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With a growing focus on the environment, the power system is evolving into a
cleaner and more efficient energy supply infrastructure. Photovoltaic (PV) and
storage are key assets for the power industry’s shift to sustainable energy. PV
generation has zero carbon emission, and the integrationof a substantial number
ofPVunits isfundamentally importanttodecarbonizethepowersystem.However,
it also poses challenges in terms of voltage stability and uncertainty. Besides,
the daily load and real-time price are also uncertain. As a prosumer, energy
storage demonstrates the capacity to enhance accommodation and stability.
The adoption of Virtual Power Plants (VPPs) emerges as a promising strategy
to address these challenges, which allows the coordinated orchestration of PV
systems and storage to participate power dispatch as a virtual unit. It further
augments the flexibility of the power distribution system (PDS). To maximize
the profit of VPP, a data-driven price forecasting method is proposed to extract
useful information from historical datasets based on a novel LSTM-Transformer-
combined neural network. Then, an improved sparrow searching algorithm (SSA)
is proposed to schedule VPPs by combining the secant line search strategy. The
numerical results, obtained from testing the model on IEEE 13-node and 141-
node distribution systems, demonstrate the effectiveness and efficiency of the
proposedmodel and methodology.

KEYWORDS
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1 Introduction

According to statistics provided by the International Energy Agency, the scale of
renewable energy generation in the country has reached unprecedented levels, with
PV power generation dominating the landscape (IEA, 2024). The rapid proliferation of
distributed resources, including solar photovoltaic power plants andwind power generation,
has brought positive impacts on low-carbon and environmentally friendly energy future.
The sustainable development of distributed energy provides a new pathway for constructing
a cleaner, more flexible, and reliable energy system (Churkin et al., 2024). By reducing
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reliance on fossil fuels, promoting local economic development,
and advancing energy decentralization, distributed energy
is poised to play a more crucial role in driving sustainable
development.

At the same time, it has introduced unprecedented challenges
to power systems. The integration of distributed resources has
fundamentally altered the conventional operation mode of power
grids, particularly leading to concerns about stability because
of multiple uncertainties (Alshehri et al., 2020; Yan et al., 2022).
Behind the rapid growth of PV power generation lies a series of
problems, including increased peak load pressure in the power
system caused by a high proportion of distributed PV power
generation and the occurrence of curtailment (Mohandes et al.,
2021). The inclusion of distributed resources has given rise to
challenges associated with reverse power flow. In traditional
power systems, power plants supply electricity to loads, but
the integration of distributed resources allows certain demand-
side prosumers to feed electricity back into the grid. The
aforementioned phenomenon of reverse power flow can disrupt
established protective and control mechanisms, thereby potentially
instigating stability issues (Massignan et al., 2017; Pinheiro et al.,
2022). Moreover, overvoltage has also emerged as a pressing
issue due to the exponential growth of distributed resources
within the power system. The irregular power generation capacity
and consumption patterns of these resources may result in
excessive power injection, surpassing the normal voltage range
(Padullaparti et al., 2023). Overvoltage is not only a threat to power
equipment but also a risk to the overall stability of the power grid,
as stated in Poudel et al. (2023).

In response to these challenges, the VPP, as an innovative
energy management paradigm, provides a novel solution to address
energy transition and sustainable development by aggregating
and centrally managing diverse distributed energy resources
(Gough et al., 2022; Zhang et al., 2023). The primary objective of
a VPP is to integrate and coordinate distributed energy resources,
facilitating the utilization of large-scale small-capacity units and
enhancing the reliability and economics of the power system.Within
the VPP framework, rooftop PV and distributed storage aggregation
emerge as critical solutions. A key aspect of PV aggregation
development is the incorporation of energy storage technology into
distributed PV systems. The volatility inherent in PV generation
can be mitigated through energy storage, thereby enhancing the
stability and reliability of the power system. This allows the
PV-storage system to participate in grid peak-shaving services,
reduce curtailment, and enhance economic and technical efficiency
(Guo et al., 2021). Additionally, the energy storage systems, acting
as flexible and adjustable resources, play a pivotal role in supporting
demand response and frequency regulation in the power system.
Through the effective cooperation of PV and energy storage
systems, VPPs can tackle the challenges posed by sustainable
energy transition (Feng et al., 2023). However, VPP dispatch faces
challenges. For instance, the efficient aggregation and management
of large-scale small-capacity distributed energy resources present
complex issues.

Various models for VPPs have been proposed in existing
research, emphasizing the coordinative management of distributed
generation, demand-side resources, and load devices. The primary
objective is to meet the requirements of power system consumption

or supply guarantee. VPP plays a crucial role in integrating multiple
distributed PV power generation systems into a unified system,
thereby enhancing overall performance and reliability. Fan et al.
(2020) introduces an online convex distributed optimization
strategy for managing multiple PVs and EVs. This strategy ensures
the benefit of utilities by adjusting the setpoints of the governed
PVs and EVs. Additionally, the regulation of these PVs and
EVs contributes to supporting the power network by offering
power and nodal voltage regulation services. In Bannavikarn and
Hoonchareon (2021), a solar power aggregation framework is
proposed within a VPP, aiming to optimize wholesale energy
trading and grid cooperation.The study formulates an optimization
problem, utilizing linear programming (LP), to maximize the VPP’s
profit in the day-ahead market while adhering to required hourly
ramp-rate limits. Hong et al. (2023) presents a mixed-integer linear
programming (MILP) model, aiming to maximize VPP’s day-
ahead profit and optimize the DERs’ operation including wind
power plant, PV, energy storage, electric vehicle, and residential
loads. Gao et al. (2019) proposes a mixed-integer second-order
cone programming (MISOCP) model for optimal dispatch of
hybrid power-hydrogen VPP, mitigating the risk of renewable
and promoting renewable accommodation. It aims to maximize
cooperation profits while systematically improving the security
of the distribution system. Gong et al. (2019) devises a quadratic
optimization model for a VPP comprising homes equipped
with rooftop solar PV generation and battery energy storage.
Through optimized control and scheduling of battery operations,
along with peer-to-peer power flow between homes, the paper
proposes solutions to mitigate the elevated costs and uncertainties
introduced to the grid by high solar PV penetration. Most of the
abovementioned works make strong assumptions to establish a
traditional optimization model that can be solved by commercial
solvers. However, the real problem of the VPP is a nonlinear
nonconvex model, which is intractable for traditional methods.

Due to the complex multi-dimensional nonlinear characteristic
of the optimal operation and planning model for power systems,
a variety of biological population algorithms are employed to find
the optimal or near-optimal points. In Ge et al. (2022), a particle
swarm optimization (PSO) is introduced to obtain the global optima
for the integrated energy system planning problem. It performs
well in the global searching ability by improving particle diversity.
However, it has the disadvantage of premature convergence and
slow search speed. To schedule the demand-side flexible resources,
a chicken swarm optimization (CSO) algorithm is introduced in
Wang et al. (2021) for reducing the short duration of the peak load.
It has a better capacity for exploration and exploitation while having
a slow convergence speed on the large-scale problem. The gray
wolf optimization (GWO) algorithm is used in the multi-energy
hub optimization problem, which decomposes the original problem
into subproblems to search for the optimum solution based on its
excellent robustness and accuracy (Peng et al., 2022). It has few
parameters, simple implementation, and strong searching ability, but
it is restricted to the population diversity. SSA is first proposed in
Xue and Shen (2020), which is proved to have better performance
than other algorithms. For example, it is used in a two-layer
nonlinear optimal schedule of flexible traction power supply system
demonstrating higher precision and faster convergence speed than
GWO and other algorithms (Chen et al., 2022). However, it may
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fall into the local optimum due to the insufficient search of the
feasible region. To deal with the limitations, various improved SSA
are proposed in existing research. In Zhao et al. (2023), an improved
SSA (ISSA) is developed for the optimal scheme of a hydrogen-
electric hybridmicrogrid by incorporating a novel location updating
scheme and nonlinear weighting factors. A random walk SSA
(RSSA) is proposed in Qiao et al. (2022) for the economic dispatch
of the combined cooling heating and powermicrogrid by improving
the ability to locally search for optimal solutions. An improved
version of SSA (ESSA) is suggested in Nguyen et al. (2022) to aid the
microgrid operation based on a firefly algorithm mutation strategy
and elite reverse learning strategy. These methods rely on the rapid
convergence of discoverers and direct leap to the optimum vicinity
of joiners, which restricts the population’s search range and diversity
and tends to the local optima.

To immune multiple uncertainties of renewable, load, and
price, robust optimization should assume an uncertain range.
Stochastic optimization has to assume a probability distribution.
However, due to the features of physical models on parameters
inaccuracy and information ambiguity, it has limitations in practical
applications. With the popularization of terminal acquisition
equipment, the amount of data and information available in the
power network has exploded. Thus, data-driven methods have
attracted more attention, which have high prediction accuracy
based on a large amount of historical data. Moreno et al. (2020)
presents a hybrid irradiance forecasting approach using Artificial
Neural Networks (ANNs) and a novel similar hour-based selection
algorithm. This method is designed to enhance the integration
of PV systems into a VPP, particularly in scenarios with limited
or nonexistent historical irradiance data. In our previous work,
an LSTM-XGBOOST combined model is proposed in Ma et al.
(2023) to forecast the short-term heavy overload, which contributes
on monitoring and controlling of heavy overload in public
transformers. In Feng et al. (2023), a convolutional neural network
with gated recurrent units (CCN-GRU) prediction model is
proposed to predict more accurate PV power generation with
weather data under complex conditions. A deep convolutional
long short-term memory (CNN-LSTM) is developed in Jalali et al.
(2022) to extract useful features for the accurate forecast of solar
irradiance, which is important for the PV power plant participating
in energy bidding. Most existing prediction methods have a
challenge of low prediction accuracy stemming from the failure
of thorough feature extraction of temporal data when the time
series is long.

To overcome the abovementioned shortcomings of the existing
methods, we propose a data-model-driven dispatch method for
integrated distribution systems with VPPs, aiming to effectively
combine the advantages of historical data and physical models.
This approach involves integrating price forecasting and power
scheduling. To accurately predict day-ahead electricity prices
for economic dispatch, we propose a novel LSTM-Transformer-
combined network to extract useful information from historical
data. Subsequently, a novel enhanced SSA dispatching algorithm
is developed to optimize the coordinated scheduling strategies
of DSO and VPPs. The novel SSA incorporates population
initialization, mutation strategy, and secant line search to enhance
global search capability and convergence speed. The proposed
method, which combines an LSTM-Transformer prediction

scheme and a secant line search-aided sparrow search algorithm
(SLS-SSA), offers valuable insights into the economic dispatch
of DSO with multiple VPPs. The main contributions are
summarized as follows:

• This paper develops a novel dual-layer LSTM-Transformer
model for short-term prices, renewable output, and load
forecasting. It utilizes the LSTM network to extract
fundamental temporal features and then employs the
self-attention mechanism of the Transformer to identify
global information and the interrelationships of time-
series data. This approach captures the significant features
of the current interval, contributing to accurate short-
term forecasting. The novel prediction model facilitates the
data-driven dispatch method for VPPs by exploiting the
valuable information of historical data. This contributes to
the optimal decision-making of DSO and VPPs, thereby
enhancing their economic performance and the integrity of the
power system.

• A novel SLS-SSA is proposed for the nonconvex nonlinear
optimization of PDS with multiple VPPs. By combining
the sacent line search scheme, SLS-SSA can approximate
rather than leap to the optima, effectively contributing
to a thorough search of feasible regions and obtaining
the global optimum. Moreover, it integrates circle chaotic
mapping and mutation strategies to ensure even distribution
during initialization and population diversity enhancing its
global search capacity. Numerical results show that the
proposed SLS-SSA performs well on optimal solution and
convergence speed.

The remainder of this paper is organized as follows. Section 2
introduces the proposed coordinated DSO and VPP operation
model. The proposed day-ahead data-driven prediction method is
presented in Section 3. The novel secant line search-aided sparrow
search algorithm is detailed in Section 4. Case studies are conducted
in Section 5. Section 6 concludes the paper.

2 Coordinated DSO and VPP
operation model

The collaborative operation of flexible resources within VPPs
plays a crucial role in promoting the integration of distributed
resources and improving the economic performance of theDSO and
VPPs. This paper introduces an optimization model that adopts a
distribution systemperspective, considering the collaborative effects
of both rooftop PVs and energy storage systems to improve the
stability of the distribution systembased on the predicted renewable,
load, and price.

The objective function is to minimize the total operation cost
among DSO and VPPs, which is formulated as Eq 1:

min
T

∑
t=1
{λtP0,t + πt

M

∑
m=1

Pvppm,t + c
ab

Ns

∑
s=1
(Ppv, f

s,t − P
pv
s,t )} (1)

In the equation, Ppv
s,t represents the active power output of the

sth rooftop PV at time t. Ppv, f
s,t represents the forecasted output of
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the sth photovoltaic power station at time t based on the data-driven
prediction. P0,t represents the active power injection from the main
grid at time t. Pvppm,t represents the active power exchange between the
mth VPP and PDS at time t. λt and πt represent the electricity prices
from the main grid and VPP, respectively. cab is the penalty of the
renewable curtailment.

2.1 Aggregated rooftop PV model

PV units are distributed throughout the distribution system,
encompassing rooftop PVs. The challenges posed by small-scale
impacts often make it difficult for PV units to participate in power
scheduling independently. VPPpresents a promising solution for the
aggregation of PVs, and its detailed model is formulated as follows.

0 ≤ Ppv
s,t ≤ P

pv, f
s,t ⋅ u

pv
s,t ∀s, t (2)

Eq 2 represents the adjustable range of PV output within its
forecasted upper limit Ppv, f

s,t . upv
s,t is a binary variable representing

whether the PV power station aggregates into VPP.When upv
s,t equals

1, it indicates the PV power station participates in aggregation.
The integration of the distributed PVs also poses a challenge to

voltage stability. Without effective management of reactive power
regard to the nodal voltages will cause intense voltage deviation. It is
essential to share the reactive power of each PV unit contributing to
voltage stability. According to Gao et al. (2022), the reactive power
supply capacity is modeled in Eqs 3,4.

Qpv
s,t,max = √(S

pv,inv
s )

2
− (Ppv

s,t )
2 (3)

−Qpv
s,t,max ≤ Q

pv
s,t ≤ Q

pv
s,t,max (4)

where Qpv
s,t,max is the reactive power supplying capacity. Qpv

s,t is
the reactive power output of the sth rooftop PV at time t. Spv,invs
represents the rated inverter capacity of the sth rooftop PV.

2.2 Energy storage model

In the context of accommodating the increasing penetration
of renewable energy, energy storage systems play a pivotal role in
facilitating the seamless integration of renewable energy sources.
By acting as a flexible resource, they enable better matching of
supply and demand, thus supporting the efficient incorporation
of renewable energy into the grid and contributing to a more
sustainable and resilient power infrastructure. Furthermore, energy
storage systems provide an effective solution for handling the
inherent intermittency and unpredictability of renewable energy
sources, such as PVs. Their rapid response capabilities enable them
to act as a buffer, absorbing surplus energy during peak generation
and releasing stored energy during periods of low generation or
increased demand. This not only aids in stabilizing the grid but also
enhances the overall reliability of the power supply.

Expanding on the advantages of energy storage, its inherent
ability to smooth out the temporal variability in renewable energy
sources, such as photovoltaics, plays a crucial role in load shifting.
This time-shifting characteristic allows energy storage systems

to accumulate excess energy during periods of high generation,
typically during daylight hours, and discharge it during peak
demandperiods, thereby contributing to renewable accommodation
indirectly. Based on Kong et al. (2023), the conventional battery
storage model is detailed as follows.

Ee,t = Ee,t−1 + ηcP
es,ch
e,t − P

es,dis
e,t /ηd ∀e, t (5)

Emin,e ≤ Ee,t ≤ Emax,e ∀e, t (6)

0 ≤ Pes,che,t ≤ u
c,es
e,t P

ch
max,e, ∀e, t (7)

0 ≤ Pes,dise,t ≤ u
d,es
e,t P

dis
max,e ∀e, t (8)

uc,ese,t + u
d,es
e,t ≤ 1 (9)

Pese,t = P
es,dis
e,t − P

es,ch
e,t (10)

Eq 5 represents the energy status (Ee,t) of the eth energy storage
system at time t. Inwhich,Pes,che,t andPes,dise,t represent the charging and
discharging power of the energy storage system at time t. ηc and ηd
represent the charging and discharging efficiency coefficients of the
battery energy storage system. Eq 6 limits the secure energy range.
Emin,e and Emax,e represent the minimum andmaximum levels of the
energy. Eqs 7,8 constrain the maximum allowable charging (Pchmax,e)
and discharging (Pdismax,e) power of the energy storage system. Eq 9
ensures that the storage can only charge or discharge at each time
slot. uc,ese,t and ud,ese,t are binary variables, where a value of 1 indicates
that the ES is charging or discharging during the time slot t. Eq 10
Pese,t is the active power output of the eth storage at time t.

Similarly, battery storage can also inject reactive power flows into
the grid to improve the voltage when the voltage deviation occurs.
Once the active power of storage is fixed, the feasible reactive power
output interval can be determined by Eq 11.

|Qes
e,t| ≤ √(S

es
e )2 − (Pese,t)

2 (11)

where Qes
e,t is the reactive power output of the eth storage at time t.

Sese represents the maximum apparent power of the eth storage.

2.3 Distribution network power flow model

The most commonly used power flow model of distribution
model is the distflow model. Reverse power flow often occurs in
the power distribution network with the large-scale integration of
distributed energy resources.The distflowmodel is applicable in this
context, we apply a second-order cone relaxation (SOCR) distflow
model to deal with the bidirectional power flow (Chowdhury et al.,
2023). It is formulated as follows.

∑
k:j−k

Pjk,t − ∑
i:i−j
(Pij,t − rijwij,t) − Pj,t = 0 (12)

∑
k:j−k

Qjk,t − ∑
i:i−j
(Qij,t − xijwij,t) −Qj,t = 0 (13)

Pj,t = ∑
m∈Γ(i)

Pvppm,t − P
l
i,t (14)
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Qj,t = ∑
m∈Γ(i)

Qvpp
m,t −Q

l
i,t (15)

Pvppm,t = ∑
s∈Ω(m)

Ppvs,t + ∑
e∈Ω(m)

Pese,t (16)

Qvpp
m,t = ∑

s∈Ω(m)
Qpv
s,t + ∑

e∈Ω(m)
Qes
e,t (17)

wij,t = (P2ij,t +Q
2
ij,t)/Vi,t (18)

Eqs 12,13 represent the nodal power balance equations. Pij,t
and Qij,t are the active and reactive power flow from node i to
node j. rij and xij denote the resistance and reactance of the
branch (i, j). Eqs 14, 15 represent the active and reactive power
injection at node i. Pi,t and Qi,t respectively represent the active
and reactive power injection at node i at time t. Pli,t and Ql

i,t
respectively represent the active and reactive load at node i at time
t. In Eqs 16,17, Pvppm,t and Qvpp

m,t represent the active and reactive
power injection from mth VPP at time t. Γ(i) represents the set
of VPPs connected on node i. Ω(m) represents the set of PVs and
storage connected on VPP m. In Eq 18, wij,t denotes the squared
current on branch (i, j). Vi,t is the squared voltage magnitude at
node i at time t.

In the SOCR distflow model, the Eqs 18 is relaxed into Eq 19.

‖‖‖‖

‖

2Pij,t
2Qij,t

wij,t −Vi,t

‖‖‖‖

‖2

≤ wij,t +Vi,t (19)

2.4 Nodal voltage constraint

The proliferation of DERs in distribution networks has led
to a frequent occurrence of overvoltage issues, posing significant
challenges to the secure operation of power systems. Consequently,
the focus of our attention is directed towards the voltage-related
challenges in distribution networks. Addressing and mitigating
overvoltage concerns are imperative for ensuring the reliability
and stability of power systems, particularly as the landscape
of energy generation shifts towards a more decentralized and
renewable-oriented paradigm. In light of this, our research aims to
comprehensively analyze and propose solutions to voltage-related
issues in distribution networks, contributing to the overall resilience
and effective management of modern power infrastructures. Based
on the developed power flowmodel, the voltage at each node can be
calculated using the following formula:

Vj,t = Vi,t − 2(rij ⋅ Pij,t + xij ⋅Qij,t) + (r
2
ij + x

2
ij)wij,t ∀i, j, t (20)

Vi,min ≤ Vi,t ≤ Vi,max ∀i, t (21)

Eq 20 represents the voltage relationship of different buses. Eq 21
limits the secure voltage range of each bus.Vi,max andVi,min represent
the squared upper and lower voltage limits at node i.

Finally, the optimization model is formulated as (OP):min Eqs
1-21.

3 Day ahead data-driven prediction

3.1 Model framework

In recent years, deep learning has emerged as a crucial
technology in artificial intelligence and has garnered significant
attention for its capabilities in predicting electricity prices, a domain
characterized by nonlinear and complex time series data. Among
deep learning models, the Long Short Term Memory Network
(LSTM) is particularly noted for its effectiveness in mitigating
the vanishing gradient issue inherent in traditional recurrent
neural networks (RNNs), thereby enhancing predictive accuracy
in electricity price forecasting. However, when dealing with longer
time series data, the recurrent input mechanism of LSTM may not
effectively identify the dependencies between time features that are
spaced far apart.This limitation could hinder the efficient processing
of long data sequences. In contrast, the self-attention mechanism of
the Transformer considers all positions within the input sequence
simultaneously, thereby circumventing this issue.

To address these challenges, a novel hybrid model combining
LSTM and Transformer techniques is developed. This model
leverages the Transformer’s self-attention alongside the LSTM’s
sequential modeling strengths, intending to improve the prediction
accuracy of electricity prices. The model comprises two principal
components. Initially, the LSTM layer aids in the extraction of
temporal features from the input data, which are then further
refined by the Transformer layer to produce the final output. This
design allows the LSTM to preserve the integrity of temporal
features during the sequential generation of the output, while the
Transformer is capable of identifying complex relationships between
different time intervals within the time series data. The proposed
model’s framework is depicted in Figure 1.

where X = {φ1,φ2,…,φn} is the input data, {l1, l2,…, ln} is
the output of the LSTM layer, {o1,o2,…,on} is the output
of the Transformer layer, and Y = {y1,y2,…,yn} represents the
predicted result.

3.2 Algorithmic implementation

The specific steps are as follows:
Step 1: The input is sent into an LSTM network, which is

designed to extract temporal features from time series data.

lt = LSTM(φt,ht−1,ct−1) (22)

where xt is the input at the current time step, ht−1 is the output at the
previous time step, ct−1 is the hidden state at the previous time step,
and lt is the output at the current time step calculated by Eq 22.

Step 2: The Transformer model is utilized to process the features
extracted by the LSTM layer. Since the Transformer model does
not inherently recognize the order of the sequence, it processes
the inputs simultaneously without acknowledging the order of the
elements. To address this issue, positional encoding is added to
the input time series features before they are introduced to the
Transformer. Positional encoding provides positional information
for each sequence element, which is crucial for maintaining
the order of the time series. The positional encoding PE(pos, i)
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FIGURE 1
Illustration of the proposed model architecture.

for position pos and dimension i is computed using sine and
cosine functions in Eqs 23 and 24:

PE (pos,2i) = sin(
pos

100002i/d
) (23)

PE (pos,2i+ 1) = cos(
pos

100002i/d
) (24)

where d is the dimension of the input feature, {p1,p2,…,pn} is the
output of Positional Encoding. This encoding provides continuous,
boundedpositional data, which,when added to theword embedding
vector, forms the final input vector.

Step 3: The self-attention mechanism distributes weights by
evaluating the associations between each position in the input
sequence and all other positions, thereby selecting the most relevant
information for the current position. It comprises three components:
Query (ϕ), Key (χ), andValue (ψ). Initially, the input vectors undergo
linear transformations to obtain the Query vector ϕ, Key vector
χ, and Value vector ψ. The model employs a scaled dot-product
attention mechanism to calculate the similarity between ϕ and all
χ vectors. These similarities are then normalized using softmax
to derive the attention weights, which are subsequently applied to
the ψ vectors to produce the self-attention vector. The attention
mechanism is mathematically represented as Eqs 25 and 26:

ϕ = pωϕ, χ = pωχ, ψ = pωψ (25)

Attention(ϕ,χ,ψ) = softmax(
ϕχT

√dk
)ψ (26)

where dχ is the dimension of the χ. p is the output of Positional
Encoding, and ωϕ, ωχ, ωψ are weight matrices.

The Multi-Head Attention mechanism divides self-attention
into several “heads,” represented by Eq 27, with each head
learning different aspects of the sequence representation as Eq 28.

This partitioning allows for parallel self-attention operations, and
their outputs are concatenated and combined through a linear
layer, enabling the model to absorb information from various
representational subspaces and extract comprehensive features.

MultiHead(ϕ,χ,ψ) = Concat(head1,head2,…,headh)ωO (27)

headi = Attention(ϕω
ϕ
i ,χω

χ,ψωψ) (28)

Utilizing the multi-head self-attention mechanism, each time
segment of the input sequence computes weighted information
from other segments, thereby capturing global feature correlations.
The feedforward neural network then applies further nonlinear
transformations to the output of the attention layer, enhancing
the model’s representational capacity. The primary function of the
encoder layer is to encode the input sequence, extracting essential
information from the sequence to facilitate subsequent processing
by the decoder layer.

Step 4: The decoder section also employs a multi-head attention
mechanism, utilizing the inputs from the encoder layer as the Key
vector and Value vector, and the outputs from the previous self-
attention layer of the decoder as the Query vector for attention
calculation, thereby deriving the final feature representations
{o1,o2,…,on}.

Step 5: The output of the Transformer layer is passed through a
fully connected layer and normalized using Softmax to obtain the
final prediction result Y = {y1,y2,…,yn}.

3.3 Evaluation indicators

Electricity price forecasting is a very complex task, and since
electricity price is related to many factors, it is inevitable that
the accuracy of the forecasted electricity price will be subject to
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a certain degree of error, and cannot be exactly the same as the
actual electricity price. In order to evaluate the performance of
the model more accurately, this paper uses four evaluation metrics
to measure the model’s prediction performance from various
perspectives.

3.3.1 Mean absolute error
MAE is used to measure the average of the absolute error

between the predicted value and the true value. The advantage of
MAE is that it is more intuitive and easy to understand, and can
directly reflect the size of the error between the predicted value and
the true value. Therefore, this paper adopts MAE to evaluate the
prediction accuracy calculated by Eq 29.

MAE = 1
n

n

∑
i=1
|ŷi − yi| (29)

Where n is the number of samples in the forecast data, y is the
measured data, and ŷi is the forecasted data.

3.3.2 Root mean square error
Root mean square error (RMSE) is a metric used to assess the

magnitude of the difference between the predicted value and the
true value, and is more sensitive to large errors because it squares
the error. It is calculated by Eq 30:

RMSE = √
∑n

i−1
(ŷi − yi)

2

n
(30)

3.3.3 Mean squared error
Mean squared error (MSE) is the average of the square distances

of each data point from the true value. It is the average of the sum of
squared errors, and its formula in Eq 31 resembles that of variance.

MSE = 1
n

n

∑
i=1
(ŷi − yi)

2 (31)

4 Secant line search aided sparrow
search algorithm

The established economic dispatch model of DSO with multi-
VPPs is a nonconvex nonlinear problem. As it is reviewed in Zhang
and Ding (2021), SSA has a better performance than other
heuristic bionic optimization algorithms. To cater to the
global optimum and fast convergence, we propose a novel
SLS-SSA by combining the mutation strategy and secant line
search method.

4.1 Uniform population initialization

Based on the traditional SSA,we directly introduce the improved
part of the novel SLS-SSA as the omitted details of SSA can refer
to Xue and Shen (2020). The generated initial population in basic
SSA has a characteristic of uneven population distribution, which
has a huge impact on the convergence speed. To generate the
initial individuals with a more random and uniform distribution,

an improved circle chaotic mapping strategy is applied here
(Wu et al., 2023).

ϵi+1 =mod(ϵi + a−
b
2π

sin 2πϵi,1) (32)

where a = 0.4204, and b = 0.0610. ϵi is used to generate the random
values. The Eq 32 can generate chaotic points with a more
even distribution. Then, the sparrow population initialization is
summarized as Eq 33.

zi,j = lb+ (ub− lb) ϵi (33)

where ub and lb represent the upper and lower limits of the search
space, respectively. zi,j denotes the value of the j th dimension of the
ith sparrow.

4.2 Improved searching strategy

To overcome the limitation of the traditional SSA, we propose
an improved search strategy to enhance the global search ability.
The population diversity is increased by considering the mutation
and greed strategy, which can avoid falling into the local optimum.
Here, the improved location update process is summarized
as follows.

ρ = (1− τ− 1
Iiter − 1
)
2

(34)

zt+1m = {
δ(zτ+1mu − z

τ+1
ml ) , ξ < ρ

zτ+1, ξ ≥ ρ
(35)

zt+1mu =min(zτ+1 + ρ(zu − zl) ,zu) (36)

zτ+1ml =min(zτ+1 − ρ(zu − zl) ,zl) (37)

zτ+1 = {
zτ+1, zτ+1 < zτ+1m

zτ+1m , zτ+1 ≥ zτ+1m
(38)

where τ is the iteration index. Iiter is themaximum iteration times. In
Eq 34, ρ is the adaptivemutation probability. zu and zl are the original
location range. In Eqs 36 and 37, zmu and zml are the location range
after mutation. In Eqs 38 and 35, zτ and zτm are the locations before
and after mutation at the τth iteration. ξ and δ are the random values
in interval 0 to 1.

4.3 Secant line search scheme

The line search algorithm is a method employed to determine
the step length during iterative processes aimed at identifying
the minima of a function. It serves to enhance the local search
capability of the SSA. As depicted in Eq. 39, the scrounger
updates its position by considering the disparity between
its current location and the optimal position occupied by
the producer.

zτ+1i,j =
{{{
{{{
{

R ⋅ exp(
zτworst − z

τ
i,j

i2
), i > n/2

zτ+1p + |z
τ
i,j − z

τ+1
p |A+ ⋅ L, i ≤ n/2

(39)
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where zτi,j denotes the value of the j th dimension of the ith sparrow at
τth iteration. zτworst and z

τ
p represent the worst and optimal positions,

respectively. R is a random value following a normal distribution.
L is a vector whose elements are all 1. A+ = AT(AAT)−1, and A is a
vector with randomly assigned 1 or -1.

Through an analysis of the scroungers’ location update process,
we observed that the traditional SSA solely designates an update
direction, neglecting the importance of an appropriate step size
for enhancing convergence speed. Drawing inspiration from
the line search scheme, we introduce a step size parameter,
denoted as γ, into the scrounger location updating process
represented by Eq. 39, aiming to augment the efficiency of the
search. Subsequently, the enhanced location update strategy is
formulated in Eq 40.

zτ+1i,j =
{{{
{{{
{

R ⋅ exp(
zτworst − z

τ
i,j

i2
), i > n/2

zτ+1p + γ|z
τ
i,j − z

τ+1
p |A+ ⋅ L, i ≤ n/2

(40)

Treating γ as a variable allows it to position itself at a
location with minimal fitness. Consequently, it can be formulated
as an optimization problem in Eq 41 employing secant line
search techniques.

min
γ

f (zτ+1i,j ) =min
γ

f (zτ+1p + γ|z
τ
i,j − z

τ+1
p |A
+ ⋅ L) , i ≤ n/2 (41)

In accordance with the secant method, the iterative update
for the variable can be derived from the first derivative using the
following Eq 42.

zτ+1 = zτ − zτ − zτ−1

f′ (zτ) − f′ (zτ−1)
f′ (zτ) (42)

Similarly, we can derive the location update of the
sparrow in Eq 43.

zτ+1i,j =

{{{{{{
{{{{{{
{

R ⋅ exp(
zτworst − z

τ
i,j

i2
), i > n/2

zτ+1p −
|zτi,j − z

τ+1
p |

f′τi − f
′τ+1
p

f′τi A
+ ⋅ L, i ≤ n/2

(43)

where f′τi and f′τ+1p represent the first derivative of the objective
function of the optimization problem at the current and
optimal positions, respectively. In other words, γ is given by − f

′τ
i

f′τi − f
′τ+1
p

in this context.
To handle the binary variables in the formulated dispatch

problem, they are relaxed into continuous variables within the
interval [0,1]. Subsequently, the constraint xi2c(xi2c − 1) = 0 is
introduced to maintain accuracy, where xi2c denotes the relaxation
of any binary variable.

The specific steps of the proposed data-driven-based SLS-SSA
for VPP dispatch are summarized as follows.

• Step 1 Train the prediction model using historical data via
LSTM-Transformer-combined neural networks.

• Step 2 Forecast the day-ahead price, renewable output, and load
based on the prediction model.

• Step 3 Initialize the sparrow population using the improved
circle chaotic mapping strategy and relevant parameters of the
dispatch problem.

• Step 4 Optimize the dispatch problem using the SLS-SSA and
update the location based on the mutation strategy and secant
line search method.

• Step 5 Output the final optimal dispatch strategy for
VPPs and DSO.

5 Results and discussion

First, the LSTM-Transformer-combined model is utilized to
predict the electricity price, PV output, and load. Subsequently, case
studies are conducted on the IEEE 13-Bus and 141-Bus systems to
validate the proposed method, which effectively schedules various
flexible resources to enhance the economic performance of both
DSO and VPPs.

5.1 Price forecasting

In this section, we utilize the proposed prediction method
to conduct day-ahead electricity price forecasts, which serve as
input for the optimal dispatch process in subsequent sections.
Specifically, we target the hourly electricity price in our analysis.
Historical electricity price data spanning from 1 January 2023, to
31 December 2023, are sourced from PJM (PJM, 2024). Given the
objective of generating a day-ahead dispatch plan for both the DSO
and VPPs, we predict the hourly electricity price for each of the
24 h in a day.

The dataset is divided into training, validation, and test subsets
tomimic the scenario of training on historical data and assessmodel
performance on future data. During data processing, normalization
is applied to accommodate inputs with varying magnitudes and
dimensions. The experimental setup utilized a computing platform
with an Intel i5-11400 CPU, 32GB of RAM, Python 3.8, PyTorch
1.12.1, and an RTX2080Ti GPU. The learning rate was adjusted to
0.001, with a batch size of 256 samples. The network’s hidden layer
size is set to 256 dimensions. In terms of the model architecture, the
number of LSTM or GRU layers is set to two. The transformer layer
comprises two encoder layers, two decoder layers, and four attention
heads. For theCNN layer, we have specified a convolution kernel size
of 3 and a stride of 1.

The economic performance of both DSO and VPPs heavily
relies on the accuracy of the forecasted electricity price. Therefore,
we utilize the proposed LSTM-Transformer-combined model to
predict the day-ahead electricity price. The predicted results
are illustrated in Figure 2. To further validate the effectiveness
of our proposed method, we compare it with commonly used
CNN-LSTM and CNN-GRU models. As depicted in the figure,
the price predicted by the LSTM-Transformer-combined model
exhibits closer alignment with the real price. Conversely, the prices
forecasted by the CNN-LSTM and CNN-GRU models demonstrate
larger deviations in certain time slots.

To assess the prediction accuracy of different methods, we
present the MAE, RMSE, and MSE in Figure 3. Compared
to the CNN-LSTM and CNN-GRU forecasting methods, our
proposed model demonstrates superior performance. Specifically,
the proposed LSTM-Transformer-combined model reduces the
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FIGURE 2
The predicted electricity price under different methods.

FIGURE 3
Precision performance under different methods.

MAE by 74.53% and 69.39% compared to CNN-LSTM and CNN-
GRU, respectively. Additionally, the RMSE is reduced by 72.41%
and 69.09%, while the MSE is reduced by 72.40% and 69.08%,
respectively.These improvements are visually apparent in the Figure,
confirming that the prediction precision of our proposed method
surpasses that of CNN-LSTM and CNN-GRU.

Following a similar procedure, the day ahead PV output and
load ratio are predicted. The historical data for PV output and load
are obtained from PJM for the period from 1 January 2023, to 31
December 2023. Due to space constraints, we omit the detailed
process of their forecast and the precision analysis. The day ahead
PV output and load ratio are depicted in Figure 4.

5.2 IEEE 13-bus system

Based on the predicted price, simulations are conducted using
the IEEE 13-node feeder test system depicted in Figure 5. The
system consists of 13 nodes and 12 transmission lines. Two VPPs
are connected to nodes 4 and 11. Additionally, each VPP is

FIGURE 4
Base (A) load profile and (B) PV profile.

FIGURE 5
Topology of IEEE 13-bus distribution system.

equipped with multiple battery storage units and rooftop PVs.
The distribution network is linked to the main grid. Codes of
optimization part are implemented in MATLAB on a personal
computer equipped with a quad-core 2.5GHz processor and
32GB of memory.

5.2.1 Data preparation
The base load ratio and PV capacity ratio are extracted

from the predictions illustrated in Figure 4. Each node’s daily
load is calculated by scaling the base load ratio accordingly.
Similarly, the PV output from rooftop units is determined by
scaling the base PV capacity ratio. The parameters associated with
storage and PV in VPPs, relevant to the experiment, are outlined
in Table 1.

The local marginal price, represented by the red
solid line in Figure 2, is predicted using the LSTM-Transformer-
combined model. It signifies the power injection price from
the main grid at the reference bus-1. Additionally, in order
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TABLE 1 Parameters of VPPs.

VPP index # Of rooftop PV PV capacity (kW) Storage capacity
(MWh)

Cha./Dis. Power
(kW)

Cha./Dis. Eff

1 15 60 1 500 0.95

2 35 30 1 500 0.95

TABLE 2 Model performance under different forecasting scheme.

Model Real price LSTM-transformer CNN-LSTM CNN-GRU

Total Cost ($) 796.25 818.72 871.63 835.94

FIGURE 6
Total supply from the main grid and VPPs.

to encourage local accommodation, the power injection
price from VPP is fixed at 90% of the local marginal price.
Furthermore, a penalty of $10 per MWh is imposed for renewable
energy curtailment.

5.2.2 Forecast price-based dispatch
To demonstrate the effectiveness of the proposed data-driven

method in the economic dispatch of DSO, we perform simulations
on the IEEE 13-Bus distribution system. Within the cases, the
population size is 100. Maximum number of iterations is 300. The
proportion of producer and scouter are 0.2 and 0.2, respectively.The
safety threshold is 0.8.

The total daily costs incurred by DSO are compared based on
the outcomes obtained fromdifferent price forecasting schemes.The
simulation results are presented in Table 2. It is evident that the total
cost predicted by LSTM-Transformer closely aligns with the actual

price, with values higher by only 9.47% and 4.98% compared to
CNN-LSTM and CNN-GRU, respectively.

To explore more details of the performance of the proposed
economic dispatch method, we analyze the power injection from
the main grid and the total power supply of each VPP. In Figure 6,
we present the histogram of the power supply from the main
grid and VPPs. The load is primarily served by the main grid
supply during the early morning, evening, and at night. This is
attributed to the significant presence of PVs in the VPPs, which
primarily generate energy during daylight hours. Additionally,
VPPs draw power from the distribution system at night when
the LMP is lower during the valley periods. It is notable that
the total power supply slightly exceeds demand, which is partly
due to power losses accounting for approximately 3.18% of
the total load.

Figure 7 illustrates the SOC and charging/discharging status of
the storage units inVPPs.Theupper sub-figure represents the results
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FIGURE 7
The status of storage in VPPs.

FIGURE 8
Performance comparison of our method and Monte Carlo simulation on (A) total cost and (B) voltage magnitude.

in VPP-1, while the lower sub-figure represents the results in VPP-
2. It can be observed that the SOC of both storage units exhibits
a similar trend. They charge at night to store inexpensive power
and charge during the afternoon to store surplus PV production.
Subsequently, they discharge in the morning and evening to reduce
costs and enable greater utilization of renewable output. These
findings underscore the effectiveness of the proposed economic
dispatch method.

5.2.3 Comparison via Monte Carlo simulations
To explore the robustness and reliability of the proposed

methods, we conduct case studies on in-the-sample data in
the training dataset and out-of-sample data generated by the

Monte Carlo simulation (MCS). In this work, the MCS is used
to generate 1000 stochastic scenarios following the normal
distribution for modeling price, renewable, and load uncertainties.
The 1000 in-the-sample data is randomly sampled in the
training dataset.

Theoperation cost and voltagemagnitude are employed to assess
the model performance. In each simulation, if the voltage is more
than 1.05 p.u. or less than 0.95 p.u., it could be considered that this
scenario is unstable. They are recorded in the boxplots which are
shown in Figure 8A. Shows that the least total cost obtained fromour
method is $818 and themean cost is $843.The total costs inmost in-
the-sample scenarios are ranging from $818 to $870. However, the
least cost and mean cost in MC are $818 and $851, respectively. The
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FIGURE 9
Topology of IEEE 141-bus distribution system.

TABLE 3 Parameters of VPPs.

VPP index 1 2 3 4 5 6 7 8

# of Rooftop PV 15 20 15 10 25 15 10 10

PV Capacity 12 kW 10 kW 15 kW 10kW 12 kW 10 kW 15 kW 10 kW

Storage Capacity 0.25MW∗ 4h 0.25MW∗ 4h 0.25MW∗ 4h 0.25MW∗ 4h 0.25MW∗ 4h 0.25MW∗ 4h 0 0

Cha./Dis. Power 250 kW 250 kW 250 kW 250 kW 250 kW 250 kW - -

total costs in most out-of-sample scenarios are ranging from $818
to $910. There are a few scenarios whose costs are more than $910
while less than $925. There is only a 4.89% cost increment in most
scenarios. Figure 8B presents the voltage distribution in two kinds of

samples. It is observed that voltages in all in-the-sample scenarios are
distributed within 0.95 p.u. to 1.05 p.u. However, 11 scenarios occur
overvoltage or undervoltage in the Monte Carlo simulation, which
only occupies 1.1% of the total scenarios. Thus, the MCS shows
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FIGURE 10
Total supply from main grid and VPPs in the IEEE 141-bus distribution system.

FIGURE 11
Voltage of IEEE 141-bus distribution network under CNN-GRU-based
dispatch method.

the robustness of the proposed method under different uncertain
conditions.

5.3 IEEE 141-bus system

To further validate the effectiveness of the proposed data-driven
economic dispatch in terms of system stability and convergence
speed, this section conducts simulation tests on the IEEE 141
distribution network system to analyze the model’s performance.

5.3.1 Scheduling results analysis
Similarly, to assess the model performance of the proposed

method on larger systems, case studies are conducted on the IEEE
141-bus system, shown in Figure 9, with 8 VPPs connected to
nodes 20, 32, 58, 74, 86, 106, 116, and 130. These cases involve an
increase in the total number of connected rooftop PVs and battery

FIGURE 12
Voltage of IEEE 141-bus distribution network under
LSTM-Transformer-combined dispatch method.

FIGURE 13
Convergence speed under different optimization methods.
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TABLE 4 Average computational time for convergence of different methods.

Method SLS-SSA SSA ISSA ESSA RSSA PSO CSO GWO NLP-GUROBI NLP-CPLEX

Computational time (s) 3.91 8.06 5.28 6.02 6.96 9.29 12.41 9.78 25.96 28.53

FIGURE 14
Convergence performance under different population sizes.

storage units.The parameters of storage and PV in VPPs involved in
the experiment are presented in Table 3. Other parameters remain
consistent with those used in the IEEE 13-bus system.

By employing the proposed method to solve the collaborative
optimization problem, the aggregated output of each VPP and main
grid injection are obtained, as depicted in Figure 10. It is evident that
the load is primarily served by electricity from the main grid during
nighttime and in the early morning. Any surplus electricity from the
main grid during off-peak hours is stored in theVPPs to capitalize on
the cheaper energy available during valley periods. Conversely, the
demand is met by the VPPs during midday and in the evening. This
observation underscores the role of VPPs as prosumers, leveraging
their storage capacity to maximize the utilization of electricity
generated during periods of ample sunlight and inexpensive valley
periods. Moreover, when the power generated by the PV system
exceeds real-time demand at midday, any excess energy can be
stored in the energy storage system. Subsequently, during periods
of high demand or when sunlight is unavailable in the evening,
the energy storage system can discharge the stored energy, thereby
bolstering the overall stability and economic efficiency of the power
distribution system.

5.3.2 Voltage performance
The extensive integration of distributed energy resources

presents challenges such as overvoltage or undervoltage in power
distribution systems. Analyzing the influence of different price
forecasting schemes on nodal voltage is crucial. Here, we examine
the voltage levels in the IEEE 141 distribution network under LSTM-
Transformer and CNN-GRU-based dispatch to demonstrate the
effectiveness of the proposed method.

Figures 11, 12 display the voltage variations throughout the day
in the 141-node network under different price forecasting methods.
A comparison between the two figures reveals that the proposed
LSTM-Transformer method leads to relatively stable system voltage
fluctuations. In Figure 11, the highest voltage magnitude is 1.067
p.u. on bus-32 at 19:00. Additionally, voltages on buses 13 to
32 and 114 to 141 exceed 1.05 p.u. between 18:00 and 19:00.
Conversely, all nodal voltages fall within the range of 0.95 p.u. to
1.05 p.u., indicating an improvement in the voltage conditions of the
distribution network.

5.3.3 Computational performance
To assess the efficacy of secant line search in enhancing

SSA’s convergence speed, we perform comparative experiments
involving several methods, namely, SSA, PSO, CSO, and
GWO. To compare the proposed method with state-of-the-art
methods, the mentioned improved versions of SSA methods
including ISSA, ESSA, and RSSA are also selected as the
comparative methods. All methods are configured with identical
parameter sets.

Figure 13 illustrates the convergence speed of the proposed data-
driven SLS-SSA alongside other prominent biological population
algorithms in solving VPP scheduling problems. The results
demonstrate that all tested algorithms exhibit a rapid reduction in
total cost within the initial 10 iterations. However, SLS-SSA shows
superior convergence, achieving convergence after 37 iterations,
which is notably faster than other methods. Additionally, the
converged objective is significantly improved, with a reduction of
2.48% compared to SSA and CSO, 3.68% compared to PSO, and
7.50% compared to GWO. Besides, SLS-SSA also performs better
on the convergence speed and accuracy compared to the three
improved versions. This indicates the efficacy of the secant line
search in identifying the global optimal point for the economic
dispatch problem.

According to the iteration times described in the previous
part, SLS-SSA shows a great improvement compared to different
methods. To further explore the computational effectiveness of
the SLS-SSA, the averaged computational time to convergence
of the comparative methods is listed in Table 4. It is observed
that the average computational time used for convergence of SLS-
SSA is the least than all comparative methods. It saves about
51.5% computational time compared to SSA. This is because the
secant line search scheme can avoid the direct leap of discoverers
in the original SSA and achieve an efficient location update.
Besides, the iteration times needed to converge on SLS-SSA are
much less than those of other methods, which can also save
computational time. Moreover, SLS-SSA is more efficient than
traditional nonlinear programming (NLP) solved by GUROBI or
CPLEX. It is observed that the SLS-SSA is 6.64 times and 7.30 times
faster than NLP-GUROBI and NLP-CPLEX respectively. Overall,
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SLS-SSA shows a better computational performance than the
comparative methods.

5.3.4 Impact of population size
The performance of the SLS-SSA is affected by the parameter

settings. To explore the impact of population size on convergence
performance, we conduct comparative experiments involving
several population sizes, including 10, 50, 100, 200, and 300,
respectively.The results are presented in Figure 14. It is observed that
the number of iterations for convergence decreases with the increase
of population size. Besides, the converged objective also decreases
with the increase in population size. However, the decreasing speed
of the objective is slow when the population size is big enough.
The results indicate that a proper population size contributes to an
efficient SLS-SSA.

6 Conclusion

In conclusion, this research contributes to sustainability efforts
by addressing challenges related to the integration of numerous
distributed resources into the evolving power distribution system,
with a focus on economic performance and voltage stability.
By leveraging the prosumer role, the study underscores the
effectiveness of VPPs in enhancing the flexibility and stability of
the power distribution system. The adoption of VPPs emerges
as a promising strategy for the coordinated management of
distribution systems and distributed energy resources. The research
introduces a data-driven price forecasting and SLS-SSA dispatching
method for optimizing the day-ahead operation of PDS and VPPs.
Through testing on IEEE-13 and -141 distribution systems, the
numerical results confirm the effectiveness and efficiency of the
proposed model and methodology, offering valuable insights for
the development of cleaner and more sustainable energy supply
infrastructure.
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Nomenclature

e index of storage

i, j,k index of distribution nodes

ij index of distribution lines

m index of VPPs

s index of rooftop PVs

t index of time intervals

ηc,ηd charge/discharge efficiency of storage

λt ,πt electricity prices from the main grid and VPP

cab penalty of the renewable curtailment

Emax,e,Emin,e maximum/minimum energy of storage

Pl
i,t ,Q

l
i,t active/reactive load of bus i

Pch
max,e,P

dis
max,e maximum charge/discharge power of storage

Ppv,f
s,t forecasted output of rooftop PV

rij,xij resistance and reactance of the branch (i, j)

Sese maximum apparent power of storage

Spv,invs inverter capacity of rooftop PV

V i,max,V i,min squared upper and lower voltage limits at node i

Γ(i) set of VPPs connected on node i

Ω(m) set of PV or storage connected on VPPm

Ee,t storage energy at time t

Pes,ch
e,t ,P

es,dis
e,t charging/discharging power of storage e

Pes
e,t,Q

es
e,t active/reactive power output of storage e

Pi,t ,Qi,t active/reactive power injection of bus i

Pij,t ,Qij,t active/reactive power flow in line ij

Pvpp
m,t ,Q

vpp
m,t active/reactive power output of VPPm

Ppv
s,t ,Q

pv
s,t active/reactive power output of PV s

Qpv
s,t,max maximum reactive power output of PV s

uc,ese,t ,u
d,es
e,t charge/discharge status of storage at time t

upvs,t aggregation status of PV s at time t

V i,t squared voltage magnitude at node i

wij,t squared current on branch ij
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