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Improved SVM-LSTM-based
resource flow forecasting for the
low-carbon urban distribution
grid
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Resource flow supports the delivery of products and services and plays a vital
role in the low-carbon urban distribution grid. Therefore, reasonable forecasting
of the resource flow is essential for financial decision-making. Through the
trainedmodel, the resource flow forecasting process can be simplified and one-
click forecasting can be realized. However, this method relies on the selection
and optimization of model parameters, where poor parameter choices can
significantly impact the forecasting accuracy. This paper first introduces amodel
for identifying key influencing factors in resource flow data, incorporating an
elastic network and gray correlation analysis. Subsequently, a resource flow
forecasting method based on improved support vector machines–long- and
short term memory (SVM-LSTM) is proposed. Finally, the superior performance
of the proposed method is validated through simulations.
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1 Introduction

Resource flow is the flow of funds generated by the delivery of products and services
in a company’s business process, which plays a crucial role in the low-carbon urban
distribution grid (Sanjaya et al., 2019; Zhang and Xia, 2020). Therefore, rational forecasting
of the resource flow is essential for financial decision-making, ensuring an optimal cash-
holding level that meets the company’s liquidity needs without hindering its growth
(Niu and Zhao, 2021; Zhu et al., 2024). For capital-intensive enterprises like power grid
companies, with large resource flow scales and complex fund flows, efficient management
of resource flow budgeting becomes particularly important (Zhou et al., 2020). One-click
resource flow forecasting implies that the power grid resource flow forecasting can be done
quickly and accurately through simple operations without complicated and cumbersome
steps, which enables companies to respond quickly to market changes, rationalize budget
arrangement, and carry out fund management. However, the existing one-click resource
flow forecasting methods still face challenges such as the unreasonable identification and
selection of factors affecting resource flow prediction and the limitations to a single model.
Therefore, achieving effective one-click resource flow forecasting for power grid finances
is imperative.

Traditional power grid companies typically employ budgeting methods for resource
flow management (Mumtaz et al., 2017; Shen et al., 2023a). Budget compilation is based
on various basic data provided by business departments. Each month, budget officers
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in the business departments aggregate the amount of business
documents to be paid the following month and report them to the
finance department. The finance department only obtains the total
monthly budget amount reported by each business department, and
uncertainty exists regarding whether the budget amounts reported
by the business departments align with actual economic benefits. To
maximize financial benefits and enhance the balance of funds on a
monthly and yearly basis, it is crucial to align and integrate business
volume and value in the actual planning and budget management
process. By establishing a machine learning-based resource flow
forecasting model (Zhou et al., 2021; Shen et al., 2023b; Liao et al.,
2023), objective data decision-making foundations are provided
for budget compilation models. This scientific and comprehensive
integration of budget compilation models enhances the auxiliary
value in the financial budgeting process, improving overall resource
flow budget management capabilities and providing a more
comprehensive explanation of the company’s operational status,
facilitating high-quality development. Simultaneously, the emphasis
on “one-click” underscores the importance of simplifying and
integrating the entire resource flow forecasting process compared
with “non-one-click.” One-click resource flow forecasting implies
completing the forecasting of power grid resource flow through
simple operations without the need for complex and cumbersome
steps.

The existing machine learning-based resource flow forecasting
methods fail to consider the relationship between the accuracy
of the forecasting model and the selection of influencing factors.
The inclusion of excessive model inputs leads to a dimensionality
explosion, thereby affecting the accuracy of resource flow
forecasting. Additionally, this method relies on the selection and
optimization of model parameters, where poor parameter choices
can significantly impact the forecasting accuracy. Simultaneously,
relying on a single model for forecasting makes it challenging to
capture all relevant factors and variations. Consequently, resource
flow forecasting based on a single model may contain errors,
ultimately affecting the effectiveness of power grid resource flow
forecasts.

To solve the above challenges, first, we propose the elastic
network and gray correlation analysis-based influencing factors
identifying method. It analyzes the gray correlation of the data and
constructs a resource flow data key influencing factor identification
model for identification. Second, we propose an improved gray
wolf optimizer (IGWO) algorithm based on the elite backward
learning strategy with an adaptive convergence factor to expand
the search area and increase the diversity of the population.
Finally, we construct the improved support vector machine
(SVM)–long- and short-termmemory (LSTM)-based resource flow
forecasting method, which can improve the stability and forecasting
accuracy of the model. The main contributions of this paper are
summarized herein.

The elastic network and gray correlation analysis-based
influencing factor identifying method: An elastic network
regression model is constructed to identify the influencing factors
closely related to resource flow data. We calculate the gray
correlation between each influencing factor and the resource
flow data and arrange the factors based on this correlation.
It can significantly improve the accuracy of resource flow
forecasting.

IGWO based on the elite backward learning strategy with
an adaptive convergence factor: For the shortcoming of poor
population diversity in the traditional GWO algorithm, we
propose the IGWO algorithm to expand the search area. It
does not rely on the selection and optimization of model
parameters. The IGWO algorithm adopts the elite inverse learning
strategy to initialize the population and screen out the elite
gray wolves to form a new population. The adaptive degree of
convergence factor is adjusted to balance the global search and local
optimization ability.

Improved SVM-LSTM-based resource flow forecasting method:
We optimize the weights and bias coefficients between the all-
connecting layers of the LSTM model and the relevant parameters
of the SVM model by using the IGWO algorithm. We construct a
combined prediction model consisting of a resource flow prediction
model based on IGWO-LSTM and IGWO-SVM to solve the
problem that existing resource flow prediction methods based on
machine learning rely on a singlemodel for resource flowprediction.
We adopt the variancemethod to determine theweights of themodel
and then obtain the combined prediction results. It can improve
the stability, accuracy, and effectiveness of power grid resource flow
forecasting.

2 Related works

In the field of corporate finance, there have been several works
that have used resource flow modeling. Specifically, Liu et al. (2023)
conducted an empirical study on whether listed small and medium-
sized enterprises have financing constraints by constructing a
resource flow sensitivity model. Lv (2020) focused on the free
resource flow model, which is used for the income assessment
of enterprise value and provides a basis for predicting future
business development. Han et al. (2020) improved the traditional
free resource flow model by using inductive deduction and
comparative analysis and established a free resource flow model
based on fuzzy bifurcation tree option pricing improvement to
better explore the problem of the enterprise value assessment. In
conclusion, resource flow is critical for electric utilities because
it ensures that the firm has sufficient funds to cover operating
expenses, invest in infrastructure, and repay debt. Resource flow
forecasting is important to help electric utilities predict and plan
for potential cash shortages, make informed financial decisions, and
maintain financial stability.

Several time series forecasting models have been widely used
for resource flow forecasting. Specifically, Wang (2017) decomposed
monthly electricity sales by instantaneous data on electricity sales
information and the autoregressive integrated moving average
(ARIMA) model to derive an ARIMA model considering seasonal
adjustments for forecasting monthly resource flows. Hu et al. (2019)
explored the periodicity and non-stationarity characteristics of the
data structure by using the segmented multilevel differenced non-
stationary time series. The seasonal ARIMA (SARIMA) model was
proposed for daily resource flow forecasting. For the difficulty of
daily resource flow forecasting due to seasonality and weekend
effects, it adjusted and corrected the ARIMA model. In Hans et al.
(2019), Weytjens et al. focused on resource flow forecasting
techniques. They first discussed classical forecasting techniques
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such as ARIMA, then multilayer perceptron neural networks, and
finally LSTM networks. The evaluation results show that these
methods are improved flexibility and accuracy of resource flow
forecasting. In Yuan Y. (2018), the calculation of free resource
flow in practice was analyzed to predict the free resource flow of
enterprises by combining recurrent neural networks with LSTM
units. In Yang et al. (2023), the SVM was used for free resource
flow forecasting, first analyzing the reasonableness and feasibility for
applying SVM to predict the future free resource flow of enterprises,
then designing the scheme of SVM to predict the free resource
flow according to the relevant theories of SVM, and illustrating the
feasibility of SVM to predict the free resource flow in terms of the
conclusions of theory and practice. However, previous time series
forecasting models have some shortcomings.The output layer of the
LSTM is a fully connected layer, which leads to a tendency to fall
into local optimawhen using gradient descent to update coefficients.
When a large-scale training sample is input, SVM is difficult
to implement and it is not ideal for solving multi-classification
problems. At the same time, previous models fail to consider the
relationship between the accuracy of the forecasting model and the
selection of influencing factors. Therefore, we improve the LSTM
and SVM models based on the IGWO algorithm and construct a
combined forecasting model to reduce the challenge of capturing
relevant factors and changes, as well as improve the stability,
accuracy, and effectiveness of power grid resource flow forecasting.

3 Resource flow data key influencing
factor identification model

The changes in the power grid resource flow are influenced by
a variety of internal and external factors, including the economy,
meteorology, and service demand. These influencing factors can
be obtained from empirical information or real-time information.
However, the source of empirical information is limited and
subjective, and it cannot comprehensively and objectively reflect
all the influencing factors. Therefore, if the SVM-LSTM model is
used directly for power grid resource flow forecasting without fully
considering these influencing factors, the accuracy of the resource
flow forecasted results will be difficult to ensure. Additionally,
the accuracy of the forecasting model is also closely related to
the identification and selection of the influencing factors, and the
identification and selection of appropriate key influencing factors
can further greatly improve the accuracy of resource flow forecasts.
However, if toomany influential factors are input into the forecasting
model, there is a high probability of “dimensional catastrophe,”
which will seriously affect the reliability of the forecast. Therefore,
choosing the right key influential factors is the basis for accurate
forecasting.

The elastic network can suppress overfitting and effectively
improve the generalization ability of the resource flow forecasting
model through L1 and L2 regularization, and screen out the
potential key influencing factors in the case of a large amount
of data and many influencing factors. Gray correlation analysis,
on the other hand, can effectively assess the correlation between
the influencing factors and the target when the amount of data
is relatively small and help identify the key influencing factors

in the case of incomplete data. Therefore, the combination of
elastic network and gray correlation analysis can effectively improve
the accuracy and reliability of resource flow influencing factor
identification. In this section, an elastic network and gray correlation
analysis-based resource flow data key influencing factor identifying
method are proposed.

3.1 Elastic network

The elastic network is a regularized linear regression model
that combines ridge regression and Lasso regression methods using
L1 and L2 norm terms, along with mixed scaling. By adjusting
the magnitude of the parameters in the loss function, the elastic
network can reduce non-important influencing factors for resource
flow forecasting (feature selection) while preserving the complex
relationships between important influencing factors in forecasting.
It not only satisfies the requirement of stability of the model but
also realizes the identification of the characteristic variables. The
expression for the loss function of the model is represented as
follows Eq. 1:

J (θ) = 1
2
(Xθ−Y)T (Xθ−Y) + 1− r

2
α‖θ‖22 + rα‖θ‖1, (1)

where r denotes the mixing ratio. In general, the value of the mixing
ratio r in the elasticity network ranges from 0 < r < 1. Adjusting the
value of the mixing ratio r parameter can adjust the contribution of
the two regression methods to the elasticity network. The following
special cases can be found in the value of r.

When r = 0, the L1 norm term in the loss function of the
elastic network becomes 0, and the elastic network becomes Ridge
regression. When r = 1, the L2 norm term of the elastic network
loss function becomes 0, and the elastic network becomes Lasso
regression. Compared with the ridge and Lasso regression methods
alone, the elastic network method can select more feature variables
with a higher degree of correlation in the data with higher feature
data so as to achieve the purpose of streamlining the model, and
at the same time, ensure the stability of the model. Therefore, the
elasticity network is more effective in variable selection and model
simplification.

3.2 Gray correlation analysis

Gray correlation analysis is an analytical method to measure
the degree of correlation between factors based on the similarity
of their development trends. By comparing the similarity of data
sequences, relative importance of influencing factors in the resource
flow can be determined without requiring a large amount of
data, which is particularly suitable for analyzing resource flow
data in the distribution grid with unclear relationships between
variables. The degree of association is used to represent the degree
of correlation between two things, which mathematically refers to
the degree of similarity between two functions, and the calculation
of the gray degree of association is the core of gray correlation
analysis. The specific steps for calculating the gray correlation
are as follows:
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FIGURE 1
Flowchart of the elastic network and gray correlation analysis-based influencing factor identifying method.

Step 1. Determine the sequence of analysis.
First, let the reference sequence is defined as Eq. 2:

X0 = (x0 (1) ,x0 (2) ,…,x0 (n)) . (2)

Then, each comparison sequence is defined as Eq. 3:

X1 = (x1 (1) ,x1 (2) ,…,x1 (n))

X2 = (x2 (1) ,x2 (2) ,…,x2 (n))

⋯

Xm = (xm (1) ,xm (2) ,…,xm (n)) . (3)

Step 2. Remove the dimension of the sequence as Eq. 4:

y0 (k) =
x0 (k)

1
n
∑k=1

n
x0 (k)
,yi (k) =

xi (k)
1
n
∑k=1

n
xi (k)
,

k = 1,2,…,n, i = 1,2,…,m.

(4)

Step 3. Calculate the correlation coefficients.
The association coefficients of y0(k) and yi(k) are as follows Eq. 5:

ξi (k) =
mininini |y0 (k) − yi (k)| + ρmaxmaxi |y0 (k) − yi (k)|
|y0 (k) − yi (k)| + ρmaxmaxi |y0 (k) − yi (k)|

ρ ∈ (0,1) , k = 1,2,…,n, i = 1,2,…,m.
(5)

Step 4. Calculate the correlation.
The gray correlation between Xi and X0 is calculated as follows

Eq. 6:

ri =
1
n

k=1

∑
n
ξi (k) , k = 1,2,…,n, i = 1,2,…,m. (6)

Step 5. Sort by correlation.
The comparative series are sorted according to the gray

correlation. The larger the value, the more consistent the trend of
the comparative series with the reference series, in other words, the
closer the correlation between the two series.

3.3 Elastic network and gray correlation
analysis-based influencing factor
identifying method

For the enterprise data space of resource flow influencing
factors in the spot market of a certain grid, the host is a certain
grid enterprise. The dataset is a collection of all controllable
data related to a certain grid, including the data generated by
the grid’s own service, as well as economic and meteorological
influencing factors, and the relationship between these influencing
factors and its own data. The host manages the data space
through the service, and the high-dimensional data on influencing
factors are targeted at the host. For the high-dimensional data
on influencing factors, this section proposes an elastic network
and gray correlation analysis-based influencing factor identifying
method to identify the key influencing factors of the resource flow.
The specific process is shown in Figure 1, and the specific steps
are as follows:

Step 1. The resource flow data and their influencing factor data
are normalized.

Step 2. An elastic network regression model is constructed to
determine themixing parameter and the penalty parameter through
cross-validation.

Step 3. The obtained parameters are put into the elasticity
network regression to calculate the influencing factors and screen
out the influencing factorswhose regression coefficients are not zero,
i.e., the influencing factors that are closely related to the resource
flow data.

Step 4.The gray correlation between each influencing factor and
the resource flow data is calculated.

Step 5. The influencing factors are sorted according to the gray
correlation degree, with as the cut-off point. The factors with a gray
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FIGURE 2
Schematic representation of the improved SVM-LSTM-based resource flow forecasting method.

correlation greater than are selected as the key factors affecting the
resource flow.

4 Improved SVM-LSTM-based
resource flow forecasting method

The LSTM neural network is specially designed to solve the
problem of long-term dependence (Prakash et al., 2023), which can
realize the “memory function” by launching the state of the previous
moment into the state of the next moment. LSTM has a gating
mechanism that contains the forgetting gate, input gate, and output
gate. SVM is a binary classification model, whose basic model is a
linear classifier defined as themaximum interval on the feature space
(Lin et al., 2018). The core idea of SVM is to transform the input
vectors, i.e., the sample pools data into a high-dimensional feature
space by some pre-selected non-linear mapping, which transforms
the non-linear regression and classification problem into a linear
problem to solve, and then constructs an optimal classification
hyperplane in this feature space. Resource flow forecasting can be
achieved using machine learning algorithms such as LSTM and
SVM. However, traditional resource flow forecasting methods rely
on the selection and optimization of model parameters, where
poor parameter choices can significantly impact the forecasting
accuracy. Consequently, resource flow forecasting based on a single
model may contain errors, ultimately affecting the effectiveness
of power grid resource flow forecasts. As shown in Figure 2,
to solve the above problems, we propose an improved SVM-
LSTM-based resource flow forecasting method to optimize the
LSTM and SVM parameters using IGWO based on an elite
backward learning strategy with the adaptive convergence factor

and construct the IGWO-LSTM-based resource flow forecasting
model and IGWO-SVM-based resource flow forecasting model to
improve the accuracy and the effectiveness of power grid resource
flow forecasts.

The improved SVM-LSTM-based resource flow forecasting
method process is shown in Figure 3. Specifically, the light green
steps represent the input, output, and parameter setting of the
algorithm.The steps of skin color represent the common steps of the
algorithm.The pink steps indicate the steps that need to be judged in
the algorithm. The dark green steps represent the final output. The
specific steps are as follows.

Step 1. The parameters of SVM models and LSTM models
are initialized. The number of neurons, learning rate, hidden layer
nodes, training times, and other LSTM parameters are initialized.
Environmental factors and historical resource flows are set as the
initial input features of the LSTMmodel and resource flows as output
features. Set the maximum number of iterations and the range of
the SVM penalty factor and the kernel function parameter. The
LSTM neural network and SVMmodel are two common traditional
prediction algorithms.

Step 2. Initial training of SVM models and LSTM models. The
LSTM model is used for initial training, and after reaching the
number of training times, the parameters between the connected
layers will be exactly the same. At the same time, based on the initial
setup range parameters, the training set is trained by the SVM.

Step 3. IGWO parameters, gray wolf populations, and the
randomly generated initial gray wolf population are initialized.
The GWO algorithm is an optimized searching method inspired
by the prey hunting activities of gray wolves (Liao et al., 2022).
However, the initial population generation method of GWO is
random initialization, which is prone to the problem that gray
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FIGURE 3
Flowchart of the improved LSTM-SVM resource flow forecasting algorithm.

TABLE 1 Gray correlations of factors with resource flow data.

Factor Gray correlation

Average temperatures 0.8736

Purchase price index for raw materials 0.8334

Total exports and imports 0.8301

Revenue from information
transmission, software, and computer
services

0.8113

Gross industrial product growth rate 0.7811

Purchase price index for fuel and
power

0.7739

Revenue from transportation, storage,
and postal services

0.7531

Revenues of service sector enterprises 0.6493

wolves are too dispersed or gathered in the same area, which
leads to the shortcoming of poor population diversity in traditional
GWO, and has a greater negative impact on the later iterative
optimization. Therefore, in this paper, we choose to use the elite
reverse learning strategy to initialize the population, which can
expand the search area of the algorithm and increase the diversity
of the population.

The elite reverse learning strategy is to find the inverse solution
to a feasible solution of a problem, expanding the search region. Set

TABLE 2 Simulation parameters.

Model Submodel Parameter Value

IGWO-SVM

SVM

Regularization parameter [0.1 100]

Radial basis kernel function
parameters

[0.01, 20]

IGWO

Population size 50

Maximum number of
iterations

20

IGWO-LSTM

LSTM

Number of iterations 1,000

Number of neurons in the
hidden layer

10

IGWO

Population size 50

Maximum number of
iterations

20

x(t) to be a solution of the t th iteration with the inverse solution
x′(t), which is given as Eq. 7

x ′j (t) = k(aj (t) + bj (t)) − xj (t) . (7)

The accuracy, convergence, and results of GWO are closely tied
to howwell the initial gray wolf population.The accuracy and results
of GWO are closely related to the goodness of the initial gray wolf
population. To summarize, in this paper, we randomly generate
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TABLE 3 Simulation parameters.

Test sample Test results

Date Actual (M) Proposed algorithm (M) GWO-SVM (M) LSTM (M)

2022.1 121.57 127.18 129.06 131.65

2022.2 122.76 128.37 130.25 132.84

2022.3 119.23 124.84 126.72 129.31

2022.4 101.70 107.31 109.19 111.78

2022.5 99.47 105.08 106.96 109.55

2022.6 91.41 97.02 98.90 101.49

2022.7 93.85 99.46 101.34 103.93

2022.8 90.52 96.13 98.01 100.60

2022.9 96.92 102.53 104.41 107.01

2022.10 111.01 116.613 118.49 121.08

2022.11 112.55 118.16 120.04 122.63

2022.12 117.55 123.16 125.04 127.63

2023.1 121.09 126.70 129.61 131.44

2023.2 122.28 127.66 130.34 132.45

2023.3 118.75 114.01 126.97 128.68

2023.4 101.22 106.51 109.77 112.03

2023.5 98.99 104.23 107.21 108.69

2023.6 90.93 95.45 98.56 100.87

2023.7 93.37 98.63 101.25 102.96

2023.8 90.04 95.32 98.34 100.25

2023.9 96.44 101.24 104.55 107.21

2023.10 110.52 114.83 118.32 121.04

2023.11 112.07 117.26 120.25 121.68

2023.12 117.07 122.32 125.64 117.46

an initial population and then select ξ elite gray wolves with the
highest fitness through inverse learning to form a new gray wolf
population.

In the traditional gray wolf algorithm, a⃗ is a convergence
factor that decreases linearly from 2 to 0 with the number
of iterations. In this paper, during the iteration process of the
algorithm, the adaptive degree of convergence factor a⃗ is adjusted
in order to balance the global search and local optimization
ability of the GWO after the creation of a new population by

using the inverse learning strategy, and the improved formula
is as follows Eq. 8:

a (t) =
1− (t/T)2

1− μ(t/T)2
, (8)

where T is the total number of iterations. μ is the interval [0,3] of
non-linear modulation of the index.

Step 4. Initial training of SVM models and LSTM models. The
LSTM model is trained initially. After reaching the training count,
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the parameters between the connection layers of the LSTM model
will be exactly the same. At the same time, based on the initial setup
range parameters, the training set is trained by the SVM to get the
accuracy as the fitness of the gray wolf.

Step 5. IGWO is utilized to optimize the LSTMmodel. Since the
output layer of the LSTM is a fully connected layer, the coefficients of
the LSTM are commonly updated by the gradient descent method,
which is prone to fall into the local optimal solution. So after the
initial training of the LSTMmodel, the weights and bias coefficients
between the fully connected layers of the LSTM model are
optimized by using the IGWO to improve the forecasting accuracy
of the model.

Step 6. The fully connected layer parameters of the optimal
LSTMmodel are obtained.

Step 7. The IGWO optimized parameters are replaced with the
LSTM model fully connected layer parameters. Step 8. IGWO is
utilized to optimize the SVMmodel.

The fitness values of individual gray wolves are calculated, gray
wolves are classified into α, β, and δ wolf packs based on the best
fitness value, and the location and fitness of each individual gray
wolf are updated. If the maximum number of iterations is reached,
the optimization search ends and outputs the optimal parameters c
and g, and the optimal SVMmodel is obtained. Otherwise, step 8 is
repeated to continue searching for parameters.

Step 9. Constructing the combined forecasting model.
Constructing a combined forecasting model can combine the

advantages of each individual model to improve the stability and
forecasting accuracy of themodel. In this paper, the variancemethod
is used to determine the weights of the model, which are calculated
as follows.

The variance corresponding to each forecasting model is
calculated as Eq. 9:

D = 1
n
[(e1 − ̄e)2 + (e2 − ̄e)2 +⋯+ (en − ̄e)

2] , i = 1,2, (9)

where n denotes the number of test samples; e1,e2,…,en denote
the percentage error of each test sample; and ̄e denotes the average
percentage error of the n test sample.

The weights of the individual models are calculated from the
variances as Eqs 10, 11:

ω1 = 1/[D1 (1/D1 + 1/D2)] , (10)

ω2 = 1/[D2 (1/D1 + 1/D2)] . (11)

The weights are multiplied with the corresponding forecast
results, and then, the forecast results aftermultiplying by the weights
are added together to obtain the combined forecast results which is
given by Eq. 12.

F = ω1F1 +ω2F2, (12)

where F denotes the forecasting result. F1 and F2 denote the
individual forecasting results of the IGWO-LSTM model and the
IGWO-SVMmodel, respectively.

5 Simulation results

To validate the impact on resource flow forecasting after using
the resource flow data key influencing factor identification model,

FIGURE 4
Number of iterations at convergence and average error versus
influencing factors.

this paper adopted the relevant data on a province for each month
from 2016 to 2019. Through the proposed mining method of
influencing factors based on elastic network and gray correlation
analysis, the four factors with the highest gray correlation, which
have the greatest influence on the resource flow data, are finally
screened out as the input data for resource flow forecasting. The
top eight gray correlations between each factor and resource flow
data are shown in Table 1. It can be seen that the gray correlation of
temperature is high.The reason is that temperature will significantly
affect the power consumption of power users. Using electrical
appliances for cooling or heating will generate a lot of electricity
consumption, which will affect the resource flow in the power grid.

On this basis, the daily resource flow data on the provincial
power grid from 1 January 2022 to 31December 2022 are forecasted.
In order to verify the effectiveness of the improved SVM-LSTM-
based resource flow forecasting method proposed in this paper
which optimizes SVM and LSTM based on IGWO, the GWO-SVM
forecasting model (Jiang et al., 2020) and the LSTM method (Rana
and Kim, 2019) are used to compare with the model proposed
in this paper. The simulation parameters are shown in Table 2
(Duan et al., 2023).

Table 3 illustrates the comparison of forecasting values of
resource flow obtained by different algorithms with actual values.
The simulation results demonstrate that the forecasting values of the
resource flowobtained by the proposed algorithmare closer to actual
values than those obtained by GWO-SVM and LSTM.The reason is
that the proposed algorithm combines the advantages of the LSTM
model and the SVM model, and optimizes the parameters of the
LSTMmodel and the SVMmodel using the IGWO algorithm.

Figure 4 illustrates the number of iterations at convergence and
the average error of the proposedmethod versus influencing factors.
The horizontal coordinate indicates the number of influencing
factors. The number of iterations at convergence is minimized, and
the average error is minimized when considering the four factors.
The proposed elastic networkmethod combines the ridge regression
and Lasso regressionmethods and uses the L1 and L2 norm terms in
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FIGURE 5
Scatterplot of actual and forecasted values of the proposed model.

FIGURE 6
Scatterplot of actual and forecasted values of GWO-SVM.

combinationwith themixing ratio (mix ratio), which not onlymeets
themodel’s need for stability but also realizes the identification of the
feature variables.

In order to evaluate the predictive performance of the improved
SVM-LSTMmodel more accurately, this paper adopts the following
four indicators including the mean absolute percentage error
(MAPE), root mean square error (RMSE), mean absolute error
(MAE), and coefficient of determination. The prediction error
analysis is conducted to reflect the prediction accuracy of themodel.
The indicators are calculated as follows Eqs 13–16:

MAPE = 1
N

N

∑
n=1
|
ŷn − yn
yn
| , (13)

RMSE = √ 1
N

N

∑
n=1
(ŷn − yn)

2, (14)

FIGURE 7
Scatterplot of actual and forecasted values of LSTM.

FIGURE 8
MAPE versus iterations.

TABLE 4 Simulation parameters.

Model Proposed algorithm LSTM GWO-SVM

MAE 6.4309 6.9756 8.1837

RMSE 7.7090 7.9448 9.1729

MAPE 1.52% 1.62% 1.90%

MAE = 1
N

N

∑
n=1
|ŷn − yn| , (15)

R2 = 1−
∑N

n=1
|yn − ̃yn|

∑N
n=1
|yn − ̄y|
, (16)
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where ŷn is the forecasted value. yn is the actual value. ̄y is the
average value of the actual values. ̃yn is the simulated value of the
variable for the statistical model. N is the forecasted sample size.

Figures 5–7 illustrate the comparison of forecasted and actual
resource flow values versus different algorithms, where Figure 5
shows the scatterplot of actual and forecasted values of the proposed
model, Figure 6 shows the scatterplot of actual and forecasted values
of the GWO-SVM model, and Figure 7 shows the scatterplot of
actual and forecasted values of the LSTM model. The simulation
results demonstrate that the coefficient of determination of the
proposed algorithm is 11.39% and 22.22% higher than those of
GWO-SVMand LSTM, respectively.The reason is that the proposed
algorithm fuses the IGWO-LSTM model and the IGWO-SVM
model to synthesize the advantages of the two forecasting models
and obtain a more accurate forecasting result.

Figure 8 illustrates the MAPE versus iterations. MAPE is used
to measure the accuracy of the data dimensionality reduction
model. Compared to GWO-SVM and LSTM, the MAPE of the
proposed algorithm is reduced by 44.51% and 31.65%, respectively.
This algorithm optimizes the weights and bias coefficients between
the fully connected layers of the LSTM model through IGWO to
improve the forecasting accuracy of the model.

Table 4 illustrates the MAE, RMSE, and MAPE versus different
algorithms. MAPE is used to measure the accuracy of the data
dimensionality reduction model. For these three metrics, the
evaluation results of the proposed model in this section are optimal,
which are 6.4309, 7.7090%, and 1.52%, respectively.Therefore, from
analyzing the overall evaluation metrics of the models, it can be
found that the overall stability of the proposed model in this section
is the best, followed by the LSTMmodel, and the GWO-SVMmodel
is the worst.

6 Conclusion

In this paper, we have introduced an improved SVM-LSTM-
based efficient resource flow forecasting for power grid enterprise.
First, we presented a resource flow data key influencing factor
identification model, which can greatly improve the accuracy
of resource flow forecasts by selecting appropriate influencing
factors. Subsequently, we proposed an improved SVM-LSTM-based
resource flow forecasting method to improve the accuracy and
the effectiveness of power grid resource flow forecasts. Finally,
we validated the superior performance of the proposed method
through simulations. The simulation results prove the usability and
effectiveness of the proposed forecasting model. Furthermore, the
coefficient of determination of the proposed algorithm is 11.39%and
22.22% higher than those of GWO-SVM and LSTM, respectively.
Compared to GWO-SVM and LSTM, the MAPE of the proposed

algorithm is reduced by 44.51% and 31.65%, respectively. Moving
forward, we aim to investigate methods to ensure the traceability of
financial data.
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