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The integration of stochastic and intermittent distributed PVs brings great
challenges for power system operation. Precise net load forecasting performs
a critical factor in dependable operation and dispensing. An approach to
probabilistic net load prediction is introduced for sparse variant Gaussian
process based algorithms. The forecasting of the net load is transferred to a
regression problem and solved by the sparse variational Gaussian process (SVPG)
method to provide uncertainty quantification results. The proposed method can
capture the uncertainties caused by the customer and PVs and provide effective
inductive reasoning. The results obtained using real-world data show that the
proposed method outperforms other best-of-breed algorithms.
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1 Introduction

Distributed generation such as photovoltaic (PV) has become an important component
with the increasing demand for low-carbon power systems (Zhu et al., 2023). In addition,
electric vehicles are becoming increasingly popular around the world due to their clean and
economic properties (Cao et al., 2020a; Dhawale et al., 2024). The adjustability of EV power
enables them to be the focus of research in load management. However, the intermittent
nature of PVs and the uncertainty of the commuting and charging behaviors of EV bring
more uncertainties to both the generation and demand sides, which pose great challenges
for a reliable and safe operation of power systems (Cao et al., 2020b; Xiong et al., 2021).

Accurate load forecasting contributes to the reliability and security of smart grid
performance. (Zhao et al., 2023; Zulfiqar et al., 2023; Zhao et al., 2024). Conventional load
forecasting researches focus on forecasting the aggregate load demand in a given area based
on historical load demand data, weather and geographic information, which can be divided
into two subcategories: point forecasting methods and probabilistic methods. Various point
forecasting methods have been proposed. A short-term loading prediction model based on
multivariate linear regression is presented in Saber and Alam, (2017). In the face of
complicated nonlinear systems, multivariate linear regression approaches possibly fail to
provide high-precision forecasting results. An autonomy regressive integrative moving
averaging (ARIMA)-based intradaily load predicting model is introduced (Cao et al., 2015).
The principle of the ARIMA method is to build a model by using the historical load data
sampled in the previous period. The primal loading is considered as a stochastic variation of
the model, and the variation procedure of those primal loads is derived from the statistical
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laws (Taieb et al., 2016). However, the ARIMAmethod does not deal
well with time-series data with high randomness and non-stationary
features. Neural network (NN)-based approaches have been
extensively employed in the literature for load prediction in
recent years for the power of their nonlinear matching capacity.
A load forecasting method combining the backpropagation NN
(BPNN) and radial basis function NN is proposed for day-ahead
load prediction. Xu et al. (2018) proposes a NN based load
forecasting model and adopts an enhanced Levenberg-Marquardt
method for training the NN. The NNs utilized in the
aforementioned studies are fully-connected, which ignores the
temporal correlation between input data that contains valuable
information. Recurrent NN is a kind of network structure that
has the ability of memory. It considers both the current input and
what it learned previously when utilized for prediction. Various
RNNs have been proposed, such as long-short term memory
(LSTM), just-another net (Gao et al., 2018), and gated recurrent
unit. Among them, LSTM is the most widely used. An LSTM-based
short-term residential load forecasting method is proposed. An
ensemble load forecasting method based on LSTM is developed
in (Tan et al., 2020). Simulation tests demonstrate that the proposed
method can achieve state-of-the-art performance on open datasets.
In addition to the methods mentioned above, extreme learning
machines (Li et al., 2023) and k-nearest neighbor methods (Prasad
et al., 2023) are also employed to forecast loads and obtain
gratifying outcomes.

Those approaches are point predictions where only one value is
supplied at each step. However, due to increasing penetration of
renewable energy sources and competitive markets, point
forecasting approaches are becoming obsolescent and
probabilistic prediction approaches are growing in necessity for
system operators. Probabilistic prediction approaches allow
quantification of indeterminacy through interaction intervals,
quantity, or probability density functions, enabling applications
in unit commitment, dependability programming, and
competitive tendering in the electricity market. The various
probabilistic prediction approaches presented can be classified
into two types (Feng et al., 2020): one-step approaches (He et al.,
2016; Zhang et al., 2019) and two-step approaches (Xie and Hong,
2018; Wang et al., 2019).

While there are extensive researches on load prediction, there
are very rarely researches on the prediction of net load, which is
defined as the discrepancy between electricity consumption and
power generation. The reliability and security of smart grid
operations can be increased by accurately predicting net loads.
However, net load forecasting is fraught with substantially more
challenges than conventional load forecasting due to the
intermittency and stochastic character of renewable energy. Over
the past several years, a couple of researches have concentrated on
the prediction of net loads. (Liu et al., 2014; Kaur et al., 2016; Sepasi
et al., 2017; Wang et al., 2018; Sun et al., 2020). Liu et al. (2014)
presents a BPNN-based point prediction approach for net loads. The
performance comparison between the combined net load predicting
model and the additive model is provided in Kaur et al. (2016). A
complex-valued NN-based net load prediction model is proposed in
Sepasi et al. (2017). The above studies belong to the deterministic net
load forecasting methods, which cannot capture the multiple
uncertainties caused by the behind-meter PV and load demand.

Probabilistic forecasting methodsWang et al. (2018) are proposed to
quantify the uncertainties. The work (Sun et al., 2020) presents a
Probability forecasting model which is supported by Bayesian
theoretic and LSTM. Experimental findings indicate that excellent
properties can be obtained with both determination and probability
Metrics. Although LSTM alleviates the gradient explosion problem
via the introduction of the gate mechanism, it cannot calculate in
parallel, which unusually leads to a long calculation time.

Sparse Gaussian processes (SGP) fit complex non-linear
relationships using flexible probabilistic models to accurately
predict future data. In this context, an algorithm of sparsely
variant Gaussian process based probabilistic net load forecasting
model is introduced. The forecasting of load demand is cast to a
regression problem and the sparse variational Gaussian process
(SVPG) (Hu et al., 2024) method is applied to estimate the
prediction values as well as to provide the uncertainty
quantification. Comparative tests using real field data among
various point and probabilistic forecasting methods illustrate the
superior performance of the proposed method in terms of both
deterministic and probabilistic results. The main contributions are
as follows:

1) A prediction model based on a sparse variational Gaussian
process is constructed;

2) The proposed SVGP model accurately captures load
uncertainty;

3) The proposed SVGP model gives excellent performance in
both point load prediction and probabilistic prediction.

The rest of the paper is formulated as follows: the problem
formulation and proposed method are given in Section Ⅱ, followed
by simulation results in Section Ⅲ. Section Ⅳ concludes this paper.

2 Proposed methodology

In this section, the probabilistic load predicting issue is firstly
presented, followed by detailed information on the Gaussian process
regression method and the SVPG regression method. Finally, the
details of the training procedure are provided.

2.1 Formulation of the probabilistic load
predicting issue

In power systems, the net load data captured by intelligent
meters is typically considered as a time series Pi,t{ }. To anticipate the
prospect Pi,t, the training dataset was constructed by obtaining
historically net load data and other parameters (e.g., meteorological
data and time indices). Specifically, the dataset was consisted of the
following output variables yt, which denotes the projections of
future net loads, and the input variables xt that is a collection of
variables associated with Pi,t. The aim of net load predicting is to
learn the mapping relationship yt � f(xt) depending on the trained
set T � {(xt, yt), t � 1, 2, . . . , n, where n indicates the amount of
examples in the trained set. Direct evaluation of the function f(·)
produces a definitive net load prediction. Nevertheless, historic data
on net load includes uncertainty on the generating side and the
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demanding side, where determination prediction results could be
subject to larger prediction errors. To this end, a Bayesian theory-
based prediction approach is introduced in this paper, that allows
the estimation of the distribution of the function f(·) to improve the
capability of capturing the unpredictability of the net load and to
produce probabilistic prediction results. The details of the proposed
method are given below.

2.2 Gaussian process regression

Assuming that (X,Y) and (Xp, Yp) indicate the training and test
sets, where X ∈ RN×Q and Y ∈ RN×1 are the inputs and outputs of
the trained sets; Xp ∈ RNp×Q and Yp ∈ RNp×1 are the inputs and
outputs of the test sets. So that can derive (1) and (2)

Y � f X( ) + ε (1)
Yp � f Xp( ) + ε (2)

where ε ~ N(0, σ2n) represents Gaussian white noise; f(·) denotes a
Gaussian process matching from inputs to outputs (3):

f x( ) � GP m x( ), K x, x′( )( ) (3)
where x, x′ ∈ X;m(·) denotes the average value function, which can
typically be regarded as 0 when little a priori information is available;
K(·) represents the covariance function as (4), of which the most
frequently employed is the radial basis function (RBF):

k x, x′( ) � σ2 exp − x − x′( )2/2( ) (4)

Then the prior distribution of y can be acquired as (5):

y ~ N 0, K X,X( ) + σ2
nIn( ) (5)

and Joint distributed of observations y and forecast value fp can be
obtained as (6)

y
fp
[ ] ~ N 0,

K X,X( ) + σ2nIn K X, xp( )
K xp, X( ) K xp, xp( )[ ]( ) (6)

The posterior distribution of the forecast values will then be
represented as fp which can be described as (7–9)

fp

∣∣∣∣X, y, xp ~ N �fp, cov fp( )( ) (7)
where

fp � K xp, X( ) K X,X( ) + σ2nIn( )−1y (8)
cov fp( ) � K xp, xp( ) −K xp, X( ) × K X,X( ) + σ2nIn( )−1K X, xp( )

(9)
If we can obtain all the hyper-parameter Θ, which contains the

parameters σn in Gaussian white noise ε and the parameters σ in
kernel function K(·), The mean and variance of the testing sites are
obtained based on (8) and (9), respectively. Generally, the most used
method to obtain hyper-parameters of GPR is a maximum
likelihood estimate based on a gradient that makes the negative
logarithm marginal likelihood  � − logp(Y|X) maximum:

∂
∂Θ � −∂ logp Y|X,Θ( )

∂Θ (10)

Θ̂ � argmax
Θ

− logp Y|X,Θ( )( ) (11)

The hyper-parameters are updated based on gradient according
to (10) until finding the optimal in (11). Where there is a drawback
that the complexity of this training process is O(N3), which means it
will take a lot of time to train the model and it is not suitable for the
scenario in which the data is large.

2.3 Sparse variational Gaussian process
regression

To solve the problem above, a useful method called sparse
Gaussian process regression (SGPR) is proposed. SGPR can reduce
the complexity of the training process to O(NM2) (M << N) by
introducing M auxiliary inputs Z∈RM×Q and the corresponding
outputs u∈RM×1 to approximate the original N-dimensional
Gaussian process. And the joint density of y, f and u is:

p y, f, u( ) � p f, u;X,Z( )︸�����︷︷�����︸
GPprior

p y
∣∣∣∣f( )︸���︷︷���︸

likelihood
(12)

In (12) the joint density is factorized into GP prior and
likelihood where the likelihood can be expressed as (13):

p y
∣∣∣∣f( ) � N y

∣∣∣∣f, σ2nIn( ) (13)

and GP prior can be factorized into the prior p(u|Z) and conditional
p(f |u; X, Z) (14):

p f, u;X,Z( ) � p u|Z( )︸���︷︷���︸
prior

p f
∣∣∣∣u;X,Z( )︸�����︷︷�����︸

conditional
(14)

and the prior and conditional parts can be expressed as (15, 16):

p u;Z( ) � N u 0,| K Z,Z( )( ) (15)
p f

∣∣∣∣u;X,Z( ) � N f
∣∣∣∣KnmK

−1
mmu, Knn −KnmK

−1
mmKmn( ) (16)

where Knn, Knm, Kmn and Kmm represent K(X,X), K(X,Z), K(Z,X)
and K(Z,Z), respectively.

An approximate posterior q(f,u) = p(f|u)q(u) is introduced to
replace the true posterior p(f,u), where q(u) = N(µ,Σ). Variational
inference seeks the variational posterior by minimizing the Kullback-
Leibler divergence between variational posterior q and true posterior p,
where a lower Kullback-Leibler divergence represents a closer
similarity between two distributions. Equivalently, we can maximize
the evidence lower bound (ELBO) to seek the variational posterior:

LSGPR � logp y( )≥Eq f,u( ) log
p y, f, u( )
q u, f( ) (17)

where p(y, f, u) is expressed in (12) and q(u, f) is the variational
posterior. And the ELBO can be simplified from (17) as (18):

LSGPR ≥ Eq f,u( ) logp y
∣∣∣∣f( )[ ] − KL q u, f( )����p u, f( )( ) (18)

where the latter part can be expressed as (19):

KL q u, f( ) p u, f( )) � KL(q u( )p f
∣∣∣∣u( )����� �����p u( )p f

∣∣∣∣u( )( )
� KL q u( )����p u( )( ) (19)
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So, the ELBO can be simplified as (20):

LSGPR ≥ Eq f( ) logp y
∣∣∣∣f( ) −KL q u( )����p u( )( ) (20)

The Gaussian marginal likelihood q(f) can be expressed as (21):

q f( ) � ∫p f
∣∣∣∣u( )q u( )du � N f

∣∣∣∣μ′,Σ′( ) (21)

where p(f |u) is expressed in (20) and q(u) = N(µ,Σ), so the µ’ and Σ′
be calculated as (22, 23):

μ′ � KnmK
−1
mmu (22)

Σ′ � Knn +KnmK
−1
mm Σ −Kmm( )K−1

mmKmn (23)

All parts in (20) are known, so we can calculate the ELBO and
then obtain all the hyper-parameters by maximizing the ELBO.
Besides the model hyper-parameter Θ which is the same as that in
GPR, there is another kind of parameters called variational
parameters θ, which contain the mean µ and variance Σ of
variational posterior q(u) and the auxiliary inputs Z. All the
hyper-parameters can be expressed as (24, 25):

Θ � σn, σ{ } (24)
θ � μ{ }Mm�1, Σ{ }Mm�1, Z{ } (25)

After obtaining both the model and variational parameters, we
can predict the new points via as (26).

q f*( ) � ∫p f* | u( )q u( )du (26)

where q(f *) is the distribution of new points.
The detailed training and testing procedure of the proposed

algorithm is shown in Algorithm 1.

Require: train data-set: Tr=(X,Y); test data-

set: Te=(X*,Y*)

Require: model parameters: Θ; variational parameters:

θ; training iterations: T; amount of sparse point: m

1: procedure Train(Tr, Θ, θ, T)

2: Initialize all parameters

3: for epoch t = 1,2, . . . T do

4: obtain the variational posterior q(u)

according to the variational parameters µ

and Σ
5: obtain the conditional p(f |u;X,Z)

according to (16)

6: obtain the marginal q(f) according to (21)

7: obtain the ELBO LSGPR according to (20)

8: update model parameters: θ ← θ − ∇θLSGPR

9: update variational parameters:

Θ ← Θ − ∇ΘLSGPR

10: end

11: end procedure

12: procedure Test(Te, Θ,θ)
13: obtain marginal q(f*) of test point

according to (26)

14: end procedure

Algorithm 1. Details of the training and test procedure.

3 Case study

3.1 Data description

Comparative numerical testing is performed with authentic on-
site smart meter data. These data have been measured on the
Ausgrid distribution network which contains load demand and
photovoltaic (PV) generation data from 300 residential
households (Ausgrid 2014, 2015). The time period for recording
values is 0.5 h. The purpose of this research is to provide a
probabilistic prediction of the net load, which is derived by
adding the differential of each consumer’s load demand and PV
production. The reader is directed to Ausgrid 2014, 2015 for
additional details about the dataset.

Since the dataset contains some low-quality data (Ratnam
et al., 2017), we delete some original data for better illustration
and fair comparison. The data are divided into the training
samples and test samples, which contain 11,739 and 480 pairs
of data, respectively. The training samples have been applied to
train the predictive models while the testing samples have been
performed to estimate the performance of the different models.
The net load of the training and testing sets are shown in Figures
1, 2, respectively. The characteristics picked comprise the below
variables: 1) the time index, which includes messages for hour of
the day, day of the week, and month of the year. A single coding
technique is employed in this research to encode the time
message; 2) the historical load demand data, which include
load data from the previous 2 days with the same time-steps;
3) the historical PV generation data, which contain data on PV
generation at the same point in time for the last 3 days and 1 week
ago on the same day.

3.2 Experimental setup

Comparative tests among a series of load forecasting methods
are carried out to access the performance of the proposed
approach. Comparison methods fall into two categories: point
prediction approaches and probabilistic approaches. The point
prediction approaches involve: 1) multiple linear regression
(MLR); 2) support vector regression (SVR), where RBF is
specified to be the kernel function with hyper parameters
adjusted following the grid search approach.; 3) back-
propagation neural network (BPNN), where a three-layer
model is built. The numbers of the hidden layers are 64, 64,
and 32, respectively; 4) LSTM method, where a model with two
hidden layer is built. The hidden nodes of the two hidden layer
are set to 30 and 30, respectively. For the probabilistic forecasting
method, quantile regression (QR) is selected as the
benchmark method.

3.3 Evaluation metrics

In order to assess the performance of various approaches for
point prediction results, three extensively adopted deterministic
prediction assessment metrics and two probabilistic prediction
metrics are adopted in this research.
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3.3.1 Metrics for deterministic prediction
Three point forecasting metrics are utilized, that are, mean

absolute error (MAE), root mean square error (RMSE), and
mean absolute percentage error (MAPE) which present as (27–29):

MAE � 1
N
∑N
i�1

y
�
i − yi

∣∣∣∣ ∣∣∣∣ (27)

RMSE �

������������
1
N
∑N
i�1

y
�
i − yi( )2√√

(28)

MAPE � 100% ×
1
N
∑N
i�1

y
�
i − yi

∣∣∣∣ ∣∣∣∣
yi

(29)

where yi and y
�
i represent the real value and projected f value of

the ith sample; N denotes the sampling size in the test set.

3.3.2 Metrics for probabilistic prediction
Two probabilistic prediction metrics are employed in this study,

that is, Pinball loss and PINAW. The most commonly used metrics
for evaluating probability forecasting results are reliability,
sharpness and resolution. Pinball is a comprehensive metric
which allows for the assessment of the aforementioned metrics,
where the definition of the metrics is (30):

Pinball � 1 − q( ) y
�
i,q − yi( ), yi <y�i,q

q yi − y
�
i,q( ), yi ≥y

�
i,q

⎧⎨⎩ (30)

FIGURE 1
Net load of the training set.

FIGURE 2
Net load of the test set.
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where q (q � 0.01, 0.02, ..., 0.99) denotes order of magnitude and
y
�
i,q indicates the forecast value of the qth quantitative value. A lower

Pinball value indicates a better prediction performance.
PINAW is a measurement of the prediction horizon width

which is determined as (31):

PINAW � 1
NpD

∑N
i�1

Uα
i − Lα

i( ) (31)

where Uα
i and L

α
i represent the upper bound and lower bound of the

forecasting interval when the confidence level is set to α. A lower
PINAW value indicates a narrower forecasting interval and a better
performance.

3.4 Point forecasting results

To illustrate the superiority of the proposed model, several
approaches will be employed in this section for comparison. The
MAE, MAPE and RMSE of each prediction approach are displayed
in Table 1. The results of QR are forecasting values when the
quantile is set to 50%. The units of MAE and RMSE are kW and
of MAPE is PU. The best performance cases of each metrics are
shown in bold. That when the proposed method is utilized, its
performance outperforms that of the LR method by 24.7%, 24.4%,

FIGURE 3
Point prediction results for different approaches.

FIGURE 4
Prediction results for different approaches at the curve peak in Figure 3.

TABLE 1 Point forecasting results of different forecasting models.

Method MAE MAPE (%) RMSE

LR 17.0 13.5 22.5

SVR 13.9 10.5 19.0

BPNN 14.9 12.2 20.9

LSTM 14.5 11.8 19.2

QR 14.2 12.1 18.4

Proposed 12.8 10.2 17.4
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and 22.7% in MAE, MAPE, and RMSE, respectively. The BPNN
achieves better performance than the LR method owing to its strong
nonlinear approximation capability. However, since BPNN ignores

the temporal relationship between the input data, the performance
of BPNN is worse than the proposed approach. LSTM has high
computational complexity and requires a large amount of training
data. SVR requires a high time during the training process and
cannot handle the linear problem perfectly The performance of the
proposed approach also outperforms that obtained by a kernel based
SVR method and a recurrent NN based LSTM method, and
demonstrating its effectiveness.

For analyzing the performing of the proposed model
additionally, the prediction results for different approaches for
100–200 instants in the test set are displayed in Figure 3. The
proposed approach is the one that comes nearest to the real load
values, which demonstrates the supremacy of the proposed
approach. The predicted results for each approach at peak values,
which are more difficult to predict, are shown in Figure 4. It can be
observed from the figure that the peak value is difficult to predict for
all methods owing to the high uncertainty. The deviation between
the real net load and the value forecasted by the LR method is even

FIGURE 5
Forecasting intervals of different methods. (A) QR. (B) proposed method.

TABLE 2 Probabilistic forecasting results of different methods.

Method Pinball PINAW (%)

QR 5.12 30.14

Proposed 5.03 24.59

TABLE 3 The PINAW achieved by various methods under different
confidence levels.

Method 90 (%) 80 (%) 70 (%) 60 (%)

QR 30.14 24.76 18.55 14.72

Proposed 24.59 19.31 15.74 12.83
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larger than 10% of the real value. The BPNN tends to over-predict
the peak value and has large fluctuations. The SVR and LSTM also
fail to provide accurate forecasting values at the peak of the curve.
The predicted values derived from the presented methodology
appear to be the closest to the actual values, demonstrating the
excellence of the proposed methodology.

The PINAW is a metric to evaluate the width of the forecasting
interval. That the PINAW achieved by the proposed method is
18.4% lower than that of the QR method, demonstrating that the
proposed method can achieve a better performance with narrower
forecasting interval.

To further evaluate the uncertainty quantification capability of
various methods, the PINAW obtained by different methods under
different quantiles are listed in Table 3. It can be observed from the
table that the width of the forecasting interval increases when we
gradually improve the confidence level. However, the forecasting
intervals obtained by the proposedmethod are always narrower than
that of the QR method. The PINAW of the proposed method is
12.8%, 15.1%, 22.0%, and 18.4% lower than that of the QR method
when the quantile is set to 60%, 70%, 80%, and 90%, respectively.
This further illustrates the strength of the proposed model.

The predicted intervals for 100–200 instants in the test set for the
various approaches are shown in Figure 5 when the quantile is
configured as 70%, 80%, 90%, 95%, separately. It can be observed
from Figure 5A that the physical net loads for some valley values fall
outside the 95% credibility intervals of the QR approach, while the
prediction intervals of the proposed approach will be capable of
covering majority of the prediction intervals, demonstrating a higher
reliability of the proposed method. Visually inspecting the
probabilistic results of the two methods, the width of the
proposed model is narrower than the QR approach under
various quantile settings. This is consistent with the results
shown in Table 2, 3, illustrating a better sharpness of the
proposed method. From the perspective of the resolution, the
width of the forecasting interval should be different at different
periods of the curve. The forecasting interval is narrow at the rising
and falling stage of the curve, while the width is large at the peak and
valley of the curve. Since the value of the net load at the curve valley
is mainly decided by the PV generation, which has larger uncertainty
than the load demand, the width of the interval is the largest at the
curve valley. This can be observed from both figures. However, the
presented approach catches the uncertainty at the peak curve with a
narrower interval, illustrating its effectiveness.

The prediction from various approaches at different stages of the
load profile is shown in Figure 6 for deeper validation of the
capability of the proposed approach. The forecasting results of
different methods at the rising and falling period of the load
curve are shown in Figures 6A,B. The forecasting values of
various methods are not far from the actual net load at the
falling stage. In addition, the density curve of the proposed
method is relatively steep, demonstrating that the uncertainty
level is low at the falling stage of the curve. The forecasting
results of different methods at the curve peak are shown in
Figure 6C. All the methods tend to underestimate the net load.
The predicted values of QR and the proposed approach in the test set
are more similar to the actual values as compared to the other
methods. The proposed methodology quantifies the unpredictability
of the net load, which provides informative implications for the
system operator’s planning. Visually inspecting the forecasting
results at curve valley in Figure 6D, all methods tend to
overestimate the net load. By contrast, the presented approach
catches the uncertainty caused by the PV generation, which is
curial for the operation of power systems.

4 Conclusion

This paper proposes a probabilistic prediction model for the
prediction of net load based on a SVPG regression algorithm.

FIGURE 6
Forecasting results at different periods of the load curve. (A)
Forecasting results at the rising stage of the curve. (B) Forecasting
results at the falling stage of the curve. (C) Forecasting results at the
curve peak. (D) Forecasting results at the curve valley.
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Comparative tests with several point forecasting and probabilistic
forecasting methods utilizing real-world historical data illustrate
that: 1) the proposed model can achieve better point forecasting
results than benchmarking methods. The performance achieved by
the proposed approach can at most outperform that of other
methods by 21.8%, 20.0%, and 19.6% in MAE, MAPE, and
RMSE, respectively; 2) the proposed approach has better
uncertainty quantification capability compared to the baseline
methodology. It is more reliable and its PINAW value is 22.0%
lower than the benchmark method at most. In our future research,
how to obtain predictions quickly and accurately becomes the focus
of the study.
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