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Recent years, the tremendous number of distributed energy resources, electric
vehicles are integrated into the Low-Voltage Distribution Network (LVDN), large
amount of data are generated by edge devices in LVDN. The cloud data centers
are unable to process these data timely and accurately, making it impossible to
meet the demand for fine-grained control of LVDN. To solve the above problems,
this paper proposes a flexible orchestration of lightweight artificial intelligence
(AI) for edge computing in LVDN. Firstly, the application requirements of LVDN
are analysed through feature extraction of its historical data, and a lightweight AI
library is constructed to meet its requirements. Secondly, based on the multi-
factor priority, a flexible orchestration model is established, to allow the
lightweight AI embedded in the edge devices of the LVDN. Finally, the particle
swarm optimization algorithm is used to provide the best solution. The simulation
results show that themethod proposed in this paper can support the deployment
of AI at the edge. It can significantly improve the utilization of edge computing
resources, and reduce the pressure of cloud computing and the time of
application processes.
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1 Introduction

The Low-Voltage Distribution Network (LVDN) is an important facility for delivering
electricity to end-users. Currently, distributed energy resources and electric vehicles which
are integrated into the LVDN, bring great challenges to the operation and regulation of the
LVDN. The traditional centralised cloud-based scheduling model is no longer able to
process the massive data generated by edge devices efficiently (Wang and Peng, 2020; Li
et al., 2022).

Edge computing is an effective solution to address the problem of large number of
terminal access and massive data processing. Edge computing uses intelligent processing at
the edge of the LVDN, such as intelligent fusion terminals, IoT switches, numerous sensors
and other edge devices, to integrate network, computing, storage, and information
technology to provide services at the edge of the LVDN (Fu et al., 2022; Mudassar
et al., 2022). By processing at the edge of the network, it can make the business
processes of the LVDN transfer from the cloud-based power system to the edge side,
reduce the pressure on the core nodes of the cloud network, and have significant advantages

OPEN ACCESS

EDITED BY

Zhi-Wei Liu,
Huazhong University of Science and
Technology, China

REVIEWED BY

Ting Wu,
Harbin Institute of Technology, China
Caishan Guo,
South China University of Technology, China
Guibin Wang,
Shenzhen University, China

*CORRESPONDENCE

Zewen Li,
lizewenfjgs@outlook.com

RECEIVED 28 April 2024
ACCEPTED 25 June 2024
PUBLISHED 12 July 2024

CITATION

Fan Y, Wu H, Li Z, Lin J, Li L, Huang X, Chen W
and Chen B (2024), A flexible orchestration of
lightweight AI for edge computing in low-
voltage distribution network.
Front. Energy Res. 12:1424663.
doi: 10.3389/fenrg.2024.1424663

COPYRIGHT

© 2024 Fan, Wu, Li, Lin, Li, Huang, Chen and
Chen. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Energy Research frontiersin.org01

TYPE Brief Research Report
PUBLISHED 12 July 2024
DOI 10.3389/fenrg.2024.1424663

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1424663/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1424663/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1424663/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1424663/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1424663&domain=pdf&date_stamp=2024-07-12
mailto:lizewenfjgs@outlook.com
mailto:lizewenfjgs@outlook.com
https://doi.org/10.3389/fenrg.2024.1424663
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1424663


in improving the response speed and optimising the efficiency of the
business services (Chen et al., 2019; Han et al., 2022).

At present, numerous studies investigate the utilization of edge
computing in LVDN. These research efforts encompass various
areas such as distributed power fault detection, distribution
network management and the energy consumption of edge
computing. The first is to detect the distributed power fault
(Huo et al., 2020; Peng et al., 2021; Cai et al., 2023). Use edge
computing to detect the distributed power distribution fault,
enabling timely sensing and real-time response to faults with
LVDN. The second is to enhance distribution network
management (Wang et al., 2023; Yue et al., 2023; Zhong et al.,
2023). Design the orchestration mechanism of edge computing to
speed up the response time of power dispatching and to deal with
voltage alert problems (Chamola et al., 2020). Use electric vehicles
as a reactive power resource to bolster the reliability of LVDN. The
third is the energy consumption of edge computing (Chen et al.,
2022; Perin et al., 2022). Use distributed online resource allocation
and load management to reduce energy costs and energy
consumption. However, these studies have not explored the
application of AI models on certain devices like power
distribution fusion terminals, which lack adequate
computational resources.

Consequently, this paper proposes a flexible orchestration of
lightweight AI for edge computing in LVDN. The challenges
associated with model deployment and operation in resource-
constrained environments can be addressed at the edge end of
LVDN. Firstly, the application requirements of LVDN are
analysed through feature extraction of its historical data, and
a lightweight AI library is constructed to meet its requirements.
Secondly, based on the multi-factor priority, a flexible
orchestration model is established, to allow the lightweight AI
embedded in the edge devices of LVDN. This flexibility enables
dynamic allocation and management of computational
resources to ensure that the AI is efficiently allocated and
executed on edge devices in LVDN. Finally, the particle
swarm optimization algorithm is used to provide the best
solution. The simulation results show that the method
proposed in this paper can support the deployment of AI at
the edge. It can significantly improve the utilization of edge
computing resources, and reduce the pressure of cloud
computing and the time of application processes.

2 Application scenarios analysis and
lightweight AI library construction
for LVDN

2.1 Feature extraction and application
scenarios identification of LVDN

The first step involves creating a scene feature set which employ
the equipment ledger and historical operation data for LVDN,
Factors such as the scale of the LVDN, the percentage of
distributed energy resources, and the configuration of energy
storage systems are considered, as shown in Figure 1.

2.1.1 Feature extraction for LVDN
Firstly, historical operation data uploaded from LVDN is

collected. As well as collecting real-time data from sensors,
monitoring devices. A feature set appropriate to the distribution
station is formed, which can be categorized into statistical features
and curve features. The statistical features include numerical data
such as the proportion of PV access, the capacity of energy storage,
the average daily load, the peak-valley load difference. The curve
features include sequential data such as distributed PV output
curves, distribution transformer load curves, and charge and
discharge curves of storage or charging piles. For the ith station
scenario, its statistical-type features and curve-type features are
as follows:
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It can be seen from Eq. 1 and Eq. 2 that Xi is the statistical class
feature of the ith station scene, and xi

j is the jth of the total M
statistical class features of the ith LVDN scene. Fi is the jth of a
total of M statistical features of the ith LVDN scenario.
Assuming that the scenario has N curve-like features and the
maximum length of the data sequence is L, Fi is a matrix of the
form N*L, and fi

j,k is the kth data in the sequence of the jth curve-
like feature of the ith LVDN scenario.

FIGURE 1
Distribution network topology map and intelligent fusion terminal application scenario.
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Then the above feature set is subjected to downscaling and
clustering to achieve the classification of LVDN scenes and
identify typical scenes. In this paper use PCA dimensionality
reduction method to reduce the dimensionality of the data while
retaining the main information. And through K-means
clustering algorithm, the dataset is divided into groups with
similar features, which represents a specific typical scene (Chen
et al., 2019; Feng et al., 2020). The initial clustering centres are
first selected for initialisation. Then the distance calculation is
performed from each clustering centre is calculated. The
expression is as follows:

d x, ci( ) �













∑m

j�1 xj − cij( )2√
(3)

In Eq. 3, x is the sample point, ci is the ith clustering centre and m is
the number of features of the sample.

Next assign the samples to the nearest cluster centres,
forming K clusters. Then update the clustering centres. For
each cluster, the mean of all samples is calculated and the
mean is used as the new clustering centre. The updated
clustering centre expression is:

ci � 1
ni
∑

x∈Si
x (4)

In Eq. 4, ci is the ith cluster centre, ni is the number of samples in the
ith cluster, Si is the set of samples in the ith cluster.

Finally, until the clustering centre no longer changes or
the specified number of iterations is reached, the clustering
results are analysed to identify different typical scenarios.
Output the scene feature clustering results of LVDN. Based
on the clustered features of the clustering centres, which are
the feature inputs selected above. Analyse the differences
in these features of each clustering centre to classify the
different types of LVDN. The paper utilizes real data
from LVDN. It contains the features of different LVDN and
has wide applicability. The clustering method accurately
classifies scenarios.

2.1.2 Application requirement identification
of LVDN

The results of the analysis are used as labels, while the feature
sets of the distribution network scenarios are used as inputs for
building a decision tree-based model to determine the applications
of LVDN (Sei et al., 2022; He et al., 2023). The Gain Ratio which is
used to find the best partitioning attributes in decision tree
algorithms can efficiently handle attributes with multiple values
to find the correct application requirements for LVDN. The formula
for the Gain Ratio is:

Gain ratio D, a( ) � Gain D, a( )
IV a( ) (5)

IV a( ) � −∑V

i�1
Di
∣∣∣∣ ∣∣∣∣
D| | log2

Di
∣∣∣∣ ∣∣∣∣
D| | (6)

In Eq. 5, Gain (D,a) denotes the information gain obtained by
segmentation using attribute A in dataset D. IV (a) denotes the
amount of information inherent in attribute A and is used as a
measure of the diversity of values taken for attribute A.

2.2 Lightweight AI library construction

Lightweight AI library construction process mainly use python
language environment, tensorflow framework, deep learning for
algorithm model training. As well as tensorflow. lite on the
algorithm lightweight processing, so that the algorithms can be
better and more compatible to be deployed in LVDN.

To ensure compatibility with different hardware limitations and
operating systems on various edge devices, tf.lite can be utilized.
Firstly, tf.lite is optimized for diverse hardware platforms, including
smartphones and embedded devices. It leverages hardware
accelerators and specific instruction sets to enhance the execution
efficiency of models. Secondly, tf.lite is compatible with multiple
operating systems such as Android, iOS, and Linux. It provides
interfaces and tools for interaction with these operating systems,
simplifying the deployment and execution processes of models.
tf.lite employs the FlatBuffer format for storing and transferring
models. This format is compact and efficient, enabling fast cross-
platform data transmission and parsing. During model loading,
tf.lite converts the model into the FlatBuffer format.

According to the process mentioned above, the application of
LVDN requirements are analysed. Then, the functional algorithms
are developed to realise the application requirements. To adapt to
limited computational resources at edge devices, the algorithmic
modules are lightweighted. Techniques such as knowledge
distillation training and model pruning are employed to obtain
lightweight results.

The lightweight AI have smaller models, faster operation speeds,
and can be deployed in a wide range of conditions compared to
traditional AI deployed in LVDN. The lightweight AI library
consists of three main module types:

1. Data processing module: This module handles data input, pre-
processing, transformation, and output tasks. It includes
algorithms for data cleaning, feature extraction, missing
value filling, normalization.

2. Application function module: Designed to support specific
application scenarios directly, such as PV output prediction,
electric vehicle management, heavy overload prediction, and
energy storage collaboration. These algorithms reduce
computational complexity while maintaining high accuracy.

3. Maintenance management module: This module focuses on
ensuring the continuous operation and maintenance of the
algorithm library. It includes functions such as algorithm
updates, anomaly detection, and fault recovery. This module
enables the algorithm library to guarantee reliability.

3 Flexible orchestration of lightweight
AI based on multi-factor priority

After the construction of the algorithm library is completed, the
algorithm modules need to be flexibly embeded to each edge
terminal within LVDN. The different orchestration of the
algorithm modules will lead to the differentiation of the
communication cost and operation efficiency among the edge
terminals at runtime. The embedding scheme for algorithms is
based on multi-factor priorities. Algorithms can be flexibly
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scheduled based on computational resources, operating conditions,
and communication distance requirements. In this way, edge devices
in LVDN can interact with each other, facilitating the flexible
orchestration of algorithms in LVDN. Local processing reduces
response time, data transmission costs and the risk of data loss,
ensuring rapid and precise response to LVDN application
requirements.

In this paper, we adopt the 0-1 variable θi,j to characterise the
deployment situation between the algorithm module i and the edge
computing terminal j, j ∈ 1, 2, . . . , m{ }, where m is the number of
edge computing terminals in the system, and the expression is:

θi,j � 1
0

{ (7)

In Eq. 7, θi,j is 1, the algorithm module i is deployed to the edge
computing terminal j. When θi,j is 0, the algorithmmodule i needs to
match the remaining devices.

The objective function is to maximise the deployment priority of
the algorithmic module and the expression is:

max ∑ θi,j · ηi,j (8)

where ni,j represents the priority of algorithm module i deployed on
edge computing terminal j.

3.1 Multi-factor prioritisation

In themulti-factor prioritization scheme, three types of factors are
considered to align the algorithm deployment application with the
current situation, including the criticality factor Fim, the
communication distance factor Fdi, and the computational resource
factor Fco. The priority of each algorithmmodule embeded in different
edge computing terminals can be expressed as follows:

ηi,j � λ1 · Fim + λ2 · Fdi + λ3 · Fco

s.t. 0≤ λ1, λ2, λ3 ≤ 1
λ1 + λ2 + λ3 � 1

(9)

It can be seen from Eq. 9 that λ1, λ2, λ3 denote the control parameters
of different factors which reflect the importance of variable factors.
All control parameters are normalised to regulate within the range of
variation [0,1] and sum to 1.

3.1.1 Criticality factor
In this paper, the services of LVDN are classified into three levels

and quantitatively identified with corresponding numbers based on
their timing priorities, as shown in Table 1.

High-priority operations demand an immediate response within
seconds, while medium-priority operations allow for a response with

a longer time compared to high-priority operations. Low-priority
operations, such as statistical analysis of data, do not require an
immediate response.

3.1.2 Communication distance factor
Since there is little difference in the cost of data interaction

and power consumption between different communication
methods, the communication distance factor Fdi is a crucial
element in determining the data transmission cost incurred
during algorithm execution. Fdi is calculated by normalizing
the communication distance between side ends using the
following expression:

Fdi �
ei,j − min ei,j( )

max ei,j( ) − min ei,j( ) i � 1, 2, ..., n; j � 1, 2, ..., m (10)

In Eq. 10, ei,j is the communication distance between the ith data
node and the jth edge computing terminal; min (ei,j) and max (ei,j)
denote the minimum and maximum values of the communication
distance between edge ends.

3.1.3 Computational resource factor
To balance the computational resource variability among the

edge terminals in LVDN, to prevent an edge devices from deploying
many algorithmic modules, which leads to the full load of the device
and reduces the lifetime of the device. Therefore the computational
resource factor Fco is:

Fco �
1,
cre,j + ck
cmax ,j

<Pj

0,
cre,j + ck
cmax ,j

≥Pj

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (11)

It can be seen from Eq. 11 that cre,j, cmax,j are the occupiedmemory and
the upper memory limit of the jth edge computing terminal; ck is the
memory required for the deployment of the algorithm module; and Pj
is the memory warning value of the jth edge computing terminal.

3.2 Optimising processes

The overall optimisation process is shown in Figure 2. Firstly
follow the above process data processing process and model
construction process. Finally, using the particle swarm
optimisation algorithm to solve the optimal deployment model.
This algorithm is known for searching extensively in the solution
space to find a globally optimal solution. The particle swarm
optimisation algorithm can usually achive better results within
fewer iterations and perform well in solving continuous
optimisation problems.

TABLE 1 Typical service timing prioritization for LVDN.

Priority Application requirement of low-voltage distribution network Level of criticality

High priority Relay protection, heavy overload prediction, fault monitoring, etc., 3

Medium priority Power trading, electricity dispatch, load frequency control, etc., 2

Low priority Electric energy metering, identification of abnormal electricity usage, load forecasting, etc., 1
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FIGURE 2
The overall optimisation process.

FIGURE 3
Adaptation curve.
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4 Case studies

In this paper, a 17-node LVDN in a region of Hangzhou,
Zhejiang Province is taken as an example for simulation and
analysis. Among them, nodes 1 to 5 are smart meters, nodes 6 to
12 are load switches, nodes 12 and 13 are energy storage devices,
nodes 14 and 15 are distributed photovoltaic power sources, and
nodes 16 and 17 are charging piles.

Based on the historical operation data spanning from 2022 to 2023,
application requirements were identified. Subsequently, lightweight tools
and algorithm libraries were developed to align with these application
requirements. The optimisation model is then constructed by Matlab
and solved by the particle swarmoptimisation algorithm. Inalgorithm. In
the optimisation search process, to better find the optimal algorithm
module deployment scheme, the local and global learning factor in the
particle swarmoptimisation algorithm is set to 1.2431, the inertia weights
are set to 0.8, and the number of iterations is 500.

In the optimization process, the inertia weights play a crucial
role in speeding up the convergence of the particle swarm

optimization algorithm, locating both local and global
hyperparameter extremes efficiently. The learning factor regulates
the acceleration relationship between local and global extremes to
search for optimal parameters. As the adaptation value gradually
converges and approaches stability, the search for the optimum
configuration is completed. The evolution of the adaptation value
can be visualized in Figure 3.

The deployment scenarios of different algorithmic modules have
a significant impact on the computational resource utilization and
the quality of services provided by each terminal. An increase of
26.4% in the average computing resource utilization rate of each
terminal after optimization, as depicted in Figure 4.

Table 2 displays the average processing time of each priority
service across various processing modes in the LVDN. Notably,
high-priority operations exhibited optimal optimization,
showcasing a significant reduction of 51.3 percent when
compared to the traditional cloud computing model and a
39.3 percent decrease in comparison to the local
processing model.

FIGURE 4
Computing resource utilization curve.

TABLE 2 Impact of different processing modes on the average processing time of operations.

Average processing time of
high-priority operations

Average processing time of
medium-priority operations

Average processing time of
low-priority operations

Methodology of this
paper

0.37 0.93 1.62

Traditional model 0.76 1.42 2.13

Local processing 0.61 1.22 1.81
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5 Conclusion

This research focuses on utilizing lightweight AI techniques
for the flexible orchestration of algorithmic models through
flexible collaboration. By processing LVDN tasks locally
instead of uploading them to the cloud, the response time is
reduced. This approach minimizes data transmission costs and
the risk of data loss, while enabling a rapid and precise response to
LVDN application requirements. Enhancing the efficiency and
service quality of algorithmic model operations on terminals.
Experimental results demonstrate an average reduction of
0.43 s in the optimized service response time and an average
increase of 26.4% in edge computing terminal computing
utilization.

This research is suitable for improving the efficiency of power
service processing. However, it overlooks the aspects of security and
confidentiality performance during service transmission and
processing, which needs further improvement.
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