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With the gradual increase in the grid-connected capacity of renewable energy
sources, the uncertainty in the operation of power systems has increased, posing
challenges to static security assessment considering N-1 contingency scanning.
To address this, this article first establishes a static security calculation model
based on stochastic power flow. Then, it proposes stochastic component-level
safety indexes and system-level safety indexes. Finally, using the analytic
hierarchy process to analyze the obtained weighting coefficients, the article
establishes a system of static security assessment indexes for power systems. A
data-driven simulation method based on extreme gradient boosting (XGBoost) is
proposed to tackle the high time consumption of multi-scenario static security
assessment, which brings difficulties in model debugging and application. Case
studies based on the IEEE 39-bus system demonstrate the effectiveness of the
proposed model and the rapidity of the data-driven approach.
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1 Introduction

As the operational environment of the power grid evolves, the system faces increasing
random disturbances, leading to more complex and variable conditions. However, the
traditional static security assessment (SSA) for N-1 contingency scanning has difficulty
dealing with the increasing uncertainties (Čepin, 2011; Chen et al., 2015; Meegahapola et al.,
2020; Qian et al., 2022). To ensure the system’s safety and stability, it is crucial to develop a
stochastic-based SSA method.

The primary feature of an electrical power system is to ensure the reliability, cost-
effectiveness, and quality of the power supply, providing continuous and uninterrupted
energy to users (Das, 2007; Schavemaker and Van der Sluis, 2017). Power system safety
analysis is categorized into static and dynamic safety analyses. SSA assumes that the power
system transitions directly from a pre-disturbance static state to a post-disturbance static
state without considering the intermediate transient processes. This analysis is used to verify
whether various constraints are satisfied following a disturbance (Prabhakar et al., 2022).
Dynamic safety analysis, on the other hand, examines the power system’s ability to maintain
stability during the transient process from a pre-disturbance static state to a post-
disturbance static state (Rao et al., 2009).

By considering the randomness of wind power and PV power generation, the accuracy
of the static safety evaluation method can be improved, thereby providing a more reliable
safety reference and ensuring that the system can cope with emergencies and failures.
Accurate static safety evaluation can assist decision makers in formulating more effective
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scheduling strategies and emergency plans to improve the reliability
and safety of the power system. Power system static security
assessments have been widely investigated in previous studies.
The existing methods can be classified as i) model based, ii)
signal-based, and iii) artificial intelligence (AI) (Wu, 2015). The
model-based methods use a mathematical expression of the power
system to analyze the security status (Jing, 2014). The main
disadvantages of model-based methods are that it is difficult to
provide an accurate model for the power system in most cases, and
models are unsuitable for real-time assessment based on accurate
modeling. Signal-based methods have better calculation accuracy,
but they depend on a predefined threshold and are notably sensitive
to the completeness of the information about the power system’s
status. AI-based methods require historical data to assess the power
system security status. The main methods include random forest
(Wang et al., 2016), multi-class support vector machine (SVM)
(Meegahapola et al., 2020), core vector machine (Mohammadi et al.,
2010), etc. These methods are restricted in terms of extracting the
comprehensive features in complex and nonlinear systems such as
power networks.

Load flow analysis is crucial for power system SSA; it can address
the load uncertainties from forecasting errors and operational
conditions, particularly with renewable energy integration
(Kalyani and Swarup, 2010; Afrasiabi et al., 2019). Stochastic load
flow offers statistical insights into node voltages and branch powers,
facilitating the evaluation of random factors and probability
distributions at specific operational points (Shirasaki and Uchida,
2010). There are three general methods used for stochastic power
flow calculation: simulation, analytical, and approximate
approaches (Su, 2005; Wang et al., 2008; Ghiasi, 2018). Monte
Carlo simulation generates a stochastic process to approximate
solutions by analyzing statistical properties (Binder et al., 1992;
Conti and Raiti, 2007; Thomopoulos, 2012; Graham and Talay,
2013). The analytical method uses simplified DC and AC load flow
equations with convolution techniques to calculate output
distributions based on input variables, effectively modeling
stochastic behavior under varying conditions (Hu and Wang,
2007; Kiruthika and Bindu, 2020; Han et al., 2021). The
approximate method estimates system state variables’ statistical
characteristics from input variables’ statistical features, reducing
computational demands. It is ideal for quick assessments (Morales
and Perez-Ruiz, 2007). These methods are essential for power
generation planning, network planning, SSA, real-time
operational state analysis, optimal load flow calculations, and risk
assessments, especially as power systems face rising uncertainties.

In summary, the prevailing research on N-1 security scanning
predominantly utilizes deterministic load flow analysis, which does
not adequately account for the stochastic variations introduced by
wind and solar energy sources. By taking uncertainties into account,
the article proposes a novel static security assessment methodology
that leverages stochastic load flow simulation and incorporates a
data-driven acceleration algorithm, addressing the complexities of
static security assessment in the face of stochastic variations
effectively.

The organization of the subsequent sections of this article is as
follows: Section 2 establishes a static security index system that
considers stochasticity and develops a stochastic load flow model
based on simulation methods. Section 3 introduces a data-driven

method for stochastic static security assessment. Section 4 provides a
case study analysis based on the IEEE 39-bus system. Section 5
concludes the article.

2 Model formulation

The model formulation process is as follows: Initially, it
establishes probability distribution models for load, photovoltaic
(PV), and wind power, generating random scenarios with
uncertainty. Then, it calculates the DC optimal power flow,
using the result as the base case for power flow. Following the
base case flow, the Newton–Raphson method is employed to
compute the stochastic load flow for the generated probability
distribution scenarios. Finally, it utilizes a kernel density estimation
(KDE) algorithm to fit the results of the stochastic load flow
calculations.

2.1 Stochastic power flow model

2.1.1 Model for uncertainty sources
(1) Load Probability Model

In most stochastic load flow studies, load uncertainty is
assumed to be normally distributed, with the power injections
at nodes being either independent or linearly related (Tuinema
et al., 2020). Based on this, this article develops a stochastic model
for the active and reactive power of system loads that adhere to a
normal distribution.

There is always a deviation in load forecasting, expressed as:
PD � PD + ΔPD, where ΔPD is the load forecast error random
variable. PD is the load forecast error. ΔPD is the load forecast
deviation, which follows a normal distribution with a mean of 0 and
a variance of σ2D. The calculation formula for the variance is:

σ2D � PDζ

100

The probability density function of the load forecast error
random variable as follows:

f � 1���
2π

√
σ
· exp − P − μ( )2

2σ2
[ ]

where σ represents the standard deviations of active and reactive
power; μ represents the means of active and reactive power.

(2) Photovoltaic and Wind Power Plant Probability Model

We can describe the uncertainty of PV and wind power output
by superimposing the forecast error ε onto the predicted value P (Al-
Sumaiti et al., 2019). The PV and wind power output can be
represented as:

P* � P + ε

The standard deviation of power forecast error ε is normally
distributed. It has a mean of zero. The standard deviation is σ, and its
probability density function is:
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f ε( ) � 1���
2π

√
σ
· exp − ε2

2σ2
[ ]

where σ is proportional to the predicted output.

2.1.2 Stochastic power flow model
The article initially addresses the solution of the DC optimal

power flow, employing the outcome as the base case for power flow.
Thereafter, the Newton–Raphson method is utilized to compute the
system’s stochastic load flow, establishing the stochastic power
flow model.

For a combined generation and transmission system with n
nodes and b lines, the DC optimal power flow model can be written
as follows:

fP � min ∑
i∈NL

PCi

⎧⎨⎩ ⎫⎬⎭
The following constraints should be satisfied:

∑
i∈NG

∑
j

PGij + ∑
i∈NL

PCi � ∑
i∈NL

PLi

PG + PC − PL � −Yθ
Pbi � θs i( ) − θe i( )

xi
i ∈ NT( )

Pb| |≤Pb

PG
ij
≤PGij≤PGij

PC ≤PL

PC ≥ 0

−Pr
max t( )≤P t( ) − P t − 1( )≤Pr

max t( )
∑
i∈NL

Ri t( )≥RS t( )

0≤Ri t( )≤Ri

where fP is the objective function value in optimization calculation,
and PCi and PLi are the active power load cut and active power load
at bus t. PGij, PGij and PGij represent the active power output, the
upper limit, and the lower limit of the active power output for the jth
unit at the ith generator bus. PG, PC, PL, and θ is an n-dimensional
column vector. It includes elements for active power injections at
independent nodes, active power load shed, active power load, and
node voltage angles. Matrix Y is the node admittance matrix. It is
built using the inverse of line reactance as branch admittances. Pb is
a b-dimensional column vector. Its elements Pbi represent the active
power flow in line i. s(i) and e(i) are the node numbers of the
starting and ending nodes of line i, and xi is the reactance of line i. Pb

is a b-dimensional column vector. Its elements represent the active
power capacity of lines. SetsNL,NG, andNT represent the load bus
set, generation bus set, and line set. Pr

max(t) denotes the maximum
ramp-up or ramp-down power of the unit per hour. Ri(t) is the
spinning reserve provided by load bus i at time t. Rs(t) is the
spinning reserve requirement of the system at time t. Ri is the
maximum spinning reserve that generation bus i can provide.

The stochastic load flows have been calculated based on the
solved DC base case power flow. The probability distribution models
for node voltage U and branch power flow Z are as follows:

U � g S( )
Z � h S( )

where g and h represent the node voltage function and branch
power flow function.

Subsequently, the Newton–Raphson method is used to solve the
stochastic load flow based on the generated probability distribution
models. This approach yields the system power flow distribution
results for each random case. Further, the KDE algorithm is used to
fit the probability distribution of output data.

Given d load data samples from n hours at load nodes, the load
vector for the ith hour can be represented asXi � [Xi1, Xi2, ..., Xin]T.
If we choose the Gaussian function as the kernel for kernel density
estimation, then the multi-dimensional kernel density estimate takes
the following form:

f X( ) � 1
n
∑n
i�1

exp − x−Xi( )TH−1 x−Xi( )
2( )

2π( )d/2det H( )1/2

where n is the size of the historical sample. det represents the
determinant calculation. It can be seen that f(X) contains n
d-dimensional Gaussian kernels, with the mean of the ith kernel
being Xi. H is the bandwidth matrix.

2.2 N-1 static security assessment indexes

The impact of random disturbances or faults on power systems
primarily manifests as branch overloads and node voltage violations:
branch overloads may trigger cascading failures, while node voltage
violations may lead to voltage collapse (De La Ree et al., 2005;
Ibrahim, 2011). Therefore, the SSA of the system is conducted
mainly from two aspects: branch overloads and node voltage
violations. The assessment perspective involves two levels: safety
risk and safety probability.

2.2.1 Component-level safety index
(1) Severity Index

The load flow percentage of each line determines the degree
of overload.

Sevbranch KPj E|( ) � ∑K

k�1 max
Pj

∣∣∣∣ ∣∣∣∣ − Pmax| |
Pmax| | ,

Pj

∣∣∣∣ ∣∣∣∣ − Pmin| |
Pmin| |{ }

where E represents the set of all possible contingencies. KPj denotes
the event of branch j exceeding its power flow limit. Pmax and Pmin

represents the maximum and minimum active power value allowed
to be transmitted on branch j.

The node voltage severity function typically defines the
percentage deviation of each node voltage magnitude from its
normal magnitude limit.

Sevvoltage Kvi

∣∣∣∣E( ) � ∑K
k�1

max
vH − vi
vH

,
vi − vL
vi

{ }
(2) Component failure probability
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The probability that the network operation fails to meet the
power flow security constraints after a specific anticipated event
occurs can be determined as follows:

Pr Kvi

∣∣∣∣E( ) � prob vL < vi| |< vH{ } � Fvθ
vH − vi
σvi

( ) − Fvθ
vL − vi
σvi

( )
where Kvi represents the event of no voltage violation at node vi. E
represents the set of all fault events. vi and vH represents the upper
and lower limits of the safe voltage range.

The probability that branch j does not exceed its power flow
limit is expressed as:

Pr KPi

∣∣∣∣E( ) � prob −Pmax <Pj <Pmax{ }
� Fpq

Pmax − Pj

σpj
( ) − Fpq

−Pmax − Pj

σpj
( )

whereKPi represents the event of no power flow violation on branch
j. Pmax is the upper limit of the branch power flow.

2.2.2 System-level safety indexes
The system risk or insecurity probability is a comprehensive

reflection of the risks or insecurity probabilities of individual
components.

(1) System Risk Index

The system overload severity index is defined as:

ROL � α
1
M

Sevbranch‖ ‖1 + β Sevbranch‖ ‖∞

where α and β are weighting coefficients, satisfying α + β � 1.
‖Sevbranch‖1 and ‖Sevbranch‖∞ represent the 1 and ∞ norms of
vector R, respectively.

The system voltage violation severity index is defined as:

ROV � α
1
N

Sevvoltage
���� ����1 + β Sevvoltage

���� ����∞
(2) System probability indexes

The failure of component i can be expressed as:

Ei � �F1 ∩ �F2...�Fi−1 ∩ Fi ∩ �Fi+1...�FN

where Fi represents the failure state of the component. �Fi represents
the normal state of the component, and N is the number of
components.

Furthermore, the probability that the system satisfies power
flow security constraints after an anticipated event occurs is
given by:

Pr K0 |Ei( ) � ∏n
i�1

Pr Kvi

∣∣∣∣Ei( )⎛⎝ ⎞⎠ ∏m
j�1

Pr Kpj

∣∣∣∣Ei( )⎛⎝ ⎞⎠

The probability that the system does not satisfy power flow
security constraints is given by:

Pr K1 |Ei( ) � 1 − Pr K0 |Ei( )

where K1 represents the event of the system satisfying power flow
security constraints. K0 represents the event of the system not
satisfying power flow security constraints. Ei represents the event
of a specific accident occurring in the system.

Assuming the probability of component i failing at time t follows
a Poisson distribution, and events occur independently of one
another, it has:

Pr Ei( ) � 1 − e−λi t( ) exp −∑
j≠i

λjt⎛⎝ ⎞⎠
where λj is the failure rate of component i(i � 1, 2, . . . , N).

Then, the probability of power flow security for the system is
obtained as:

Prs � Prs0 · 1 −∑N
k�1

prEk
⎛⎝ ⎞⎠ +∑N

k�1
prsk · prEk

The probability of power flow insecurity for the system is
given by:

Prins � 1 − Prs

In this subsection, this article integrates the subjective weighting
model constructed using the analytic hierarchy process (AHP)
(Chatzimouratidis and Pilavachi, 2007) and the objective
weighting model constructed using the entropy method using the
additive integration method.

First, the proportions of each weight are determined in the
comprehensive weights:

y � ∑n
i�1

k1pi + k2qi( )xi

where pi and qi respectively denote the subjective and objective
weights of the ith indexes. k1 and k2 are undetermined coefficients,
and k1 + k2 � 1, k1, k2> 0. n represents the number of indexes
being evaluated.

Next, the formula for calculating the comprehensive weight
coefficient of the ith index is given as follows:

wi � k1pi + k2qi i � 1, 2, 3, . . . , n( )
The overall system static security assessment index S0 is

obtained as follows:

S0 � w1 · Prins + w2 · ROL + w3 · ROV

3 Data-driven static security
assessment algorithm

Considering the issues of long training times and the difficulty of
extracting features from data in data-driven models, this article
employs the XGBoost method to reduce the simulation time and
application complexity in the safety assessment of power systems.

Initially, this article uses the Monte Carlo simulation method to
construct random scenarios reflecting the stochastic fluctuations in
load, PV, and wind output values. Following this, an iteration
through all fault conditions of lines and generators is conducted.
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The method can solve the corresponding random scenarios for each
fault condition. Subsequently, the static unsafety indexes for the
system under the respective fault conditions are calculated, applying
the method detailed in Section 2.2.

XGBoost is a machine learning algorithm based on tree models
(Chen and Guestrin, 2016), which automatically selects appropriate
splitting directions when samples are missing, making it suitable for
processing tabular data. First, the system safety assessment scenario is
designed, the fault set and data collection points are selected, and the
sample set that characterizes the random power flow input and output
changes under normal operation and fault conditions is constructed
as follows:

X � X1, . . . , Xi, . . . , XN[ ] ∈ RN×M

where N represents the number of samples, that is, N safety assessment
scenarios, and M represents the dimension of each sample feature
vector. The input feature vector of sample Xi contains the mean
fh|h ∈ H{ } and variance σh|h ∈ H{ } of the branch active power
flow distribution fh|h ∈ H{ } and the amplitude ]a|a ∈ A{ } and
variance εa|a ∈ A{ } of the node voltage. The dimension M is the
sum of the number of branches and the number of nodes A. The
system insecurity probability yi corresponding to each sample Xi

constitutes the output of the data-driven model.
Based on the new energy power system safety assessment data

set established, K classification and regression trees are selected
as base learners; further, based on the regression idea of the
boosting method, the sample data is input into the XGBoost
model, and the output vectors of multiple base learners are
continuously added as the tree model of XGBoost. Finally, the
learned system insecurity probability can be obtained by using

the Softmax function. The training flow chart is shown
in Figure 1.

Based on the renewable energy power system static
security assessment dataset established, K classification and
regression trees are chosen as base learners. The learned system
insecurity probability can be obtained by utilizing the cumulative
function. The system static security assessment framework
is illustrated in Figure 1, and for a given dataset
D � {(Xi, yi)}(|D| � N,Xi ∈ RM, yi ∈ R), the ensemble model of
trees is represented by the following equation:

ŷi � ∑K
k�1

Tk Xi( ), Tk ∈ Γ

In the equation, ŷi represents the output of the model. Tk(Xi)
denotes the prediction result of the kth decision tree. T(x) � ϖq(x)
represents the mapping from the input sample to the leaf node of the
kth tree; each tree corresponds to an independent tree structure Tk

and the weights of the leaves ϖ. Xi is the feature vector of the ith
sample.Xi represents the mapping of the structure of the kth tree to
the leaf corresponding to the sample. Λ is the number of leaves on
the tree; Γ � T(x) � ϖq(x){ }(q: Rm → Λ,ϖ ∈ RΛ) is the collection
space of trees.

The objective function trained by XGBoost can be
represented as:

obj φ( ) � ∑n
i�1
l yi, ŷi( ) +∑K

k�1
Ω Tk( )

� ∑n
i�1
l yi, ŷi + Γi Xi( )( ) +Ω Tk( ) + C

where φ represents the model parameters. ∑N
i�1
l(yi, ŷi) denotes the

quantified error of the model on the training samples. N is the

number of training samples. ∑K
k�1

Ω(Tk) is the regularization term of

model complexity used to reduce the risk of overfitting. K is the
number of base learners of the model.

In the XGBoost algorithm, the model complexity of a single base
learner is defined as:

Ω Tk( ) � γM + 1
2
λ∑M
j�1

ϖj

���� ����2
where M represents the number of leaf nodes in the base learner.
λ denotes the L2 regularization coefficient. γ represents the
difficulty of node splitting. ‖ϖj‖2 denotes the norm of the leaf
node weights.

Based on the established dataset for assessing the security of new
energy power systems (shown in Figure 2), CART base learners are
continuously trained to fit the residuals of the previous model and
then integrated into the XGBoost model. Iteration continues until
either the preset number of base learners is trained or the model
residuals are smaller than the set threshold.

ŷ 0( )
i � 0

/

ŷ t( )
i � ∑t

k�1
Tk xi( ) � ŷ t−1( )

i + Tk xi( )

FIGURE 1
XGBoost model training flow chart.
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where ŷ(t)
i represents the model prediction value for the ith sample

in the tth round, with the model prediction values from the
previous tth rounds retained before adding a new
function Tt(Xi).

4 Case study

In the case study, the SSA indexes for a system postulated are
assessed with accidents detailed. This includes evaluating the
likelihood that voltage and power flow limits are not exceeded
after each accident, considering uncertainties in power injections
and line failures. The study calculates the overall system safety by
integrating these probabilities with the frequency of each
pre-planned accident.

Then, fault scenarios for the case are constructed. The average
failure probability for units is 1×10−4 times/hour, with the range
from 5 × 10−5~2 × 10−4. The average failure probability for branches

is 1.2 × 10−4 times/hour, with the range from 2 × 10−5~2 × 10−4. The
transmission capacity of all branches is consistent with the IEEE 39-
bus case, and the transmission capacity limit during emergencies is
2.5 times that of normal conditions.

4.1 Model-driven analysis

(1) Component and System Safety Index Ranking Analysis

By ranking the items in the safety function according to the
calculation results, the links that contribute significantly to the
overall probability of system unsafety can be identified, drawing
attention to them. Figure 3 provides risk indexes for each
component in the system under various fault occurrence
probabilities. For each unit, this reflects the risk of a voltage limit
violation at the node where the unit is located. For each branch, it
reflects the risk of a power flow limit violation on that branch. The

FIGURE 2
System security assessment framework.

FIGURE 3
Component unsafe severity.
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higher the risk index, the greater the threat to the system in the event
of a fault at that node or on that branch.

Additionally, by ranking the probabilities of the system not
meeting power flow safety constraints for each pre-planned
accident, the fault items that most affect the probability of
system power flow can be identified. More targeted preventive
measures can be implemented. Figure 4 provides the probabilities
of system unsafety caused by the failure of each component,
considering the failures of various components.

(2) System Safety Assessment Simulation Analysis

When assessing the system risk indexes, the system overload risk
index ROL and the system voltage limit violation risk index ROV must
be calculated. Then, by obtaining subjective and objective weights,
the probabilities of various failures affecting the system evaluation
indexes are considered. Subjective weights are based on the analytic
hierarchy process (AHP), while objective weights are determined
using the variance minimization method.

First, use the additive aggregation method to calculate the
undetermined constants for the subjective and objective weights,
resulting in the undetermined constant k1 � 0.707 for the objective
weights and k2 � 0.293 for the AHP in the additive aggregation
method. Subsequently, the subjective and objective weights are
integrated using the additive aggregation method, and the result
is normalized to obtain a comprehensive weight result that
complements the advantages of both subjectivity and objectivity.
The results are shown in Table 1. Thus, combining the above
analysis, the system’s unsafe assessment indicator value is
obtained as 0.417.

4.2 Data-driven analysis

In XGBoost, there are three methods for calculating variable
importance: using the frequency of variable splitting in trees as a
measure of importance, using the average gain after variable splitting
as a measure of profit, and using the coverage range of samples after
variable splitting as a measure of coverage. In this section, the
XGBRegressor function is used to train and learn from sample
data. The number of iterations is set to 300, and other parameters are
set, as shown in Table 2.

The importance of variables in the model is analyzed. The
analysis results are shown in Figure 5.

The specific SSA values and their accuracy rates for different
operating scenarios of the system are shown in Figure 6 the average
static security assessment values of prediction and actual are 1.470%
and 1.472%.

To provide a more intuitive analysis of the effectiveness of the
strategies learned by the static assessment model based on the
XGBoost algorithm, it will be compared to three methods: random
forest regression, linear regression, and decision tree. Mean absolute
error (MAE), R-squared score (R2_score), mean squared error (MSE),
and root mean squared error (RMSE) are used as evaluation metrics.
In all experiments, 80% of randomly sampled input data is used to
build the model (training set), while 20% of the data is used for
evaluation (testing set). The experimental results are shown in Table 3.

The experimental results indicate that the data-drivenmodel used
in this article has higher prediction accuracy than other comparative
algorithms, demonstrating the better applicability of the XGBoost
algorithm. The inference speed of the XGBoost algorithm is 7.58 ×
10−6 s per item, showing a significant speed improvement compared to
traditional evaluation methods.

FIGURE 4
Component unsafe probability considering failure probabilities.

TABLE 1 Calculated weight values for each index.

Index name Index value

Overload, voltage limit violation risk ROL ROV 0.181, 0.750

System unsafe probability 0.037 × 10−3 times/hour

Limit violation risk 0.243

System power flow unsafe probability 0.515 × 10−4

TABLE 2 Parameter setting.

Parameter Value Parameter Value

max_depth 5 subsample 0.9

learning_rate 0.1 colsample_bytree 0.94

objective reg:linear colsample_bylevel 0.99
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5 Conclusion

This article outlines a static security assessment index
system that accommodates stochastic variations, introduces

a method based on stochastic load flow simulations,
and develops a data-driven acceleration algorithm to
enhance static security assessments in the face of stochastic
variations.

FIGURE 5
Before and after data scrambling importance analysis of feature variables based on XGBoost.

FIGURE 6
Static security assessment values and accuracy rates for different operating scenarios.

TABLE 3 Result comparison.

MAE R2_score MSE RMSE

Random forest regression 2.480 × 10−3 0.573 2.929 × 10−5 5.070 × 10−3

Linear regression 2.130 × 10−3 0.653 2.296 × 10−5 4.680 × 10−3

Decision tree regression 2.110 × 10−3 0.651 2.305 × 10−5 4.800 × 10−3

XGBoost 1.200 × 10−4 1.000 2.477 × 10−8 1.600 × 10−4
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First, based on simulation techniques, a calculation method for
stochastic load flow is proposed, which can then provide the
necessary indices for static security assessment considering
uncertainties.

Second, by integrating the outcomes derived from
stochastic load flow analyses, a comprehensive approach
to static security assessments is adopted, focusing on two
primary factors: the potential for branch overloading and the
adherence to node voltage limits, evaluated specifically for each
branch and node. The system indices are weighted considering
both subjective and objective perspectives, and the safety
assessment indices for new energy systems are
ultimately obtained.

Third, for acceleration, the article utilizes data from various
fault scenarios to create samples that are suitable for data-driven
models, capturing the system’s stochastic load flow and voltage
amplitude under both normal and fault conditions. An
XGBoost-based data-driven model was developed using this
dataset, specifically for safety assessment in new energy
power systems. The XGBoost showed strong predictive
accuracy in assessing the safety of these power systems in
case studies.

The article effectively evaluates system safety under the
influence of randomness, providing theoretical support and
technical guidance for the stable operation of renewable
power systems.
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