation while promoting alliance stability and fairness.
The adaptive penalty factor ADMM algorithm is applied to achieve
decentralized solutions while enhancing privacy protection. This
improved ADMM algorithm reduces sensitivity to penalty factor
parameter selection and accelerates convergence speed.

2 Cooperative operation model for
multi-user shared energy storage

The schematic diagram of the cooperative energy storage
sharing framework is illustrated in Figure 1. SES operators
possess a specific scale of physical energy storage and maintain
data centers capable of processing user data to optimize charge and
discharge control. For users, all services typically provided by self-
built energy storage systems are available through SES projects. It
reduces the burden of substantial investments in individual energy
storage solutions. The set of users in this article is denoted as
N � 1, 2, ..., N{ }, where N represents the total number of users
engaged in collaborative operation of SES, and each user is
identified by i ∈ N . Meanwhile, in order to enhance the
involvement of SES across various demand scenarios and
diversify the operator’s revenue streams, three distinct user
categories are considered: power generation users, demand-side
consumers, and microgrid prosumers.

To further enhance overall energy efficiency, SES operators and
users can establish cooperation agreements to promote energy
interaction and complementation among users. This
collaboration can be divided into two stages. In the first stage, all
parties optimize the operational scheduling plan of SES with the
common objective of maximizing social welfare. Instead of selling
excess energy to the grid at a low price, energy is stored in SES,
allowing other users to reduce the high costs of purchasing
electricity. Distributed optimization methods enable users to
securely transmit only their optimal dispatch power requirements
for SES to the operator’s data center for computation. In the second
stage, a fair distribution is determined for the cooperative surplus,
providing incentives to individuals who significantly contribute in
energy sharing strategies. Fair profit distribution ensures that the
interests of each participant in the SES project are enhanced,
guaranteeing the stability of the cooperation. The optimization
prioritizes day-ahead scheduling, with a single operation horizon
is defined as 1 day and denoted as T � 1, 2, ..., T{ }, where T = 24.

3 Collaborative sharing system model

3.1 Modeling of the SES

SES operators invest in, construct, and maintain physical storage
facilities. The costs account for daily investment and construction
expenses, as well as maintenance costs due to storage degradation
from charging and discharging, while the revenues are derived from
service fees charged to users. The total cost of the SES can be
expressed as follows:
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CSES � Cinv + Cage − Cser (1)

Cinv � 1
365

×
r 1 + r( )Y
1 + r( )Y − 1

× cEEes N + cPPes N( ) (2)

Cage � ∑
t∈T

cage Pch,t + Pdis,t( ) (3)

where CSES is the total cost of SES; Cinv is the daily investment cost;
Cage is the maintenance cost for energy storage degradation; Cser

represents the total revenue collected from diverse users. r is the
annual discount rate; Y is the operational lifespan of energy storage;
ce and cp denote the investment construction costs per unit capacity
and power; Ees N and Pes N represent the rated capacity and power.
cage is battery degradation coefficient, while Pch,t and Pdis,t refer to
charging/discharging power.

The corresponding constraints is formulated below:

s.t.

0≤Pch,t ≤Pes NBch,t, ∀t ∈ T

0≤Pdis,t ≤Pes NBdis,t, ∀t ∈ T

Bch,t + Bdis,t ≤ 1, ∀t ∈ T

SOCt � SOCt−1 + ηchPch,t − Pdis,t

ηdis
( )Δt/Ees N, ∀t ∈ T

SOCmin ≤ SOC≤ SOCmin, ∀t ∈ T

SOC 0 � SOC T

Pch,t − Pdis,t − Pses,t � 0, ∀t ∈ T

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where Bch,t and Bdis,t are binary variables denoting the states of
energy storage charging and discharging; ηch and ηdis are the
charging and discharging efficiency of SES; SOCt represents the
state of charge of SES at time t. Pses,t signifies the energy exchange

between the SES and users, where Pses,t > 0 denotes that SES absorbs
energy from the users, while Pses,t < 0 denotes that SES releases
energy to the users.

3.2 Modeling of the users

3.2.1 The generation-side user
There is often a discrepancy between the planned output and the

actual predicted output of the renewable energy power plant.
Insufficient actual output would result in penalties, whereas excessive
actual output would lead to wastage of resources. Therefore, by
employing SES, power plants can optimize tracking generation plans
and minimize deviation costs. User group N a ⊆ N represents
generating side users. This paper considers the cost of power
generation users, including losses of wind curtailment, penalties for
power shortfall, and service fees for participating in SES. The cost for
user i ∈ N a is as follows:

Ci
user � Ci

dev + Ci
pay, i ∈ N a (5)

Ci
dev � ρι ∑

i∈N
Pi
NE,t − 1 +m( )Pi

plan,t[ ]+
+ ρs ∑

i∈N
1 −m( )Pi

plan,t − Pi
NE,t[ ]+ (6)

where Ci
user is the total cost of user i for participating in SES; Ci

dev

is the cost associated with deviation from the generation plan;
Ci
pay is the service fee paid by user i. ρl and ρs respectively denote

the unit costs corresponding to wind energy loss and power
shortage. Pi

NE,t represents the optimized output of power plants
with SES tracking, while Pi

plan,t represents the scheduled output.

FIGURE 1
Cooperative energy storage sharing framework.
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m is defined as the proportion of deviation between actual output
curve and planned curve that can be exempted from assessment,
typically set at 2%. [•]+ is defined as [•]+ � max(•, 0).

User i ∈ N a must satisfy power balance as well as the limits for
power interaction with SES, with the constraints expressed as follows:

s.t.
Pi
NE,t � Pi

pre,t − Pi
es,t, ∀t ∈ T

−Pes max ≤Pi
es,t ≤Pes max, ∀t ∈ T{ (7)

where Pi
pre,t is the initial predicted output of renewable energy; Pi

es,t

denotes the energy exchanged between user i and SES; Pi
es,t > 0

signifies the energy released to storage, and Pi
es,t < 0 indicates the

energy absorbed from storage. Pes max is defined as the power limit
for interacting with SES.

3.2.2 The demand-side consumer
Demand-side consumers such as large industries are subject to a

two-part tariff consisting of an electricity charge and a basic charge. The
electricity charge is based on the actual consumption of electricity at
different time period, while the basic charge is often declared monthly
based on peak demand. In this context, consumers can participate in
SES projects, using energy storage to optimize their load curve and
reduce basic charges and electricity charges through peak-to-valley price
differences and energy exchange. This article models consumers with
three types of demand response (DR) capabilities: transferable,
reducible, and interruptible loads. The set of consumer-type users is
denoted as N b ⊆ N . The cost can be formulated as follows:

Ci
user � Ci

ele + Ci
bas + Ci

res + Ci
pay, i ∈ N b (8)

Ci
ele � ∑

t∈T
ubuy,tP

i
buy,t (9)

Ci
bas � ubas 1 − δi( )Pi

load peak (10)
Ci

res � ctrans ∑
t∈T

Pi
trans,t − Pi

trans pre,t

∣∣∣∣∣ ∣∣∣∣∣ + cint ∑
t∈T

Pi
int,t + cred ∑

t∈T
Pi
red,t

(11)
where Ci

ele and Ci
bas are the purchasing cost of electricity charge and

basic charge respectively; Ci
res is the compensation cost for DR. ubuy,t

is the time of use (TOU) electricity price; Pi
buy,t is the load power

purchased from the grid; ubas is the unit basic price; δi is the peak
load reduction rate after DR and energy storage optimization;
Pi
load peak is the original peak load value; ctrans, cint, cred are unit

compensation costs for transfer, interruption, and load reduction
respectively; Pi

trans pre,t and Pi
trans,t are transferable load power

before and after response; Pi
int,t and Pi

red,t are interrupted and
reduced load power respectively.

The constraints for user i ∈ N b initially consider the
requirements for DR, which can be formulated as follows:

s.t.

0≤Pi
trans,t ≤ ktransPi

load,t, ∀t ∈ T∑
t∈T

Pi
trans,t � ∑

t∈T
Pi
trans pre,t, ∀t ∈ T

Pi
int,t � 1 − μiint,t( )kintPi

load,t, ∀t ∈ T∑
t∈T

μiint,t ≤Ti
int max

∑
t∈T

μiint,t 1 − μiint,t−1( )≤Ni
int max

0≤Pi
red ≤ βredkredP

i
load,t, ∀t ∈ T

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where ktrans, kint, and kred are the proportions of transferable,
interruptible, and reducible loads respectively with respect to the
initial load; Pi

load,t is the original load power prior to DR; μiint,t is a
binary variable indicating the interruption status of interruptible
loads, where 1 signifies an interruption. Ti

int max denotes the
maximum duration for interruptible loads; Ni

int max is the
maximum allowable number of interruptions; βred indicates the
maximum reduction ratio for load reduction.

In addition, the relevant constraint about power conservation is
as follows:

s.t.
Pi
trans,t + Pi

int,t + Pi
red,t + Pi

base,t + Pi
es,t − Pi

buy,t � 0, ∀t ∈ T
−Pes max ≤Pi

es,t ≤Pes max, ∀t ∈ T
Pi
buy,t ≥ 0, ∀t ∈ T

⎧⎪⎪⎨⎪⎪⎩
(13)

where Pi
base,t is the base load that remains unaffected by DR, and in

conjunction with the responsive load, it constitutes the initial energy
consumption of the user.

3.2.3 The microgrid prosumer
Prosumers can sell their excess power to the main grid.

However, the selling price offered by the grid is relatively low
and does not fully cover all associated costs. Prosumers can
engage in energy arbitrage through SES and effectively increase
clean energy utilization, thus reducing the expenditure
associated with procuring electricity from the grid and
conventional fuel-based energy sources. The set of prosumers
can be denoted as N c ⊆ N . The total costs can be denoted
as follows:

Ci
user � Ci

buy + Ci
die + Ci

pol − Ci
sell + Ci

pay, i ∈ N c (14)
Ci

die � ∑
t∈T

cidie workμ
i
die work,t + cidie startμ

i
die start,t + cidie stopμ

i
die stop,t + Ci

fuel,t( )
(15)

Ci
fuel,t � αPi2

die,t + βPi
die,t + γ (16)

Ci
pol � ∑

t∈T
∑G
g�1

cpol,gγ
i
pol,gP

i
die,t (17)

Ci
sell � ∑

t∈T
usell,tP

i
sell,t (18)

where Ci
die is the cost of diesel engine; C

i
pol is the cost of pollution

treatment; Ci
sell is the revenue of electricity sales to the grid.

μidie work,t, μidie start,t, and μidie stop,t are binary indicators
representing the state of the diesel engine. cidie work is fixed
operating costs; cidie start and cidie stop represent start-up and
shutdown costs respectively. Ci

fuel,t simulates fuel expenses
with coefficients α, β, and γ. Pi

die,t is the output power of the
diesel engine. G refers to the number of pollutants emitted by the
diesel engine; cpol,g denotes unit price for processing gth type of
pollutant gas while γipol,g signifies emission coefficient. usell,t is
unit price for selling electricity to grid while Pi

sell,t indicates
amount sold.

The constraints of the diesel engine for user i ∈ N c can be
formulated as follows:
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s.t.

Pdie minμidie work,t ≤Pi
die,t ≤Pdie maxμidie work,t, ∀t ∈ T

μidie work,t − μidie work,t−1 ≤ μidie start,t, ∀t ∈ T
μidie work,t−1 − μidie work,t ≤ μidie stop,t, ∀t ∈ T
−ridie ≤Pi

die,t − Pi
die,t−1 ≤ ridie, ∀t ∈ T

Ti
die startμ

i
die start,t ≤ ∑t+Ti

die start
−1

h�t
μidie work,h, ∀t ∈ T

Ti
die stopμ

i
die stop,t ≤ ∑t+Ti

die stop
−1

h�t
1 − μidie work,h( ), ∀t ∈ T

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where ridie is the maximum climbing rate for diesel engines; Ti
die start

and Ti
die stop are respectively the shortest start-up and stop times.

Furthermore, the other constraints of prosumers can be
expressed as follows:

s.t.

Pi
load,t + Pi

es,t + Pi
sell,t − Pi

buy,t − Pi
die,t − Pi

wpv,t � 0, ∀t ∈ T
0≤Pi

sell,t ≤Psell maxBi
sell,t, ∀t ∈ T

0≤Pi
buy,t ≤Pbuy maxBi

buy,t, ∀t ∈ T
Bi
sell,t + Bi

buy,t ≤ 1, ∀t ∈ T
−Pes max 1 − Bi

sell,t( )≤Pi
es,t ≤Pes max, ∀t ∈ T

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(20)

where Pi
sell,t and Pi

buy,t are binary indicators representing the users’
engagement in selling and purchasing activities with the power
grid, respectively, while Pi

wpv,t denotes the new energy output
at time t.

3.2.4 Overall system constraints
Considering the overall power and capital flow balance, there are

also the following system constraints:

Pses,t − ∑
i∈N

Pi
es,t � 0 (21)

Cser � ∑
i∈N

Ci
pay (22)

4 Cooperative game model based on
asymmetric Nash bargaining

In a cooperative operational mode, users engage in
negotiations and interactions with the SES operator regarding
the precise quantity of energy required and service fees. If
participating in the cooperative mode can effectively reduce
their own electricity costs, an interactive agreement is
reached. This problem can be modeled as a cooperative game
based on Nash bargaining theory. General Nash bargaining
assumes equal contributions from all participants due to
symmetric axioms; however, during actual negotiation
processes, individuals who make greater contributions should
have stronger bargaining power to obtain higher profits.
Therefore, we adopt asymmetric Nash bargaining as the
foundation for this cooperative game model which can be
represented as follows:

max C0
SES − CSES( )θSES ∏

i∈N
Ci,0

user − Ci
user( )θi

s.t.
C0

SES − CSES ≥ 0, Ci,0
user − Ci

user ≥ 0
1( ) − 22( ){ (23)

where C0
SES and Ci,0

user represent the breakdown points in
negotiations for the SES operator and the users, respectively,
indicating the costs incurred when not participating in the
cooperation. Specifically, in the model, the negotiation
breakdown point for the storage operator is assumed to be zero,
while for users, it corresponds to the total cost of constructing their
own storage facilities. θSES and θi are the bargaining power factors
for the SES operator and user i ∈ N , respectively. The stability of the
cooperative alliance requires that all participating entities benefit
more than they would without cooperation.

4.1 Equivalent transformation

Due to the problem (23) representing a complex, non-convex,
and nonlinear problem that is difficult to solve directly, it is
necessary to perform an equivalent transformation. The original
problem can be converted into two sequential subproblems (Wang
et al., 2024): a first-stage problem of cooperative operation
scheduling for minimum social cost, and a second-stage problem
of benefit distribution.

SP1: problem of cooperative operation scheduling for minimum
social cost

minCSES + ∑
i∈N

Ci
user

s.t. 1( ) − 22( )
(24)

Due to Cser − ∑i∈NCi
pay � 0, the pricing of service fees does not

affect the control of energy dispatch strategies. We can define Cp
SES

and Cip
user as follows:

Cp
SES � CSES + Cser

Cip
user � Ci

user − Ci
pay

{ (25)

The problem (24) can be reformulated as a dedicated operational
scheduling problem without payment decisions:

minCp
SES + ∑

i∈N
Cip

user

s.t. 1( ) − 22( )
(26)

By solving SP1, the charging and discharging strategy for SES, as
well as the energy scheduling strategy for each user, can be
determined. Subsequently, in order to establish appropriate
pricing for each user, the solution process continues with SP2.

SP2: problem of benefit distribution

max C0
SES − Cp

SES + Cser( )θSES ∏
i∈N

Ci,0
user − Cip

user − Ci
pay( )θi

s.t.C0
SES − CSES + Cser ≥ 0, Ci,0

user − Ci
user − Ci

pay ≥ 0
(27)

The SP2 aims to allocate the surplus of cooperation, wherein
only the pricing of service fees is variable, and the negotiation
process determines the pricing of energy storage services
for each user.

4.2 Calculation of bargaining power

To ensure that individuals who contribute more receive greater
benefits, this paper adopts an asymmetric Nash bargaining
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framework, wherein the bargaining power factor measuring
contribution are quantitatively calculated through the marginal
contribution factor, energy interaction contribution factor, and
peak-time energy contribution factor.

Marginal contribution (MC) factor (Mi et al., 2022):
The contribution to overall benefits is assessed by quantifying the

rate of marginal change in an individual’s costs before and after
engaging in cooperation, which is calculated as follows.

MCSES � Cp
SES − C0

SES

∣∣∣∣ ∣∣∣∣
Cp

SES

× 100%

MCi
user �

Cip
user − Ci,0

user

∣∣∣∣ ∣∣∣∣
Cip

user

× 100%

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(28)

Since this value may exceed 1, to balance the magnitude of
various indicators, normalization is performed to obtain the
marginal contribution factors θMC

SES and θMC
i :

θMC
SES � MCSES

MCSES +∑i∈NMCi
user

θMC
i � MCi

user

MCSES +∑i∈NMCi
user

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (29)

Energy interaction contribution (EC) factor:
Increasing energy interactions with SES is believed to enhance

energy use efficiency within the alliance and effectively reduce overall
electricity costs. Both providing and using stored energy are
considered contributory actions. The formulas for calculating the
energy interaction contribution factor θECSES and θECi are as follows:

θECSES �
∑t∈T Pses,t

∣∣∣∣ ∣∣∣∣∑t∈T Pses,t

∣∣∣∣ ∣∣∣∣ +∑t∈T ∑t∈T Pi
es,t

∣∣∣∣ ∣∣∣∣ × 100%

θECi � ∑t∈T Pi
es,t

∣∣∣∣ ∣∣∣∣∑t∈T Pses,t

∣∣∣∣ ∣∣∣∣ +∑t∈T ∑t∈T Pi
es,t

∣∣∣∣ ∣∣∣∣ × 100%

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(30)

Peak-time energy contribution (PC) factor:
Users who provide energy to SES to maintain its charge state

during peak electricity price periods contribute more significantly.
This contribution factor solely measures user behavior to
incentivize users to charge the storage. The energy storage
factor θPCSES is considered as zero, and the formula of the user
factor θPCi is:

θPCi � ∑t∈T peak
max Pi

es,t, 0( )
∑t∈T ∑t∈T peak

max Pi
es,t, 0( ) × 100% (31)

where T peak represents sets of periods with peak electricity prices in
the power grid, and T peak ⊆ T .

Based on the above contribution indicators, the total bargaining
power of the SES and users can be obtained:

θSES � σ1θ
MC
SES + σ2θ

EC
SES + σ3θ

PC
SES

θi � σ1θ
MC
i + σ2θ

EC
i + σ3θ

PC
i

{ (32)

where σ1, σ2, and σ3 represent the weights of three indicators,
which also need to satisfy condition σ1 + σ2 + σ3 � 1. The selection
of weights is based on incentive policies for user behavior
regarding SES. Increasing σ1, σ2, and σ3 respectively means

facilitating overall cost reduction, promoting energy interaction,
and encouraging energy provision to SES during peak times. In this
paper, it is assumed that each indicator is approximately equally
important, with a slight increase in the incentive for energy
interaction to boost energy complementarity among users.
Therefore, σ1 and σ3 are set as 0.3, and σ2 is set as 0.4. It can
be proved that:

θSES + ∑
i∈N

θi � 1 (33)

4.3 Collaborative game distributed solution
method based on improved ADMM

Obtaining all energy usage information from different stakeholders
is unsafe and impractical. To address this, a distributed algorithm that
only acquires limited energy interaction variables is employed. ADMM
can efficiently compute convex optimization problems with separable
variable equality constraints. Therefore, an improved ADMM
algorithm with adaptive penalty factors is implemented to
sequentially solve SP1 and SP2.

4.3.1 Solving of the SP1
For the energy operation optimization SP1, there exists a

global nonlinear coupling constraint (21), which disrupts the
decomposability of the main problem. Therefore, introduce P̂ses,t

and P̂
i
es,t as auxiliary variables for Pses,t and Pi

es,t. This transforms
the original constraints into direct constraints between decision
variables and auxiliary variables, as well as constraints of
auxiliary variables themselves. As a result, each optimization
variable has independent linear constraints, making it more
amenable to ADMM algorithm requirements. The coupling
constraint is modified to:

Pses,t � P̂ses,t

Pi
es,t � P̂

i

es,t

P̂ses,t − ∑
i∈N

P̂
i

es,t � 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (34)

The augmented Lagrangian function for the problem (26) can be
expressed as:

L sp1 � min
ψ1

⎧⎨⎩Cp
SES + ∑

i∈N
Cip

user + ∑
t∈T

ρope
2

Pses,t − P̂ses,t + λses,t
ρope

⎛⎝ ⎞⎠2

+∑
i∈N

∑
t∈T

ρope
2

Pi
es,t − P̂

i

es,t +
λiuser,t
ρope

⎛⎝ ⎞⎠2⎫⎬⎭
s.t. 1( ) − 20( ), 34( )

(35)
where ψ1 � {ψSES,ψi,∀i ∈ N } are decision variables of SP1,
while ψSES � Pch,t, Pdis,t, Pses,t{ } serves as the operator variable and ψi �{{Pi

es,t}i∈N a
, {Pi

es,t, P
i
buy,t, P

i
trans,t, P

i
int,t, P

i
red,t}i∈N b

,

{Pi
es,t, P

i
buy,t, P

i
sell,t, P

i
die,t}i∈N c

} denotes the decision variable for user i.

ρope is the penalty factor in SP1, which is a positive constant; λses,t and

λiuser,t are Lagrange multipliers.

Frontiers in Energy Research frontiersin.org07

Xu et al. 10.3389/fenrg.2024.1420393

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1420393


The ADMM algorithm is used to decompose the separable
variable problem, alternately iterating between the SES
operator and each user in every iteration, and coupling through
the update of Lagrangian multipliers, to achieve a distributed
solution to the algorithm. The steps of alternate iteration are
as follows:

Given the SES charging and discharging strategy, user
i ∈ N optimizes their own energy control decisions and the
required shared energy interaction amount based on their
user type:

min
ψi

Cip
user +∑T

t�1

ρ k( )
ope

2
Pi
es,t − P̂

i, k( )
es,t + λi, k( )

user,t

ρ k( )
ope

⎛⎝ ⎞⎠2

(36)

Given the shared energy demand of each user, the SES operator
optimizes the operation strategies:

min
ψSES

Cp
SES +∑T

t�1

ρ k( )
ope

2
Pses,t − P̂

k( )
ses,t +

λ k( )
ses,t

ρ k( )
ope

⎛⎝ ⎞⎠2

(37)

Update the auxiliary variables P̂
(k+1)
ses,t and P̂

i,(k+1)
es,t :

min
P̂ses,t ,P̂

i
es,t

∑T
t�1

ρ k( )
ope

2
P k+1( )
ses,t − P̂ses,t + λ k( )

ses,t

ρ k( )
ope

⎛⎝ ⎞⎠2

+∑N
i�1
∑T
t�1

ρ k( )
ope

2
Pi, k+1( )
es,t − P̂

i

es,t +
λi, k( )
user,t

ρ k( )
ope

⎛⎝ ⎞⎠2

(38)

Update the Lagrange multiplier λ(k+1)ses,t and λi,(k+1)user,t :

λi, k+1( )
user,t � λi, k( )

user,t + ρ k( )
ope Pi, k+1( )

es,t − P̂
i, k+1( )
es,t( ) (39)

λ k+1( )
ses,t � λ k( )

ses,t + ρ k( )
ope P k+1( )

ses,t − P̂
k+1( )
ses,t( ) (40)

The penalty factor in the ADMM algorithm plays a crucial role
in both the convergence and convergence speed of the algorithm. An
appropriate penalty factor can significantly enhance the efficiency of
convergence. Therefore, this paper employs an adaptive penalty
factor ADMM based on the original algorithm. Initially, the primal
and dual residuals are calculated:

r k+1( )
ope � P k+1( )

ses,t − P̂
k+1( )
ses,t , P1, k+1( )

es,t − P̂
1, k+1( )
es,t , . . . , PN, k+1( )

es,t − P̂
N, k+1( )
es,t[ ]

s k+1( )
ope � P k+1( )

ses,t − P k( )
ses,t, P

1, k+1( )
es,t − P1, k( )

es,t , . . . , PN, k+1( )
es,t − PN, k( )

es,t[ ]
⎧⎪⎨⎪⎩

(41)
where r(k+1)ope and s(k+1)ope are the primal residuals and dual residuals at
the k+1st iteration.

After each iteration, the penalty factor is updated according to
the following rule:

ρ k+1( )
ope �

ρ k( )
ope 1 + lg

r k+1( )
ope

!!!!! !!!!!
s k+1( )
ope

!!!! !!!!⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, if r k+1( )
ope

!!!!! !!!!!> θ s k+1( )
ope

!!!!! !!!!!
ρ k( )
ope/ 1 + lg

s k+1( )
ope

!!!!! !!!!!
r k+1( )
ope

!!!! !!!!⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, if s k+1( )
ope

!!!!! !!!!!> θ r k+1( )
ope

!!!!! !!!!!
ρ k( )
ope, other

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(42)

where θ is a constant greater than 1, typically set to 10.

The condition of iterative convergence is:

rk+1ope

!!!!! !!!!!< ξ

sk+1ope

!!!!! !!!!!< ξ

⎧⎪⎨⎪⎩ (43)

where ξ is the convergence threshold for solving the SP1, typically
set to 10–3.

4.3.2 Solving of the SP2
For the solution of SP2, concerning benefit distribution, we

also introduce Ĉser and Ĉ
i
pay as auxiliary variables for Cser and

Ci
pay in the face of the global constraint (22). This approach

transforms the optimization problem (27) and derives the
augmented Lagrangian function for SP2:

L sp2 � min
ψ2

−θSES ln C0
SES − Cp

SES + Cser( ) − ∑
i∈N

θi ln Ci,0
user − Cip

user − Ci
pay( )⎧⎨⎩

+ρben
2

Cser − Ĉser + ωses

ρben
( )2

+ ∑
i∈N

ρben
2

Ci
pay − Ĉ

i

pay +
ωi
user

ρben
( )2⎫⎬⎭

s.t.C0
SES − CSES + Cser ≥ 0, Ci,0

user − Ci
user − Ci

pay ≥ 0 (44)

where ψ2 � {Cser, Ci
pay,∀i ∈ N } are decision variables of SP2. ρben is

the penalty factor in SP2, which is a positive constant; ωses and ωi
user

are Lagrange multipliers.
The iterative solving steps of SP2 are analogous to those of SP1,

and are not reiterated.

5 Case studies

The numerical example considers a cooperation system
comprising one SES operator, two power generation side users,
one demand-side consumer user, and two microgrid prosumer
users. Generation side users 1 and 2 are a wind farm and a
photovoltaic station, respectively, with a generation deviation
penalty of 0.45 ¥/kW. User 3 is an industrial user following a
two-part electricity tariff, with a demand price of 40 ¥/kW per
month and an electricity price based on the TOU prices of Jiangsu
Province, China, with peak hours (8:00–12:00, 17:00–21:00) set at
1.0697 ¥/kWh, off-peak hours (0:00–8:00) at 0.3139 ¥/kWh, and
normal hours (12:00–17:00, 21:00–24:00) at 0.6418 ¥/kWh.
Additionally, the DR load proportions represent 10% of the total
load. The compensation costs for three types of load response are
0.2, 0.5, and 0.4 ¥/kWh, respectively. The maximum reduction ratio
for reducible load is 80%, with a daily total interruption limit of 4 h
and 2 interruptions per day. Prosumer users 4 and 5 both possess
loads and distributed renewable energy, with user 4 also equipped
with a diesel generator. Relevant parameters of the diesel generator
are as indicated in Table 1, and pollutant emission are shown in
Table 2. Prosumer users purchase electricity at the TOU prices, and
sell electricity at a fixed price of 0.25 ¥/kWh. Figure 2 illustrates the
output curves for generation side users, in accordance with their
dispatch plans and the load along with renewable energy generation
curves for other users on a typical day. The energy exchange cap with
the SES is set at 1,000 kW. The specifics of the SES are detailed
in Table 3.
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5.1 Analysis of the cooperative operation
scheduling

5.1.1 Analysis of the operation of the SES
Figure 3 displays the energy interaction scheduling results between

the SES and all users, where positive interaction values indicate users
charging the storage, and negative valuesmean the SES is discharging to

the users. During the period from 00:00 to 8:00 with the low TOUprice,
amajority of users engage in charging activities, leading to an increase in
its SOC. From 8:00 to 18:00, certain users experience high energy
demand surpassing supply capacity, resulting in continuous discharge
from the SES. Subsequently, from18:00 to 24:00, user demand decreases
and there is a slight increase in the SOC for the SES. Overall scheduling
maintains consistent levels at both ends for normal operation during
subsequent cycles. Specific observation of user behavior reveals that, in
this case, generation-side users 1 and 2 primarily supply power to the
storage, especially during 8:00–18:00, where they serve as the main
energy providers. Conversely, demand-side user 3 solely consumes
electricity as it lacks renewable energy sources. Prosumer-type users
4 and 5 are observed to engage in both charging and discharging
behaviors. User 5, having abundant renewable energy resources,
contributes more energy, charging the SES during the periods of 0:
00–8:00 and 15:00–24:00 to help accumulate energy in the SES. By
aggregating surplus energy into SES, users ensure sufficient power
supply during high-priced peak consumption periods while fully

TABLE 1 Parameters of user 39s diesel engine.

Pdie_max

(kW)
Pdie_min

(kW)
ridie (kW) Ti

die_start (h) Ti
die_stop (h) cidie_work (¥) cidie_start (¥) cidie_stop (¥) α β γ

1000 100 500 2 2 20 20 20 0.0004 0.27 70

TABLE 2 Diesel engine pollutant emission factors and abatement costs.

Types of
pollutants

Emission factor
(g/kWh)

Abatement
cost (¥/kg)

NOx 8.662 27.54

SO2 0.928 6.49

CO 4.64 1.12

CO2 464.074 0.092

TABLE 3 Parameters of SES.

Ees_N (MWh) Pes_N (kW) ce (¥/kWh) cp (¥/kW) SOCmax SOCmin ηch/ηdis Y (yr) R (%)

10 3500 500 2 0.9 0.1 0.9 15 6

FIGURE 2
Renewable energy output and scheduling/load curves for users on a typical day. (A): User 1 and User 2; (B): User 3; (C): User 4; (D) User 5.
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leveraging temporal and spatial complementarity among various users’
energies to reduce overall alliance electricity costs.

5.1.2 Analysis of the operation of the users
Table 4 shows the original deviation penalty power for users

1 and 2, as well as the combined deviation penalty power values for
shared and self-built energy storage. It is evident that participation in
both shared and self-built energy storage results in a reduction of the
deviation penalties. Self-built energy storage achieves better plan
tracking effects. For a possible reason that, during certain periods,
the cost of deviation penalties is less than the energy costs of other
users, leading SES to reallocate energy to these other users.
Nonetheless, SES still meets most of the demand smoothing
needs for source-side users, with users 1 and 2 seeing a reduction
in penalty costs by 2365.6 ¥ and 1056.5 ¥, respectively. User 3′s
operation result with SES is illustrated in Figure 4. As a consumer
user, it is noticeable that this user predominantly relies on electricity
from the SES. By discharging stored energy, it effectively mitigates
peak loads and significantly reduces peak electricity demand by
1588.3 kW, resulting in substantial savings of 2117.7 ¥ per day in
basic charges. Additionally, during periods of low electricity prices
from 4:00–5:00, this user strategically opts to procure electricity
from the grid and store it in the SES for peak-valley price arbitrage.
Although this behaviour temporarily incurs additional costs for the
user, it ultimately yields greater alliance benefits after benefit
distribution. The result of user 4 is depicted in Figure 5. Despite
having distributed energy resources, user 4 opt to utilize energy from
the SES during high-demand periods between 9:00–21:00. Using SES
instead of self-built systems reduces diesel generator output
significantly from 4945.3 kW to 1260 kW, cutting diesel

generation costs by 1922.5 ¥ and environmental pollution control
expenses by 1077.8 ¥. The scheduling result of user 5 is shown in
Figure 6. While selling electricity to the grid yields direct income, it
does so at a lower unit price; however, providing energy through
energy storage offers greater overall benefits. Consequently, this user
prioritizes charging the energy storage during periods of abundant
renewable energy and sells any remaining electricity to the grid. The
comparison of grid transaction volumes for consumers and
prosumers participating in SES and self-built energy storage is
illustrated in Figure 7. It is clear that, in the early stages of SES
scheduling, the electricity purchased from the grid by users is similar
to that during periods using self-built storage, though the electricity
sold decreases. When there is sufficient energy stored, it is noticeable
that the electricity purchases from the grid significantly decrease for
all users, with energy being maximally circulated within the alliance.
User 3, 4, and 5 respectively saved 14484.7 ¥, 4751 ¥, and 771.1 ¥ in
grid electricity purchasing costs.

5.2 Analysis of the benefit distribution

After negotiations, the total costs for each entity when participating
in SES compared to self-built energy storage are presented in Table 5. A

FIGURE 3
Energy interaction scheduling results. FIGURE 4

Operation result with SES of User 3.

FIGURE 5
Operation result with SES of User 4.

TABLE 4 Comparison of deviation penalty power for generation-side users
in different modes.

Original
deviation
penalty

power (kW)

Deviation
penalty power
with SES (kW)

Deviation
penalty power
with self-built

energy
storage (kW)

User 1 9353.4 4096.4 3023.4

User 2 8370.0 6022.2 2290.7
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positive value for the SES service fee indicates payment to the SES,
while a negative value represents receiving subsidies for energy supply
from SES. It is evident that all parties’ benefits have increased after
engaging in SES compared to the non-cooperative state. The total
social cost has decreased by 41.3%, from 48,130.8 ¥ to 19,873.4 ¥,
achieving mutual complementarity and benefit within cooperative
alliances. Regarding pricing for SES service fees, users 1, 2, and
5 who contribute energy to the entire alliance can also receive
subsidies for their energy supply and thus attain higher profits.
From the table, it can be seen that after the profit distribution, all
individuals have received positive profits from participating in SES.
User 5 has the highest profit, reaching 7930.1 ¥, benefiting from
compensation for providing a large amount of renewable energy to the
alliance. Participating in shared storage cooperation can effectively
improve the economic benefits for all parties involved. The above
results confirm the economic viability of SES.

The computed results of bargaining factors for each party in
asymmetric Nash bargaining are presented in Table 6. It is
apparent that user 5 makes the most significant contribution to
the overall alliance due to its highest marginal benefit post-
cooperation and high levels of energy interaction, including
significant energy contributions during peak periods. User 4 has
the smallest bargaining factor, attributed to its less energy
interaction and absence of energy provision during peak
periods. Comparing the asymmetric Nash bargaining employed
in this study with the general Nash bargaining, as depicted in
Figure 8. Under general Nash bargaining, each party can attain
equal profits. Although this distribution method reduces income
disparity among parties, it overlooks variations in their
contributions to the alliance, thus lacking fairness. In the
asymmetric Nash bargaining proposed in this paper, are
distributed according to the calculated contribution factors. For
instance, Microgrid User 5 contributes a substantial amount of
renewable energy during operation scheduling, resulting in a high
Nash bargaining factor of 0.399. However, under general Nash
bargaining principles alone, it would only receive an average profit
of 3312.2 ¥; whereas under asymmetric Nash bargaining principles
it can achieve significant profits of up to 7930.1 ¥ with an increase
of 4617.9 ¥. Asymmetric Nash bargaining enables higher economic
returns for parties making greater contributions to the alliance
thereby promoting equity and sustainability.

FIGURE 7
Grid transaction power for consumers and prosumers with SES
and self-built energy storage. (A) With SES; (B) With self-built
energy storage.

FIGURE 6
Operation result with SES of User 5.

TABLE 5 Comparison of total costs with SES and self-built energy storage.

Total costs with self-built
energy storage (¥)

Operation costs with
SES (¥)

SES service
fee (¥)

Total costs with
SES (¥)

Profits
(¥)

User 1 2547.9 1843.4 −3510.0 −1666.6 4214.5

User 2 2736.6 2710 −2824.2 −114.2 2850.8

User 3 24687.5 8930.6 13836.7 22767.3 1920.2

User 4 16718.5 8489.5 6911.3 15400.8 1317.7

User 5 1440.3 −40.8 −6449.0 −6489.8 7930.1

SES operator -- 6324.7 -- −1640.1 1614.1

Total 48130.8 -- -- 28257.4 19873.4
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5.3 Analysis of the algorithm

The algorithm employed in this study achieves global optimality
through distributed iteration among different entities, with each user
only required to transmit the exchange power Pi

es,t to the SES. This
approach avoids the disclosure of a large amount of internal
information, effectively safeguarding user privacy and reducing
communication stress. Tests reveals that initiating penalty factors
with values ρ(1)ope � 0.005 and ρ(1)ben � 0.0001 achieves ideal convergence

speed in this example. SP1 converges after 74 iterations taking 206.9 s,
while SP2 converges after 58 iterations in 40.1 s. The improved
ADMM algorithm proposed in this paper is compared with the
standard ADMM algorithm in the more complex SP1. Under
identical parameter settings, the standard ADMM takes 332.5 s
and 97 iterations to converge, while the adaptive penalty factor
ADMM used in this study reduces the time by 37.8%. The
convergence curves for both algorithms for SP1, focusing on the
post-cooperation costs for User 3, are illustrated in Figure 9. The
results show similar final convergence between the two algorithms,
but the improved ADMM converges faster to a stable value,
demonstrating better convergence performance. The convergence
comparison of the primal and dual residuals for SP1 using both
algorithms is shown in Figure 10. It can be seen that between the 4th
and 7th iterations, the adaptive ADMM dynamically adjusts the
penalty factors based on the relative sizes of the residuals,
significantly speeding up convergence. Overall, the adaptive penalty
factor improvedADMM shows better convergence and faster solution
speed, which is more suitable for the distributed solving of the setup
cooperative scenario. Additionally, the limited communication

TABLE 6 Results of bargaining factors in asymmetric Nash bargaining.

Marginal contribution
factor

Energy interaction
contribution factor

Peak-time energy
contribution factor

Total bargaining
power factor

User 1 0.009 0.158 0.486 0.212

User 2 0.0002 0.100 0.345 0.144

User 3 0.044 0.209 0 0.096

User 4 0.024 0.148 0 0.066

User 5 0.898 0.197 0.169 0.399

SES operator 0.025 0.188 0 0.083

FIGURE 8
Comparison of the profits under different Nash bargaining.

FIGURE 9
Comparison of convergence for User 3’s costs in SP1 between
improved/standard ADMM.

FIGURE 10
Comparison of convergence of the residuals in SP1 between
improved/standard ADMM. (A) Improved ADMM; (B) Standard ADMM.
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information and stable solving process contribute to the sustainable
expansion of the shared storage user base.

6 Conclusion

This paper introduces a new cooperative game framework for
SES, exploiting the complementation of energy among power
suppliers, consumers, and prosumers. By using shared storage as
a nexus for energy interaction, it optimizes societal energy
utilization, reduces the energy costs for users, and eliminates the
high capital expenses of building individual storage systems.
Through an asymmetric Nash bargaining approach based on
each entity’s contribution to the alliance, the framework ensures
a fair distribution of cooperative surpluses and establishes pricing
strategies for storage, promoting equitable negotiation of interests.
Moreover, the adaptive penalty factor ADMM algorithm is
employed for distributed solving of operational scheduling and
pricing decisions related to SES, reducing communication
burdens while safeguarding user privacy. The enhanced algorithm
exhibits faster convergence compared to standard ADMMmethods,
minimizing the impact of penalty factors on convergence. This
paper focuses on day-ahead scheduling optimization but does not
account for uncertainties from the volatility of renewable energy and
load outputs, nor the physical constraints of the network structure.
Future research could address these gaps by incorporating measures
for uncertainty and analyzing the impact on line power flows within
the shared framework.
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