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The fluctuations brought by the renewable energy access to the distribution
network make it difficult to accurately describe the state space model of the
distribution network’s dynamic process, which is the basis of the existing dynamic
state estimation methods such as the Kalman filter. The inaccurate state space
model directly causes an error of dynamic state estimation results. This paper
proposed a new dynamic state estimation method which can mitigates the
impact of renewable energy fluctuation by considering PV power prediction in
establishing distribution network state spacemodel. Firstly, the proposedmethod
mitigates the impact of renewable energy fluctuation by considering PV power
prediction in establishing distribution network state space model. Secondly, SVSF
filter is introduced to achieve more accurate estimation under noise. The case
study and evaluations are carried out based on MATLAB simulation. The results
prove that the smooth variable structure filter with photovoltaic power prediction
has a better dynamic state estimation effect under the fluctuation of the
distribution network compared with the existing Kalman filter.
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1 Introduction

As a renewable energy source, photovoltaic (PV) technology offers great potential. It is
convenient to install, less subject to geographical restrictions, and can be easily arranged
(Khalid et al., 2023). PV is an important part of clean energy that promotes sustainable
energy development and protects the environment, which is an important reason for its
widespread acceptance in power systems. However, the large-scale integration of
photovoltaic systems into the distribution network presents significant difficulties. The
fluctuation of several PV accesses to distribution networks causes significant difficulties in
stability and controllability. To control the risks of distribution networks, dynamic state
estimation is one of the necessary methods. Dynamic state estimation models and
measurement data are used to perform a calculation based on a state-space model
(Lupeng et al., 2023) or other prediction methods to obtain state estimation and
prediction values, achieving the purpose of dynamic tracking and prediction of the system.
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Existing dynamic state estimation methods usually use the
Kalman filter to estimate the dynamic system’s linear state. Its
greatest advantage is that it can be calculated in different
situations without modification. To solve the problem of
nonlinear system prediction, the extended Kalman filter was
proposed, which can track the nonlinear dynamic system state by
obtaining the Jacobian matrix of the transition matrix and ignoring
the high-order components in the Taylor expansion (Mandal et al.,
1995). However, calculating the Jacobian matrix in every calculation
will result in slow convergence speed, and ignoring high-order
components reduces the accuracy of the dynamic state results.
Therefore, the unscented Kalman filter (UKF) (Wang et al.,
2012) was proposed to further overcome these limitations by
using unscented transformation to map the statistical distribution
of the state space to the measurement space through the
measurement equation and using the propagation of sampling
points instead of nonlinear function transformation so that the
high-order terms in the nonlinear measurement equation do not
need to be discarded during the process, avoiding linearization
errors. However, the unscented transformation will cause the
mapping of the state space to fall outside the feasible domain of
the measurement space, making the sampling points meaningless.
Therefore, Sharma et al. (2017) introduced the cubature Kalman
filter (Haykin and Arasaratnam, 2009) into dynamic state
estimation. The cubature Kalman filter is based on the third-
order spherical radial volumetric criterion and uses a set of
volumetric points instead of UKF sampling points. The sampling
rules and weighting strategies are determined, ensuring strong
applicability while maintaining high accuracy and stability even
when dealing with problems involving many state variables.

As distributed power generation gradually occupies a higher
proportion in the distribution networks, traditional distribution
networks are shifting toward active distribution networks
(ADNs), and a large number of renewable energy generation
devices, such as photovoltaics, are connected to active
distribution networks, highlighting the nonlinear issues. The
state-space model of the power system changes frequently, and
traditional dynamic state estimation can no longer meet the accurate
requirements because existing Kalman filters based on the state-
space model make it difficult to accurately describe the distribution
networks and reflect the actual operation of the distribution
network. Moreover, due to the random fluctuation of renewable
energy, the state of the distribution network changes frequently and
can become unstable. So, the dynamic state estimation method
based on Kalman filters, which is suitable for traditional stable
distribution networks, is not suitable for active
distribution networks.

Recent studies, such as Guanghua et al. (2022), have tried to
address these problems of existing Kalman filters. Furthermore, the
smoothing variable structure filter (SVSF) has emerged as an
efficient solution. This filter is a “predictive–corrective” estimator
with good stability and robustness for modeling uncertainties and
disturbance noise with given upper limits. Habibi and Burton (2003)
proposed a filtering algorithm based on an uncertain model, which
introduced a smooth boundary layer and a sliding membrane into
the calculation of filtering gain, and proposed the first smooth
variable structure filter. Due to the existence of uncertain random
interference in practical systems, Habibi (2007) obtained an

approximate optimal smooth boundary layer by taking the partial
derivative of the estimation error covariances. Gadsden and Habibi
(2013) extended the boundary layer to a full matrix form and
obtained a smooth variable structure filter with an optimal
smooth boundary layer Jiawei et al. (2023) used UKF to predict
the real-time operating levels of the state variables and model PV
power intervention by predicting the photovoltaic power. The
limitations of the previous works in dynamic state estimation are
shown in Table 1.

To alleviate the influence of photovoltaic fluctuations on the
relatively stable original state-space model of the distribution
network, which causes inaccuracies in the existing dynamic state
estimation methods such as the Kalman filter, this paper introduces
the SVSF as the prediction model in the dynamic state estimation of
distribution networks and integrates photovoltaic prediction
methods mainly based on the BP-neural network. The
photovoltaic power prediction is innovatively used to model the
fluctuation influence of the photovoltaic power at the next moment
on the voltage vector, which effectively improves the accuracy of
estimation in active distribution networks.

This paper proposes a new dynamic state estimation method for
distribution networks-based modified SVSF under photovoltaic
access. The main contributions of the paper are as follows:

(1) By predicting the photovoltaic power based on real-time
weather data when modeling the distribution network
state-space model, photovoltaics are integrated into the
dynamic state estimation system in SVSF. This enables
modeling the impact of PV on the state of the distribution
network at the next moment. In addition, the effect of PV
power fluctuation on the dynamic state estimation accuracy of
the distribution network is effectively reduced.

(2) By introducing the SVSF, a dynamic state estimation method
for distribution networks with photovoltaic power prediction
is proposed. The proposed method alleviates the problem
caused by the frequent changes in the state-space model due
to the photovoltaic power fluctuations. It can improve the
robustness under data noise and the accuracy of the dynamic
state estimation.

2 Photovoltaic power prediction using
the BP-neural network

This section considers photovoltaic power generation
equipment as the objective to introduce the combination of new
energy power generation equipment represented by photovoltaics
and the dynamic state estimation algorithm. Photovoltaic power
prediction needs to start with the correlation between photovoltaic
power and the related meteorological factors. The proposed method
selected appropriate and closely related meteorological factors for
prediction training and avoided invalid training interference with
prediction results. The Pearson correlation coefficient analysis
method is selected to standardize the correlation between the
meteorological factors and photovoltaic power generation capacity.

Most studies in Table 2 believe that the power of photovoltaic
power generation equipment has a strong correlation with solar
radiation, ambient temperature, and relative humidity. At the same

Frontiers in Energy Research frontiersin.org02

Zhi et al. 10.3389/fenrg.2024.1421555

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1421555


time, different correlation coefficients may be caused by different
photovoltaic power generation equipment used in different
studies, different weather and meteorological conditions
(Hammad et al., 2021), and other reasons (Aljdaeh et al.,
2021). However, most studies believe that solar radiation is
the preferred factor affecting photovoltaic power
generation equipment.

When training the prediction network that meets the local
geographical conditions and the installed equipment, it is
necessary to conduct correlation analysis on the medium- and
long-term real machine data and the meteorological data of
similar conditions of the equipment that has been installed
locally. Based on this correlation analysis, the prediction model is
designed and trained.

A relatively simple BP-neural network is selected as the
prediction network for photovoltaic power prediction. The
topology structure of the BP-neural network is shown in Figure 1.

The core of the BP-neural network is the forward and
backward propagation process of the neurons in the hidden
layer (Zhao, 2015). Eq. 1 represents forward propagation,
where wij is the weight between neuron i in the previous layer
and neuron j in this layer. The threshold of neuron j in this layer
is bj, and the output of the neuron in this layer is xj. f is the
activation function, which is generally chosen as the
sigmoid function.

Si � ∑m−1
i�0 wijxi + bj

xj � f Sj( ) . (1)

In other words, the output value of each neuron is adjusted
under the intervention of the activation function based on the
output values of all the nodes in the previous layer and the
current neuron value. During training, after the new output is

TABLE 1 Limitations of previous works in dynamic state estimation.

Reference Contribution Limitation

Guanghua et al.
(2022)

Introduced a triplet Markov model to model the system and used
correntropy instead of minimum mean-square-error.

The filter accuracy is improved, but the problem of state model inaccuracy
is not solved.

Wang et al. (2012) First developed UKF in the power system as the state estimation method
without linearization and Jacobian matrix calculation.

The filter accuracy is improved compared to the earlier method, but the
problem of state model inaccuracy in the ADN is not solved.

Sharma et al. (2017) Improved accuracy by CKF by linearization of the nonlinear measurement
function without the loss of accuracy.

The filter accuracy is improved compared to earlier methods, but the
problem of state model inaccuracy in the ADN is not solved.

Jiawei et al. (2023) Introduced square root UKF as the prediction method and predicted PV
power using a neural network.

The model fluctuation range of the ADN state is formulated as a bi-level
non-linear programming problem that cannot make good use of certainty
provided by PV predictions.

TABLE 2 Pearson correlation coefficient of different factors.

Reference Solar irradiance Ambient temperature Relative humidity

Jinliang et al. (2023) 0.9572 0.7634 0.1877

Keddouda et al. (2023) 0.9930 0.4540 −0.3620

Polasek and Čadík (2023) 0.9572 0.7634 0.3380

Jinliang et al. (2023) 0.9963 0.2757 −0.1771

FIGURE 1
Topology structure of the BP-neural network.

FIGURE 2
Results of solar power prediction.
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formed by forward propagation, according to the error between the
output and actual values, the Widrow–Hoff learning rule reverses
the error along the path of forward propagation and modifies the
weights of each neuron in each hidden layer, and it continuously
repeats this learning process to make the error between the output
and actual values as small as possible.

The input variables of photovoltaic prediction are based on
short-term weather forecast factors G, Ta, RH}{ , namely, solar
radiation G(W ·m2), ambient temperature Ta(C°), and air
humidity RH (%). The output variable is photovoltaic power
Ppv{ }, and its prediction effect is shown in Figure 2: the mean
absolute percentage error (MAPE) is 16.412%, and the root-mean-
square error (RMSE) is 1.3736.

3 Improved dynamic state estimation
method with the smooth variable
structure filter

The smooth variable structure filter is a “predictive–corrective”
estimator that can effectively estimate the state of a system. The
structure of SVSF is shown in Figure 3. Assuming a certain state
variable is x, its estimated value is x̂. The initial value of x̂ is selected
based on probability distribution or prior knowledge. By utilizing
noise and error information and using SVSF gain to switch on both
sides of the existence subspace, x̂ is forced to exist around the
subspace. When x̂ is outside the subspace, a discontinuous gain is
used to ensure stable calculation of the algorithm.When x̂ enters the
subspace, a continuous gain is used for dynamic state estimation,
thereby eliminating certain error effects. For SVSF, the premise of
effectively estimating the system state is that the error of the previous
period should be greater than the error of the next period, and the
system error tends to converge.

3.1 Model of the state-space model of
distribution networks

The state-space model is used to estimate the state
of the system based on the current state and the

input signal. The state-space model is defined as shown in
Eq. 2:

x̂k+1|k � f xk( ) + wk

zk � h xk( ) + vk
wk ~ 0,Qk( )
vk ~ 0,Rk( )

, (2)

where f and h are the state-space model and measurement
matrix of the power system, respectively. x̂k+1|k is the predicted
state estimate of the input system state vector, xk is the input
system state vector, and zk is the observed state measurement.
wk and vk are the state noise and measurement noise,
respectively, which are usually assumed to follow Gaussian
distributions with zero mean and covariance matrices
in (0, Qk).

As shown in Eq. 2, in the modeling of the state-space model
of distribution networks, the state vector x(k) consists of the
voltage magnitude UN,k+1|k and voltage phase angle δN,k+1|k.The
measurement vector zk consists of PL,k, QL,k, UN,k, δL,k, Ppv,k+1|k,
which, respectively, represent real power, reactive power,
voltage magnitude, phase angle, and PV power at the kth
time sample.

With the Holt’s two-parameter linear exponential smoothing
technique, f(·) takes the following form (Wentao et al., 2019;
Lujuan et al., 2020):

f xk( ) � sk + uk

sk � αxk + 1 − α( )x̂k+1|k
uk � β sk − sk−1( ) + 1 − β( )uk−1

, (3)

where α and β are the constants in interval (0, 1) and x̂k+1|k
represents the predicted state vectors for k+1 time based on
time k. The state forecasting function, Eq. 3, is used to predict
x̂k+1|k.

The measurement function h(.) as shown in the Eqs 4–7:

PN � ∑Load

j�1 VN‖VM| | GNM cos θNM + Bnm sin θNM( ), (4)

QN � ∑N

j�1 VN‖VM| | GNM sin θNM − BNM cos θNM( ), (5)
PNM � V2

N GgN + GsM( ) − VN‖VM| | GNM cos θNM + BNM sin θNM( ),
(6)

QNM � −V2
N BgN + BsM( )

− VN‖VM| | GNM sin θNM − BNM cos θNM( ), (7)

where |VN| is the voltage magnitude at node N and θNM is
the voltage phase angle between nodes N and M. PN and QN

are injection real power and active power in node N,
respectively, and PNM and QNM are the flow of real
power and active power between nodes N and M,
respectively; all of these variables belong to variables PL,k

and QL,k.
GNM and BNM are the conductance and susceptance of the line

between nodes N and M, respectively, and GgN and BgN are the
conductance and susceptance, respectively.

For the predicted PV power in distribution networks, PNM

and PN in PV nodes are deterministic. QN and QNM can be set to 0.

FIGURE 3
Structure of the smooth variable structure filter.
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3.2 Prediction part

x̂k+1|k � Ax̂k|k + wk

ẑk|k � Cx̂k|k + vk
, (8)

A � ∂f xk( )
∂xk

∣∣∣∣∣xk�~xk|k
C � ∂h xk( )

∂xk

∣∣∣∣∣xk�~xk|k−1
. (9)

In Eqs 8, 9, x̂k+1|k and ẑk|k are the predicted state estimate and
measurement estimate, respectively. A and C are the Jacobian
matrices of the nonlinear state function and measurement
function (i.e., f(.) and h(.)) linearized at the first-order Taylor
series, respectively.

Pk+1|k is the state error covariance calculated using Eq. 1,
and the measurement prediction value ẑk+1|k is determined using
Eqs 10, 11:

Pk+1|k � APk|kAT + Qk , (10)
ẑk+1|k � Ĉk+1x̂k+1|k + vk . (11)

The measurement estimation errors ez,k+1|k and ez,k+1|k+1 are
calculated using Eqs 12, 13:

ez ,k+1|k � zk+1 − ẑk+1|k, (12)
ez,k+1|k+1 � zk+1 − ẑk+1|k+1. (13)

3.3 Measurement update correction part

The gain in SVSF is shown in Eq. 14. The convergence rate
parameter γ satisfies 0< γ< 1. The superscript “+” in C represents
the pseudoinverse, diag( ) is a diagonalization symbol, and ⊗
represents the Schur product, which is the element-wise
multiplication of matrices.

Kk+1 � C+
k+1diag ez ,k+1 | k

∣∣∣∣ ∣∣∣∣ + γ ez,k|k
∣∣∣∣ ∣∣∣∣( ) ⊗ sat �ψ−1

k+1, ez,k+1 | k( )[ ]diag ez,k+1 | k( )−1

sat a, b( ) �
a
b

a| |≤ b

sign a( ) a| |> b

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭, (14)

where �ψ is the diagonalization form that represents the boundary
layer, which is obtained by taking partial derivatives of the error
covariance in Eq. 15.

�ψk+1 � E−1
k+1Ck+1Pk+1CT

k+1 Pk+1 | k( )−1[ ]−1
E−1
k+1 � diag ez,k+1 | k

∣∣∣∣ ∣∣∣∣ + γ ez ,k|k
∣∣∣∣ ∣∣∣∣( ) . (15)

FIGURE 4
Difference between the original SVSF and SVSF with PV power prediction.

FIGURE 5
Topology of 33-node distribution network case.
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The gain can update the state estimation value and can be
obtained using Eq. 16.

x̂k+1|k+1 � x̂k+1|k + Kk+1ez,k+1|k. (16)

The covariance matrix P is updated, and R is the covariance
matrix of measurement noise in Eq. 17.

Pk+1|k+1 � I − Kk+1Ck+1( )Pk+1|k I − Kk+1Ck+1( )T + Kk+1RCT
k+1. (17)

By correcting and updating the covariance matrix at each time
step, we can obtain more noise-resistant and accurate dynamic state
estimates x̂.

3.4 Improved dynamic state estimation
method considering PV power prediction

In order to introduce photovoltaic power prediction into SVSF,
when modeling the state-space model of the distribution network,
the power of photovoltaics needs to be used as an input in parallel
with the node voltage magnitude, voltage phase angle, and active
power of the distribution network. The original state-space model is
expressed in Eq. 2, where xk in the state-space model f(xk)
represents the distribution network vectors UN,k+1 | k, δN,k+1 | k{ }.
In this paper, when modeling in the state-space model
considering the factors of photovoltaic prediction, the input
vector zk of h(zk) includes PL,k, QL,k, UN,k, δL,k, Ppv,k+1 | k{ }. This
establishes an association between the predicted state vector of
distribution network and photovoltaic power prediction in the
state-space model. When calculating measurement estimation
errors ez,k+1|k and ez,k+1|k+1 for the position of the measurement
matrix where the photovoltaic node is located, the measurement
error value is the difference value between the photovoltaic power
prediction value and the actual photovoltaic power value, and the
original calculation method is maintained for other load nodes. This
realizes the real-time update of the system gain in the SVSF filtering
of new energy power generation equipment. Algorithm 1 shows the
steps of SVSF with PV power prediction. Figure 4 shows the
comparison of the original SVSF and SVSF with PV power
prediction.

In this case, when modeling the state-space model of the
distribution network, the photovoltaic output will become one of
the powerful influencing factors affecting the output voltage
magnitude and voltage phase angle. Therefore, the method of
photovoltaic power prediction can also be connected to the
Kalman filter; however, for the distribution network with
many nodes with large fluctuations, SVSF can have stronger
robustness by switching gains when it is impossible to model
all possible situations. In the remainder of the paper, we will refer
to the combination of SVSF and photovoltaic power prediction as
“SVSF + Predict”.

4 Case study and evaluation

To verify the application effect of the SVSF used in the
dynamic state estimation of the power system, this paper takes
a 33-node distribution net example system (Baran and Wu, 1989)
as the basis, and the system structure topology diagram is
shown in Figure 5. The main power generation unit is at node
1, and photovoltaic power generation equipment is installed at
nodes 18 and 22 to simulate the situation of system
fluctuations after photovoltaic access. The power data of load
nodes are adjusted according to the actual distribution

TABLE 3 RMSE, MAPE, and MAE values of voltage magnitude and voltage phase angle for some nodes.

Node Dynamic state estimation method Voltage magnitude Voltage phase angle

RMSE MAPE MAE (10–4) RMSE MAPE MAE (10–2)

16 UKF 0.0060 0.3792 5.9665 0.0418 9.2472 8.7868

SVSF 0.0036 0.2613 3.9407 0.0481 10.6355 7.9403

SVSF + Predict 0.0031 0.1909 0.4966 0.0244 5.3862 7.5192

24 UKF 0.0024 0.1344 11.9610 0.0147 14.7154 4.7826

SVSF 0.0017 0.1084 9.5494 0.0149 14.9621 3.2998

SVSF + Predict 0.0009 0.0559 0.5009 0.0091 9.1135 1.7972

30 UKF 0.0051 0.3171 7.4320 0.0364 9.9065 10.7383

SVSF 0.0034 0.2349 4.3312 0.0367 9.9973 7.2935

SVSF + Predict 0.0025 0.1555 0.5219 0.0247 6.7108 5.2154
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network power data (Group, 2023) from 1 January to
31 December 2022, which is segmented to set in nodes’ power.
In addition, the power generation and weather data of
photovoltaic power generation equipment are converted
based on the actual photovoltaic power generation
equipment data from the dataset Ruiyuan, Z. (2021). The
simulation training stage uses the tidal flow calculation results
obtained by the MATPOWER toolbox in MATLAB. The method
used for comparison in this paper is modified on the basis of UKF
(Bhusal and Gautam, 2020) and SR-UKF (JJHu 1993, 2016). Each
time section considers the acquisition time of the real
measurement system (Liu Zhelin et al., 2021), and the time
step of each section is 5 min, with a total of 3,000 times and a
total of 250 h.

Under normal operation, the distribution network is
usually quite stable, with the voltage magnitude maximum
fluctuation being only 2%, making it difficult to evaluate the
effectiveness of dynamic state estimation solely based on the
percentage difference in amplitude. When assessing the
accuracy between the predicted and actual values, it is
common to use RMSE, MAPE, and mean absolute error
(MAE) to measure the deviation between the estimated and
true values. RMSE is calculated using Eq. 18, which is the
square root of the mean squared error between the predicted
and actual values. A smaller RMSE indicates a smaller absolute
error between the predicted and actual values. MAPE is
calculated using Eq. 19, which is the mean of all
absolute percentage errors between the predicted and actual
values. A smaller MAPE indicates a smaller relative error
between the predicted and actual values under the same
scale. MAE is calculated using Eq. 20. It is similar to MAPE,
but it is a better representation of error. MAPE and MAE are
metrics used to measure the performance of dynamic state
estimation:

RMSE k( ) �
����������������
1
N
∑N

i�1 ŷk,i − yk,i( )2√
, (18)

MAPE k( ) � 1
N
∑N−1

i�1
ŷk,i − yk,i
∣∣∣∣ ∣∣∣∣

yk,i
, (19)

MAE k( ) � 1
N
∑N

i�1|ŷk,i − yk,i
∣∣∣∣. (20)

Here, k represents the node number, N represents the length
of the entire prediction sequence, and i is the time of
calculation. ŷk,i represents the predicted value, and yk,i is
the actual value.

4.1 Dynamic state estimation in
distribution networks

Node 16 is a node located at the end of the distribution system,
which is far from the main stable generator at node 1 but depends on
the PV installation node located at 18. Its voltage magnitude and
phase angle are affected by normal load fluctuations and PV power,
and the abnormal fluctuations of its magnitude and phase angle are
more severe than those of the conventional node, represented by
node 24, as described below. Under this node, UKF and SVSF are

comparable in the accuracy of magnitude prediction, while in SVSF
+ Predict, its MAPE value is only half of that of the above two
methods. Node 24 is the node located alone in the branch, which is
closer to both the generator and PV nodes. In most cases, at this
node, the performance of the three methods is closer. However, from
the macroscopic statistics of the data over a long period of time, it
can be obtained that SVSF + Predict still achieves better results
compared to the other two methods, and its RMSE, MAPE, and
MAE values are shown in Table 3. Figures 6, 7 show the estimation
error of voltage magnitude and voltage phase angle plots for
nodes 16 and 24.

The dynamic state estimation results of voltage magnitude and
voltage phase angle are provided in Table 3. Active power is
considered the PV prediction factor when establishing the state-
space model In addition, the influence of active power on voltage
magnitude is much smaller than that on voltage phase angle in the
distribution network. Therefore, the PV power prediction is more
closely related to the estimated voltage phase angle. In the 16 nodes
that are near the photovoltaic generation, the addition of
photovoltaic power prediction more effectively strengthens the
dynamic state estimation accuracy of the node.

In comparison with the dynamic state estimation results of
voltage magnitude and voltage phase angle in Table 3, active power
is considered the additional factor when establishing the state-space
model. In addition, the influence of active power on voltage
magnitude is much smaller than that on voltage phase angle in
the distribution network. Therefore, the PV power prediction is
more closely related to the changes in voltage phase angle. As a
result, in the 33-node case, the improvement in the voltage phase
angle of the dynamic state estimation is more effective than that in
the voltage magnitude, which can be derived from RMSE andMAPE
on node 16.

Figure 8 shows the RMSE and MAPE of voltage magnitude and
voltage phase angle at all 33 nodes. At almost the majority of the
nodes, SVSF + Predict achieves better prediction accuracy than
SVSF or UKF. This figure is roughly divided into three segments by
branches in distribution networks: nodes 2–18, 20–25, and 26–33.
The worst prediction value among the three methods is located at
node 18, which is not only far from the generator node but also the
PV node, and thus, the prediction is mainly affected by the PV
power; without the assistance of PV power prediction, the prediction
results of both UKF and SVSF at this node show a more serious bias.
In contrast, in the combination of PV power prediction, MAPE is
decreased by 50%. Second, among nodes 19–33, node 33 is the node
with the largest error. This node is located far from the initial
generation node and at the end of the line, and in SVSF + Predict, its
error increases more slowly compared to the other twomethods, and
better results are achieved compared to that without the assistance of
PV power prediction.

In general, in the nodes near the photovoltaic power
generation, such as node 16, the addition of photovoltaic
power forecasting more effectively strengthens the dynamic
state estimation accuracy of the node. However, for nodes
with relatively stable operation that are not seriously affected
by PV fluctuations, like nodes 24 and 30, the improvement in the
estimation accuracy of the proposed method is not as obvious as
that of node 16, and it only improves the SVSF’s performance on
these nodes to a small extent.
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4.2 Dynamic state estimation in noise
interference

For the case study under noise interference, SCADA is
configured in each branch of the distribution network, and PMU
is configured in nodes 2, 6, and 12. The standard deviation of
measurement error of branch power data collected by SCADA is set
to be 0.02, and the standard deviation of measurement error of
voltage magnitude and phase angle collected by PMU is set to be
0.005 and 0.002, respectively.

The results of dynamic state estimation under noise
interference are shown in Table 4. Under the interference of
noise, the dynamic state estimation effect of UKF, SRUKF, and
the proposed method is affected. For nodes such as node 16 that
are close to the photovoltaic setting branch, the predicted
photovoltaic power in the simulation is still accurate.
Therefore, under the interference of noise, the dynamic state
results of the proposed method in branches near the influence are
not obvious, and they have a strong anti-interference ability. For

nodes 24 and 30, due to noise interference, the dynamic state
estimation results have a greater loss of accuracy than the results
without noise interference. The variation in error value of
dynamic state estimates for phase angles with larger original
magnitudes is more obvious. However, in general, the RMSE
value of dynamic state estimation proves that it is still in the valid
range under noise interference.

5 Conclusion

To address the inaccuracy associated with the existing
dynamic state estimation method based on the Kalman filter,
this paper proposed an SVSF-based dynamic state estimation
method with consideration of PV power prediction. Compared
with the traditional UKF algorithm, this method offers greater
advantages in accuracy and robustness. The proposed method
can more effectively strengthen the dynamic state estimation
accuracy of the node near the photovoltaic power generation. In

FIGURE 6
(A) Estimation error of voltage magnitude for node 16. (B) Estimation error of voltage phase angle for node 16.

FIGURE 7
(A) Estimation error of voltage magnitude for node 24. (B) Estimation error of voltage phase angle for node 24.
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addition, under the interference of noise, the proposed method
has a strong anti-interference ability.

1. Improved dynamic state estimation based on SVSF
considering PV power prediction is characterized by introducing
photovoltaic power prediction whenmodeling the state-space model
of the distribution network and relying on the new factor of
photovoltaic output prediction in pre-modeling to model the
impact of photovoltaic output on the dynamic state estimation of

the distribution network, alleviating the uncertainty caused by
photovoltaic fluctuations.

2. Improved dynamic state estimation based on SVSF
considering PV power prediction uses noise information and
error information, uses SVSF gain to switch on both sides of the
existing subspace, and forces x̂ to the vicinity of the existing
subspace, thereby correcting the estimated value to the vicinity of
the true value.

FIGURE 8
(A) RMSE of voltage magnitude at all 33 nodes. (B) RMSE of voltage phase angle at all 33 nodes. (C) MAPE of voltage magnitude at all 33 nodes. (D)
MAPE of voltage phase angle at all 33 nodes.

TABLE 4 RMSE, MAPE, and MAE values of voltage magnitude and voltage phase angle for some nodes under noise interference.

Node Dynamic state estimation method Voltage magnitude Voltage phase angle

RMSE MAPE MAE (10−2) RMSE MAPE MAE

16 UKF 0.0082 0.7078 0.6860 0.1347 89.9249 0.1065

SR-UKF 0.0065 0.4437 0.1996 0.0835 62.3827 0.0296

SVSF + Predict 0.0034 0.2639 0.1920 0.0332 20.3798 0.0271

24 UKF 0.0079 0.6509 0.6676 0.0618 83.8348 0.0434

SR-UKF 0.0034 0.3082 0.1749 0.0426 35.8962 0.0290

SVSF + Predict 0.0022 0.1748 0.1738 0.0278 24.8605 0.0279

30 UKF 0.0080 0.6892 0.6669 0.1302 51.2266 0.0981

SR-UKF 0.0066 0.5128 0.1986 0.0442 15.2176 0.0312

SVSF + Predict 0.0042 0.3049 0.1841 0.0256 10.7189 0.0230
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3. Improved dynamic state estimation based on SVSF
considering PV power prediction also has strong filtering and
estimation performance when the state-space model is not
accurate. In addition, this paper also verifies that under the
condition of large fluctuations and noise interference in the
distribution network, SVSF can more effectively suppress the
divergence problem caused by model inaccuracy
compared to UKF.

At present, the research considers photovoltaics as a
representative of renewable energy. The next step is to study the
prediction of other renewable energy sources in combination with
SVSF to improve the proposed method.
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