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Energy system optimization is needed for optimal sustainable net-zero electricity
(NZE) mix even at regional/local scales because of the energy storage needs for
addressing the intermittency of renewable energy supply. This study presents a
novel regional/local energy planning model for optimum sustainable NZE mix
under spatiotemporal climate/meteorological and electrical load demand
constraints. A generic robust non-linear constrained mathematical
programming (NLP) algorithm has been developed for energy system
optimization; it minimizes the levelized cost and greenhouse gas emissions
while maximizing reliability against stored energy discharge analysis (RADA).
Reliability, defined as the ratio of excess stored renewable power discharge to
unmet load demand, is ameasure of the extent of unmet load demandmet by the
excess stored renewable power. Coupled with the NLP, the RADA and energy
storage evaluations are used to determine the seasonal energy storage (SES)
conditions and realistic renewable proportions for NZE. The significance of the
proposed framework lies in determining the maximum hours of viable electrical
energy storage beyond which the reliability enhancement is infinitesimal. The
significant observations of this work include 96 h of maximum viable electrical
energy storage beyond which the reliability enhancement is infinitesimal. While
this observation is robust based on previous reports for the case of the
United States, a realistic NZE mix for Southern United Kingdom is obtained as
follows. Direct wind and solar sources can meet 63%, 62%, and 55% of the
electricity demands in the southwest, Greater London, and southeast regions of
the United Kingdom, respectively; further, battery energy storage systems can
increase the renewable proportions by 21%, 22%, and 13% in these three regions.
The unmet demands can be met by renewable electricity through SES.
Compressed air energy storage (CAES) and pumped hydro storage offer viable
SES. Following these, natural gas with carbon capture and storage (CCS),
bioenergy, and hydrogen SES are the choices based on increasing cost per
lifecycle climate impact potential to meet the electricity demands.
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1 Introduction

The complex intrinsic interactive nature of a net-zero electricity
(NZE) system considering renewable, bioenergy, and carbon capture
and storage (CCS) as well as energy storage (hourly and seasonal)
and transmission systems entails whole-system optimization of the
distributed/centralized design choices based on a myriad of options.
Such optimization problems are pervasive in whole-energy and
power systems, energy storage design, scheduling, control
strategies, climate data analyses for geophysical constraints on
wind and solar power reliability, behavior change interventions
for demand-side management, and low-carbon NZE for local/
regional to national and planetary scales. Interconnecting these
problems through optimization for robust long-term sustainable
design is a complex and high-dimensional post-COP26 challenge.

Directly dispatchable wind and solar power generation systems
have the least lifecycle greenhouse gas emissions (GHGs), making
them leading choices for NZE systems (Sadhukhan, 2021). Their
lower costs compared to other renewable options, hydropower and
geothermal sources, carbon-neutral bioenergy, natural gas
combined cycle or power plants with CCS (gas with CCS), and
nuclear power mark them as minimal-cost choices for NZE systems
(Bogdanov et al., 2019; Bogdanov et al., 2021). Further, solar and
wind power costs are expected to decline at staggering rates than
other renewable and low-carbon energy options owing to their
learning curve effects. Most studies on power or energy system
analyses suggest high wind and solar proportions in the NZE mix
(Lund and Vad Mathiesen, 2009; Lu et al., 2021). NZE requires
carbonless fossil-independent renewable energy generation systems.
Hence, wind and solar power generation hold considerable
proportions in the NZE mix despite their interannual variabilities
(Perez-Arriaga and Batlle, 2012; Zhou et al., 2018).

Realistic models with geophysical constraints influencing the
availability of wind speed and solar radiation underscore the need
for several weeks’ worth of energy storage (Shaner et al., 2018;
Houssainy and Livingood, 2021; Sadhukhan et al., 2022). Pumped
hydro storage (PHS), compressed air energy storage (CAES), and
hydrogen energy storage (HES) systems constitute the seasonal
energy storage (SES) category. GHGs accounting for battery
energy storage systems (BESSs) (Sadhukhan and Christensen,
2021) are aligned with economic observations compelling readily
available dispatchable power options that are more attractive than
extra wind and solar capacities with energy storage (Bogdanov et al.,
2019; Bogdanov et al., 2021). Therefore, robust energy storage
evaluations are essential for local and regional authorities
planning to deploy wind and solar power heavily for NZE to
avoid unintended costs or GHG consequences. Technology-
driven studies have considered state-of-the-art options that
provide a few hours of battery energy storage (Yao et al., 2011;
Al-Ghussain et al., 2018), while climate-driven studies have
suggested several weeks of energy storage requirements as the
direction for future developments (Lund and Vad Mathiesen,
2009; Shaner et al., 2018; Bakhtvar et al., 2021). When the stored
electricity dispatch time exceeds a few hours to a few weeks, seasonal
storage is required in the form of CAES, PHS, and HES. After a few
hours of battery energy storage, the unmet load is often met by
carbon-efficient dispatchable power, bioenergy, and gas with CCS
rather than renewable SES because of the higher cost implications of

the SES options (Denholm and Margolis, 2007; Yousif et al., 2019;
Dowling et al., 2020). However, the sequence in which the various
energy storage systems should be deployed to enhance NZE should
be governed by a holistic systemic-optimization-based analysis,
which is not available in existing works (Denholm and Margolis,
2007; Yousif et al., 2019; Dowling et al., 2020).

Holistic, systemic, and systematic optimization-based analyses
are required to objectively inform not only the least-cost but also
minimum-GHG NZE mix. Some of the research questions in the
planning model for the NZE that remain unresolved are as follows:
1) Is it practical to meet all electricity demands through renewable
self-generation, especially wind and solar types, with minimal cost
and GHG that may need seasonal storage? 2) What is the optimal
energy storage duration for maximum reliability, which is the extent
of excess renewable power utilization in meeting the unmet load
demand, beyond which the increases in reliability are infinitesimally
small? These questions underscore the need for a powerful robust
whole-system optimization-based framework for multiscale energy
system planning, which defines the aims of this study. Hence, this
study provides a novel framework for optimal energy storage choices
and duration for maximum-reliability renewable NZE.

There are a few available optimization models for energy system
planning targeted to achieve large-scale NZE. The principal
methodologies include linear constrained optimization studies
(Dorfner, 2016; Brown et al., 2018) and statistical analyses
(Shaner et al., 2018; Tong et al., 2021) that evaluate the
minimum-cost electricity mix from local (Weber and Shah, 2011;
Gil et al., 2021) to national or regional (Brouwer et al., 2016;
Zeyringer et al., 2018) to global (Tong et al., 2021) scales. These
approaches span annual (Sameti and Haghighat, 2018) to multiyear
(Zhang, 2014) and multidecade (Shaner et al., 2018) considerations,
with resolutions of a few minutes (Zhang, 2014; Safaei and Keith,
2015) to hourly (Monforti et al., 2014). A few studies explicitly
consider energy storage conditions when defining the optimization
constraints (Khalid et al., 2016; Watson et al., 2017; Anoune et al.,
2018; Mazzeo et al., 2018). Energy system planning models using
deterministic mathematical programming, particularly linear or
mixed-integer linear programming, optimize the quantities of
interest, installed capacities of the system components
(Aboumahboub et al., 2010; Prebeg et al., 2016), energy mixes
(Weijermars et al., 2012; Augutis et al., 2015; Thangavelu et al.,
2015; Wierzbowski et al., 2016; Nirbheram et al., 2023), wind and
solar penetrations in the energy mix (Franco and Salza, 2011;
Nikolakakis and Fthenakis, 2011; Zappa and van den Broek,
2018; Ullah et al., 2021), storage system characterizations
(Terlouw et al., 2019; Rahbari et al., 2021), meteorological data
analyses (Firatoglu and Yesilata, 2004; Jane et al., 2020), as well as
supply-side and demand-side managements (Atzeni et al., 2012; Tan
et al., 2016).

On the contrary, power systems engineering with lower
dimensionality at the distributed/mini-grid scale tends to use
stochastic optimization methods (Niaei et al., 2022; Sadeghi et al.,
2022). Another review based on 550 articles on solar and wind
electricity systems reported that the most frequently used
optimization algorithms were the particle swarm optimization
and genetic algorithms (Mazzeo et al., 2021a). Moreover, artificial
neural networks are trending in the application of artificial
intelligence for sizing and simulating energy systems, including
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energy storage (Mazzeo et al., 2021b). However, it is noted that the
high-dimensional optimization model presented in this article is
meant for large-scale energy planning (national or regional level),
where stochastic optimization has not been applied yet. A handful of
studies are also available on the detailed evaluations of energy
storage options (Razmi and Janbaz, 2020; Alirahmi et al., 2021;
Li et al., 2023). Such detailed models are not needed in large-scale
high-level planning. Although the methodological framework
presented herein is generic and includes further storage options,
such as thermal energy storage, the case study only includes BESS
with CAES, PHS, and HES as the SES options to enhance the
proportion of renewable electricity in the mix.

The optimization formulations for large-scale high-dimensional
energy system planning for NZE comprise constraints such as the
mathematical models of the components, bounds on their capacities,
climatological and demand time series, and objective functions to
minimize the total costs (Bogdanov et al., 2021; Sadhukhan et al.,
2022). A significant constraint in the optimization model
formulation is the energy balance at the time resolution. The
smaller the time resolution step (e.g., hourly) and longer the total
duration of the supply–demand time series (e.g., multidecade)
considered during optimization, the less likely it is to achieve
convergence and a robust reproducible solution. To overcome
these obstacles, large-scale high-dimensional energy system
planning optimization algorithms often consider linear and
mixed-integer linear programming (Bogdanov et al., 2021). Our
earlier work involved non-linear constrained mathematical
programming (NLP) to optimize the NZE system (Sadhukhan
et al., 2022); however, this work only considered BESSs for
energy storage. The present work is a pioneering effort at
incorporating SES in an NLP-based optimization analysis for a
large-scale high-dimensional energy system planning model.
Herein, a novel approach coupling NLP, reliability against stored
energy discharge analysis (RADA), and energy storage evaluations is
developed to maximize the renewables in the NZEmix for minimum
cost and GHG emissions under high-resolution spatiotemporal
climate meteorological and electrical load demand constraints.
The remainder of this paper is structured as follows. The
methodologies discuss the NLP, RADA, and energy storage
system models. Then, a case study focusing on an energy-
intensive region (South of the United Kingdom) is used to
demonstrate the efficacy of the framework. The results,
discussion, and conclusions of the study are provided thereafter.

2 Materials and methods

The NLP model minimizes the total cost accounting for all new
investment, variable, fixed, resource, GHG, upgrading, and
decommissioning costs (Sadhukhan et al., 2022). The
optimization problem can be defined as a multiobjective
optimization problem, with cost and GHG minimization as the
two objectives. However, the cost and GHGminimization objectives
are not in conflict with each other because the two primary
renewable technologies (wind and solar) are the cheapest and
minimal-GHG options among all plausible systems for NZE.
Considering the GHG cost in the optimization objective function
allows choosing the minimum-cost and minimum-GHG options as

the optimal solution. It is noted that GHG implies that the lifecycle
global warming potential is considered in terms of the carbon
dioxide equivalent of cradle-to-grave of each technological system
under consideration. The lifecycle stages of the technologies for the
lifecycle global warming potential, i.e., GHG in this work, include
the operation phases of the technologies. Consistent literature
sources have been used to collect the GHG impact data on the
technologies. For example, literature based on Ecoinvent as the
lifecycle inventory data source and IPCC methodology for the
lifecycle global warming potential impact calculations and
authoritative reports are considered as trusted sources. These
sources have a global consensus and no conflicts in the systemic
choices for the technological GHG impact calculations. The
optimization model thus remains valid even when the input data
are changed. The storage options are relevant for electrical energy
storage. The complete set of NLP model equations and
nomenclatures are shown in the Supplementary Material.
Figure 1 illustrates a whole-energy system planning model
comprising NLP interacting with RADA and energy storage
evaluations for a minimum-cost GHG and maximum-reliability
solution obtained from the weather (climatology) and demand
time series as well as technical, environmental, and economic
parameter inputs.

The multiscale mathematical models of bioenergy and
renewable energy systems (wind, solar, hydro, and geothermal)
from hourly weather and design configuration data are calibrated
across the temporal and spatial scales. The interdisciplinary data
platforms seek climatology, design configuration, technical, cost,
and environmental parameters along with the load demand
constraints as inputs. Models are developed for renewable
generation as well as supply chain logistics including storage,
bioenergy, and gas CCS systems. Mathematical programming is
used to calculate the optimal capacities for installing various
technologies for a given objective, e.g., minimum-cost GHG. The
multiobjective optimization technique offers Pareto solutions,
i.e., optimal proportions of technologies for the best tradeoffs
between the objectives. However, the cost and GHG
minimization objectives are aligned in the case of NZE. Thus, by
accounting for the GHG costs, the optimization problem can be
formulated and solved as a single-objective NLP to minimize the
overall cost.

The objective of this work is minimization of a complete NZE
system’s total cost over a given time scale, e.g., annual or decadal or
multidecadal. The total cost comprises the weighted average capital,
fixed, variable, resource, pollution including GHG, upgrading, and
decommissioning costs of the individual components in the entire
energy system within the given time scale. The cost parameters, such
as unit costs of the processes, can vary over time and across the
spatial scale. Such spatiotemporal variations in the parameters can
be captured via linear regression equations, leading to non-linear
equations. The capacity-factor-based wind and solar power
generations are also non-linear equations. These non-linear
correlation constraints make the optimization problem an NLP
consideration. The other constraints are the upper and lower
bounds of each unit capacity in the entire energy system and
energy balance equations at each of the lowest time resolutions.
Detailed equations and explanations are provided in the
Supplementary Material. Here, the wind and solar power
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generations as well s energy balance equations are discussed, which
influence the energy storage choices.

Wind and solar power generations are calculated from the
weather data at the individual smallest spatiotemporal resolutions
via their capacity factors. The capacity factors are defined as the
extents of installed power utilizations dependent on the availabilities
of wind speed and solar radiation (provided by climatology), as
shown in Eqs (1a, 1b, 2).

Ei,r,t � 0.5 × ρair × Areai,r,t × vr,t
3 × CFi,r,t i � wind turbine (1a)

CFi,r,t �
exp( − vcut−inr,t /sp( )q − exp( − vr,t/sp( )q[ ]

vcut−inr,t /sp( )q − vr,t/sp( )q[ ]
− exp( − vcut−outr,t /sp( )q[ ] (1b)

Here, Ei,r,t is the power output of a wind or solar system and is
calculated from the wind speed (vr,t) and solar radiation (sunr,t),
as shown in Eqs (1a, 1b, 2), respectively (Sadhukhan et al., 2022).
Eq. (1a) shows Ei,r,t of a wind turbine as a function of the density
of air (ρair), area swept by the turbine blades (Areai,r,t), wind
speed (vr,t), and capacity factor of the wind turbine (CFi,r,t). Eq.
(1b) is valid for a wind speed of 4–25 m/s and shows the
dependency of the capacity factor CFi,r,t on vr,t; here, vcut−inr,t ,
vcut−outr,t , sp, and q are the cut-in and cut-out speeds, scale
parameters, and shape parameters of the wind turbine,
respectively.

Ei,r,t � Areai,r,t × IRr,t × CFi,r,t i � solar system (2)

Equation (2) shows that Ei,r,t is the power output of the solar
system, which is the product of its area (Areai,r,t), solar radiation
(IRr,t), and capacity factor (CFi,r,t); here, CFi,r,t is scaled between
0.025 and 0.21 for the UK-based case study based on annual
variations over the past 5 years (Sadhukhan et al., 2022) to
represent the minimum solar radiation (IRr,t ) and maximum
solar radiation (IRr,t).

The energy supply comprises the energy stored in the previous
time step and energy generation by the operational processes in the

present time step (t) (right-hand side of Eq. (3a)). The energy
demand, transmission loss, and energy stored are added to
obtain the total energy output [left-hand side of Eq. 3a] to
balance the energy input at the given time step. Eq. (3b)
reinforces that the deficit between demand and supply over a
total time duration (TT) for a region must be less than a small
value, so a self-sustainable regional NZE system can be
obtained (t ∈ TT).

Dr,t +∑
iϵS

fnew
i,r,t + fex

i,r,t + fup
i,r,t( ) +∑

iϵL
Lossi,r,t

� ∑
iϵS

fnew
i,r,t−1 + fex

i,r,t−1 + fup
i,r,t−1( )

+∑
iϵP

xnew
i,r,t + xex

i,r,t + xup
i,r,t( ) × Δt∀r ∈ R ∀t ∈ T (3a)

∑T
t

Dr,t +∑
iϵL

Lossi,r,t⎛⎝ ⎞⎠ ≈ ∑T
t

∑
iϵP

xnew
i,r,t + xex

i,r,t + xup
i,r,t( ) ×Δt∀r ∈ R∀t ∈ TT

(3b)
Here,Dr,t is the demand of the region r ∈ R at time t ∈ T. In the case
of the United Kingdom, the nationally available demand data, Dr,t

has hourly time resolution; thus, Δt is 1 h and there would be
8,760 demand data instances per year (T � 8760). Lossi,r,t is the
transmission energy loss of i ∈ L (logistics) in region r ∈ R at time
t ∈ T. fnew

i,r,t , f
ex
i,r,t, andf

up
i,r,t are the energy capacities of new, existing,

and upgraded energy storage systems i ∈ S. xnew
i,r,t , x

ex
i,r,t, and x

up
i,r,t are

the power generations of the new, existing, and upgraded energy
systems i ∈ P.

The NLP model also has the cost correlations as well as upper
and lower limits of various units as constraints (Sadhukhan et al.,
2022). The NLP modeling equations along with the complete
nomenclature are shown in the Supplementary Material. The
solution of the NLP model is the minimal-cost GHG capacities
of the various units relevant to NZE. Equation (3a, 3b) is the most
crucial condition of optimization that determines the speed and
efficacy of the solution. Setting sufficiently high energy storage
capacities would result in fast solutions and balanced
supply–demand profiles. The analysis then focuses on wind and

FIGURE 1
The whole energy system planning model.
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solar generations along with the demand profiles and SES
evaluations, in accordance with the high proportions of wind and
solar generations achieved by the fast-converging NLP solution.

After the wind and solar power (or renewable) generation
profiles are obtained by solving the NLP, each of the smallest
time resolutions are analyzed to study their effects on directly
usable wind and solar power, stored and spilt renewable power,
surplus renewable power, and reliability. Reliability is the ratio of the
excess wind and solar (or renewable) power discharge to the unmet
load demand that indicates the extent of excess renewable power
utilization in meeting the unmet load demand. The RADA analyses
signify distinct stored energy dispatch time zones with reliability.
Thus, the meteorological and demand data uncover the feasible
stored energy discharge times. Figure 2 shows the logical flow of
RADA to balance the dispatchable energy supply and demand at the
smallest time step (t) across all time steps over the given duration
(TT). St and Dt are the wind plus solar power (or total renewable
including also hydro, geothermal, etc.) supply and electricity
demand vectors at various t, respectively. At each t, the supply is
compared with a future demand after a randomly chosen storage
time within a specified upper bound (0< Δt < ΔT); the energy
transfer (ΔEt,Δt) at t for a randomly chosen unique storage time (Δt)
is the supply (ΔEt,Δt � St) if the supply is less than the demand
(St <Dt+Δt) or demand (ΔEt,Δt � Dt+Δt) for vice versa (Dt+Δt ≤ St).
The supply and demand are updated for the next iteration as St � 0

andDt+Δt � St +Dt+Δt or St � St +Dt+Δt andDt+Δt � 0 (note that the
absolute values of the demands Dt are considered). The iterations
are carried out until all unique storage times Δt are exhausted,
i.e., 0 < Δt < ΔT. If Dt+Δt is already met, the next unique Δt is
selected until all Δt are exhausted for 0 < Δt < ΔT. The calculations
are performed for each time step t over the entire duration TT. Thus,
the output from the RADA algorithm in Figure 2 is a matrix ΔEt,Δt

with the energy transfer amounts and durations (Δt) at each t, ΔEt,Δt.
ΔEt,Δt is the reliability matrix for all t and Δt. The algorithm
rigorously extracts all potential reliability data to enable
comprehensive calculation of the required energy storage
duration. Furthermore, SES systems like the PHS, CAES, and
HES are evaluated for costs, GHG, and cost per unit GHG
savings for comparison against readily dispatchable carbon-
efficient power generation options via bioenergy and gas with
CCS to confirm the NZE choices and feasible energy
storage durations.

3 Renewable and bioenergy generation
and storage system analyses

The optimization framework (Figure 1) needs technical, cost,
and GHG data inputs in addition to the climate analysis data inputs.
This subsection shows the generic cost correlations, GHG, and

FIGURE 2
Reliability against stored energy discharge analysis (RADA) algorithm resulting in energy transfer or reliability measure at each of the smallest time
resolution steps and for all storage durations.
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technical performance indicators of the relevant renewable,
bioenergy, and storage systems. Figure 3 conceptually illustrates
the components and targets of the complete energy system
(Sadhukhan, 2022).

The complete net-zero energy system components are broadly
categorized into the Earth’s primary resources, conversion
technologies, storage and logistic systems as ewll as the end uses,
sustainability, and policy objectives. Wind, solar radiation, water,
and land are the alternative primary resources available on the Earth.
The most common NZE technologies include wind turbines, solar
photovoltaics (PVs), hydropower, geothermal, and bioenergy.
Biomass (waste or secondary carbon-based material resources) is
the only alternative carbon-efficient or carbon-neutral resource to
fossil resources. Thus, biomass can be the key feedstock for all
chemical and material manufacturing sectors as a displacement for
fossil resources. Biomass must be utilized in circular biorefinery or
bioeconomy configurations to provide all carbon-based products
and services to displace fossil resources. In this context, a circular
bioeconomy with carbon capture storage (BECCS) must be
included. Nuclear and gas with CCS are not shown as they are
not renewable options; however, they may feature in the NZE to
meet the deficiency. Energy storage is essential due to
intermittencies in the renewable supply; these comprise batteries

that offer only a few hours of storage, in addition to PHS, CAES, and
HES for SES. PHS stores excess available renewable electricity by
pumping water from a lower-level reservoir to a height in an upper-
level reservoir, transforming electrical energy to potential energy,
and generating electricity by releasing the water from the upper- to
lower-level reservoirs during electrical load demand times. CAES is
made up of a generator and compressor that use excess available
renewable electricity to compress air, storage of this compressed air
(underground or underwater), and a turbine and generator
expanding this compressed air to generate electricity during
times of peak electrical load demands. HES utilizes electrolyzers
to produce hydrogen from water using excess available renewable
electricity, storage of this hydrogen produced (gaseous or liquid),
and fuel cells to regenerate electricity using this hydrogen during
times of electrical load demands. The end-use objectives of NZE are
extensive, comprising heating/cooling, electricity production and
utilization, transportation, water/sanitation, food/health, and
biodiversity, in accordance with the United Nations Sustainable
Development Goals. The economic, environmental, and technical
performances of the critical systems are as follows.

Among the NZE generation options, solar and wind
technologies incur the lowest power generation costs and show
steep cost declines. The levelized costs of solar and wind electricity

FIGURE 3
Whole net-zero energy system conceptualization offering sustainability benefits (beyond energy).
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are expected to reduce from $82/MWh and $138/MWh in 2020 to
$36/MWh and $108/MWh by 2050, respectively (Bogdanov et al.,
2019; Bogdanov et al., 2021; Sadhukhan et al., 2022). Compared to
these costs, the levelized cost of hydropower remains flat at $346/
MWh (Bogdanov et al., 2019; Bogdanov et al., 2021; Sadhukhan
et al., 2022). The levelized costs of geothermal and bioenergy were
$512/MWh in 2020, which are expected to reduce to $396/MWh
and $406/MWh by 2050, respectively (Bogdanov et al., 2019;
Bogdanov et al., 2021; Sadhukhan et al., 2022). The electricity
from gas with CCS costs $250/MWh (Bogdanov et al., 2019;
Bogdanov et al., 2021; Sadhukhan et al., 2022). Equation (4)
shows the cost correlations of the relevant systems for NZE
(Sadhukhan et al., 2022).

Levelized cost of solar energy EURO/MWh( )
� 0.9864x2 − 14.379x + 84.632

Levelized cost ofwind energy EURO/MWh( ) � 121.87x−0.128

Levelized cost of hydropower energy EURO/MWh( ) � 306

Levelized cost ofgeothermal energy EURO/MWh( )
� 0.3768x2 − 19.999x + 472.39

Levelized cost of bioenergy EURO/MWh( )
� 0.3969x2 − 18.775x + 471.66

Levelized cost of battery energy storage EURO/MWh( )
� 35.644x−0.726 (4)

The cost correlations in Eq. (4) were deduced by the linear
regression method (Sadhukhan et al., 2022) based on the
available data (Bogdanov et al., 2019; Bogdanov et al., 2021),
which result in an R2 value (calculated as 1 −
sum of squares of residuals

total sum of squares ) of 0.99–1, indicating a high-accuracy
model. Equation (4) captures the unit cost variations of
renewable and bioenergy generations and battery storage
systems over 2020–2050 in intervals of 5 years for a total of
seven instances (2020, 2025, 2030, 2035, 2040, 2045, and 2050),

where x is 1, 2, 3, . . . , 7. The PHS, CAES, and HES systems have
widely varying capital costs of $500–4,600/kW, $400–800/kW,
and $500–10000/kW, respectively (Argyrou et al., 2018).

Globally, the GHG variations are between 0.012 and 0.082 kg
CO2 equivalent kWh-1 (0.021 kg CO2 equivalent kWh-1 for the
United Kingdom (Sadhukhan et al., 2021)) for wind and between
0.05 and 0.12 kg CO2 equivalent kWh-1 (0.076 kg CO2 equivalent
kWh-1 for the United Kingdom (Sadhukhan et al., 2021)) for solar,
after hydropower (Sadhukhan, 2021). PHS and CAES have GHG
values of 0.211 and 0.117–0.368 kg CO2 equivalent kWh-1,
respectively (AlShafi and Bicer, 2021). The GHG value of CAES
varies from the lowest level for underwater to the highest level for
underground systems. The GHGs for HES arise from the
electrolyzer, hydrogen storage, and fuel cell, totaling 0.008 kg
CO2 equivalent kWh-1 (Sadhukhan et al., ). Battery energy
storage results in GHGs of 0.044 kg CO2 equivalent kWh-1

(Sadhukhan and Christensen, 2021). Figure 4 shows a
comparison of the GHG emissions between NZE-relevant energy
system components. It is noted that all GHGs are shown in terms of
the lifecycle, material acquisition, manufacturing, use, and resource
circulation. For the NZE system components (conversion and
storage in Figure 3), the main source of GHGs is material
acquisition, contrary to conversion in the fossil-based systems
(range: 0.514–1.277 kg CO2 equivalent kWh-1 for gas, coal, and
crude oil based power generations in the United Kingdom
(Sadhukhan et al., 2021)). Gas with CCS has higher GHG
emissions than renewable and bioenergy systems but lower
GHGs than fossil-based systems, at 0.103 kg CO2 equivalent
kWh-1 (Sadhukhan et al., 2021); its GHGs are also lower than
those of CAES and PHS.

PHS, CAES, and HES are SES options offering storage durations
of 6 months, >1 year, and a few months, respectively. There are ten
performance indicators for these energy storage systems. These are
the energy rating (0.01–10 GWh), power rating (1–1000 MW),
lifetime (15–60 years), efficiency (50%–80%), load management
(60%–80%), power quality (40%–85%), response time (30 ms to

FIGURE 4
Greenhouse gas (GHG) emission comparisons between renewable and bioenergy generation as well as seasonal energy storage systems, with data
extracted from previous works (Sadhukhan and Christensen, 2021; Sadhukhan et al., 2021; AlShafi and Bicer, 2021; Available ata).
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15 min), GHGs (8–368 g CO2e/kWh), storage duration (months to
years), and cost ($400–10000/kW). A comparison between their
performance indicators is shown in Figure 5; their dimensionless
ratios with respect to the maximum values are scaled to 100 as

(present value × 100
maximum value ). For the response time, GHG, and cost, it is more

desirable to have lower values. For these three indicators, (100 −
present value × 100
maximum value ) is applied to scale the values to show consistently

higher performing systems at the higher scale. Thus, a system having
an outer bound (100) for the indicator is the best, and a system with
a lower bound (0) for the indicator is the worst performing system in
the radar diagram shown in Figure 5. Thus, PHS has the highest
performance in terms of energy and power ratings, lifetime,
efficiency, and response time. In terms of storage duration and
cost, CAES has the best and HES has the worst performances. HES
has the highest load management, power quality, and GHG
performances. Load management refers to the extent of load
leveling, in which cheap electricity is used during off-peak hours
for charging, while discharging takes place during the peak hours to
provide cost savings to the operators. Electrical power quality refers
to the extent of voltage, frequency, and waveform specifications
achieved by a power supply system. Furthermore, PHS and CAES
are mature systems, while HES has only started to become available.
PHS and CAES have stationary applications, while HES can be used
in both stationary and mobile applications.

4 Results of the case study for the
energy-intensive southern region of
the United Kingdom

The southern part of UK is selected for this case study because it
is a demand-intensive temperate region. This region is split into
three regions, namely southwest, Greater London, and southeast.
The southern region is chosen because it represents UK’s high
renewable supply with medium-to-high demand (southwest), low
supply with medium demand (Greater London), and high supply
with high demand (southeast) scenarios (Sadhukhan et al., 2022).
There are fifteen weather stations identified in these three regions,
from which hourly wind speed and solar radiation data are compiled

(Figure 6). The input data for the optimization model comprises
time-series weather data (wind speed and solar radiation) and
demand profiles (Figure 1). The hourly-resolution annual wind
speed and solar radiation data of the weather stations are
obtained from the Centre for Environmental Data Analysis
(Available atb; Available atc). The southwest region also has
equally sparse hourly weather data and area mean
approximations. Some concentrated weather stations collect
hourly data around the Greater London region.

4.1 Climatology

Hourly weather data from the Centre for Environmental Data
Analysis (CEDA) were analyzed for the energy-intensive
United Kingdom South region from 2017 onwards with the most
complete and consistent datasets. These datasets were fed into the
NLP model. The hourly wind and solar generation profiles obtained
from the NLP solution (Python-Pyomo IPOPT-GAMS optimizer)
were then analyzed along with the demand profiles of benchmark
energy storage discharge time by RADA, beyond which the costs and
GHGs increase rapidly for the highest electricity-consuming region
of United Kingdom South.

The hourly wind speed and solar radiation data were analyzed
from fifteen weather stations from 2017 onwards (Available atb;
Available atc). The wind and solar power generation models are
climate-dependent (wind speed and solar radiation) non-linear
models rendering the power system optimization as an NLP
problem. The hourly weather data from the various weather
stations were complete from 2017. Datasets prior to 2017 have
lower spans, high uncertainties, and data gaps at the subnational
levels and were thus omitted from the representative average
calculations. The data protection policy by CEDA allows
statistical representations rather than raw data presentations for
educational and research purposes. Thus, the average annual hourly
wind speed and solar radiation data analysis results are shown
herein. The data source is an ftp server maintained by CEDA. A
Visual Studio Code requests CSV files with a regex pattern for this
purpose (Available atd). This code recursively downloads the CEDA
climate data for the local destination; the time, wind speed, and solar
radiation data can thus be accessed through a script for analyzing the
climate data. Further, automated data cleaning omits locations for
which the data availability is too sparse. Fifteen locations were thus
chosen for the South of the United Kingdom, and clean granular
wind speed and solar radiation datasets were curated for the most
complete data collection years from 2017 onwards.

The study focuses on areas in the South of the United Kingdom,
which are split into three regions as southwest, Greater London, and
southeast, which had populations of 5.7 million, 9 million, and
9.2 million, respectively, as of 2020. The southeast region had the
highest average electricity consumption of 3,984 kWh/m, exceeding
the 4,600 kWh/m of Greater London and 3,800 kWh/m of the
southwest region (Available ate). The South of the United Kingdom
has the highest annual electricity demand at 80 TWh, accounting for
27% of the consumption by the United Kingdom. The southwest,
Greater London, and southeast regions consumed 25, 17, and
38 TWh, respectively. Eight weather stations span the southwest
region having an area of 31,119 km2 spanning 51.8767° N to 50.2° N

FIGURE 5
Comparison of the performance indicators between PHS, CAES,
and HES.
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latitude and 5.33° W to 1.7247° W longitude. There are four and
three weather stations each in the southeast and Greater London
regions, which have areas of 23,265 km2 and 4,707 km2, respectively,
spanning 1.3703° E to the Eastern coast of the UK.

The hourly wind speeds and solar radiation of the three
regions are presented in two ways. The histograms of the wind
speeds for each of the four seasons (first quarter: Jan–Mar, second
quarter: Apr–Jun, third quarter: Jul–Sep, and fourth quarter:
Oct–Dec) for each region are shown in Figure 7 (Available
atf). The median, 50th percentile, and 95th percentile daily
solar radiation cycles for each of the four seasons for each
region are shown in Figure 8 (Available atg). The critical
characteristics of the two types of energy systems (wind and
solar) are best analyzed with the seasonal variations and
seasonal–daily cycles, respectively. Wind speed has seasonal
variations, unlike solar radiation, which is only available 50%
of the time based on the daily mean.

The cut-in speed (vcut−inr,t ) for wind power generation is 4 m/s.
Wind power generation was unavailable (wind speed < 4 m/s) for
approximately 185, 775, and 450 h in the first quarter; 350, 1,030,
and 300 h in the second quarter; 350, 1,000, and 400 h in the third
quarter; and 340, 700, and 200 h in the fourth quarter. Thus, the
probability of no wind power generation was the highest for Greater
London. The observations were pretty similar between the second
and third quarters and between the first and fourth quarters, except
for the southwest region, where the observations were identical
except for the first quarter. Above 13.5–17, 9–10, and 13–16 m/s
wind speeds in the southwest, Greater London, and southeast
regions occurred for less than 100 h in each quarter. The cut-out
speed (vcut−outr,t ) for wind power generation is 25 m/s. The maximum
probability (above 4 m/s) occurs for wind speeds of up to 10, 7, and
9 m/s in the three regions. The UK’s prevailing winds are from the
southwest region, which manifest with a broad wind speed
distribution above the mean value. The extreme West (latitude:

FIGURE 6
Locations of the (A) weather stations with (B) hourly wind speed and solar radiation heat maps for the case study.
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50° 12′ 45.972″N and longitude: 5° 17′ 41.19″W) and East (51.3458°

N, 1.3703° E) locations have average wind speeds of 10.33 m/s and
7.71 m/s, respectively. The North (51.8767° N, 1.7247° W) also has
some of the highest average recorded value of 10 m/s.

October to March show significantly shorter durations of solar
radiation and lower radiation intensities. Nearly 50% of the solar
radiation received in these months is less than 1,000 kJ/m2 between
8:00 and 16:00 h. The maximum solar radiation is in the second
quarter, with values between 1,000 and 2,500 kJ/m2. In the second
and third quarters, between 11:00 and 15:00 h, the median solar
radiation values are above 1,000 kJ/m2 for the three regions. The
solar radiation decreases in order during the second, third, first, and
fourth quarters. Solar radiation makes a difference for power
generation from 7:00 and 9:00 h during the second–third and
first–fourth quarters, respectively. The solar radiation maximum
is post-noon and starts diminishing from 23:00 and 20:00 h during
the second–third and first–fourth quarters, respectively.

Wind speeds are significant during October–March, while solar
radiation is significant over April–September. The median solar
radiation is zero for October–March. Thus, wind electricity
dominates during October–March, and solar electricity is more

significant than wind electricity during April–September. Solar
radiation has several thousand manifolds higher variances than
wind speed in every way, seasonally and in the three geographic
study regions. The variances for wind speed are the least for the
Greater London region. The southwest, southeast, and Greater
London regions have decreasing wind speeds and solar radiation,
in that order. Greater London has the weakest wind speed, with a
median value of <6m/s. Wind speed is higher and fluctuates more in
the southwest and southeast regions.

4.2 Demand time-series

The hourly electricity demand profiles (annual hourly
resolution) are available for the United Kingdom only at the
national level (Available atg). The hourly electricity demands are
needed for the hourly electricity and total balance in Eq. (3a, 3b).
The subnational annual total electricity demands are publicly
available data (Available ate). The yearly mean electricity
demands of the regions are calculated based on the weighted area
averages of the annual local demands. Then, the electricity demand

FIGURE 7
Frequency distributions for wind speeds during the four quarters in the three regions. The red bars indicate the probabilities of the cut-in wind
speeds less than 4 m/s.
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profiles (hourly resolution) are generated for the regions by
downscaling the national electricity demand profiles (hourly
resolution) for the calculated annual local mean demands. The
data analytics and visualization of the subnational electricity
demand profiles are discussed in the following section on
electricity (wind plus solar) supply and demand analyses.

5 Results and discussion

The NLP model in Figure 1 and Supplementary Material were
created with Visual Studio Code (Available ath) and can be
implemented on a standard computer; the solution in terms of
the optimal electricity mix is obtained in less than 1 min on a Dell
Latitude E5570 device. Figure 9 (Available atf) shows the resulting
monthly wind and solar electricity generations along with the
superimposed electricity demand and wind plus solar power
profiles from the NLP model (Available ath) in the three regions.
Combining wind and solar generations is beneficial in many ways.
The seasonal variations of wind speed and daily cycles of solar

radiation can complement each other to a certain extent. Night-time
electricity demands can be met by wind power when there is no solar
generation. The low solar generation during the first and fourth
quarters can be complemented by wind generation. Their individual
and combined generations were analyzed with the electricity load
demand in spatiotemporal resolution to characterize the combined
energy storage discharge regimes.

The seasonal variations of wind speed and daily cycles of solar
radiation impact wind and solar power generation. Figure 9 includes
the 50th and 90th percentile data spreads of electricity usage. Solar
power peaks at more than 2,000 MWh between 8:00 and 13:00 h,
when 50% of the wind power is less than 5,000 MWh. Unlike wind
speed, wind power has higher variance than solar power. The total of
wind and solar generation has a higher proportion of wind power
than solar power. The median wind power and its variance are
lowest for the Greater London region. The median and variance
values of electricity demand are also the lowest for the Greater
London region. southeast region has the highest electricity demand
(38 TWh), which is over 2.2 times that of Greater London (17 TWh)
and about 1.6 times that of the southwest region (25 TWh). The

FIGURE 8
Seasonal daily solar radiation cycles during the four quarters in the three regions. The darker areas show the data coverage within the 50th
percentile. The outer lighter areas show the data coverage within the 95th percentile.
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highest electricity demand in the southeast region explains why
wind plus solar power cannot fulfill the higher electricity demand in
this region. The combined wind and solar power may be excess from
March to September in the southwest and Greater London regions.
In the case of the southeast region, the combined wind and solar
generation data spread mostly falls under the demand profile; this
suggests that lower amounts of wind and solar power generated can
directly reduce demand without energy storage. The demand dataset
has a narrower distribution than the combined wind and solar
generation datasets.

Figure 10 shows the daily median electricity demand and wind
plus solar electricity generation profiles over the four quarters in
the three regions. The Greater London region accounts for lower
demand and lower supply than the two other regions. Between 8:
00 and 16:00 h over Oct–Mar, the demand (less than 4,000 MWh)
is less than supply for the Greater London and southwest
regions, while the southeast region has a demand exceeding
4,000 MWh. The combined wind and solar power cannot fully
meet the electricity demands over Oct–Mar. The surplus energy
available for storage is insignificant, and the energy
storage duration required to meet the demand is significant.
Demand is greater than supply every day in each quarter,
except between April and September (second and fourth
quarters). The demand peaks between 17:00 and 19:00 h and
is steadily high at other times after 7:00 h for all quarters in the
three regions. The gap between demand and wind plus solar
electricity supply (i.e., deficit) is highest around 19:00 h; this is

the time when the after-work domestic electricity usage is
maximum. The electricity demand is higher in Oct–Mar
than Apr–Sep because the lights are on longer and some
houses use electricity for heating due to the low solar
radiation. The only time when the combined wind and solar
supply is greater than demand is during mid-day and afternoon
in the second and third quarters, when energy storage is needed
to store the excess energy in the case of the southwest and
Greater London regions. For the southeast region, the
combined wind and solar supply is still insufficient to meet
the electricity load in Apr–Sep, and power may be dispatched
to reduce the demand directly without energy storage. In
Apr–Sep, the solar power contribution is dominant; the
availability of solar power makes a difference in the electricity
output between 9:00 and 15:00 h. This excess electricity can
support the transportation sector that primarily uses fossil-based
fuels in the absence of adequate SES.

The load demands have median values (in MW) of 3,043,
2,453, 2,399, and 2,930 (southwest); 2,218, 1,788, 1,749, and 2,136
(Greater London); and 4,864, 3,922, 3,835, and 4,684 (southeast)
for the Jan–Mar, Apr–Jun, Jul–Sep, and Oct–Dec quarters,
respectively. Their variances (summation of the squared
variations between the individual sample points and their
mean, divided by one less than the number of sample points)
are 332,234, 142,236, 151,027, and 386,686 (southwest); 183,314,
75,560, 80,229, and 205,418 (Greater London); and 881,677,
363,416, 385,875, and 987,987 (southeast) for the Jan–Mar,

FIGURE 9
Monthly wind and solar power generation and superimposed electricity demand and generation based on wind plus solar sources. The darker areas
show the data coverage within the 50th percentile. The outer lighter areas show the data coverage within the 95th percentile.
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Apr–Jun, Jul–Sep, and Oct–Dec quarters, respectively, as detailed
in Sadhukhan et al. (2022).

5.1 Energy storage dispatch durations from
surplus and deficit power profile analyses

Figure 11 (top) shows the surplus and deficit electricity values
after balancing the combined wind and solar generations with the
electricity load demand every hour for each region. These profiles
show the non-coincident surplus and deficit power without
energy storage. The deficit electricity is shown as a negative
profile to differentiate it from the surplus. Other renewable
and carbon-efficient technologies can meet the electricity
deficit. Surplus electricity can displace other forms of energy,
such as transport fuels providing electrification for the
transportation sector. It is noted that the agricultural
(Martinez-Hernandez et al., 2013; Martinez-Hernandez et al.,
2014; Martinez-Hernandez et al., 2022), aviation (Sadhukhan
et al., 2014; Sadhukhan and Sen, 2021), and heavy industry
(Sadhukhan et al., 2004; Sadhukhan et al., 2017; Shemfe et al.,
2018) sectors (whole lifecycle systems) are the toughest to

electrify owing to their high-quality heating/fuel requirements.
However, energy storage is inevitable for the excess wind and
solar power generated because of interseasonal and interannual
variabilities. Figure 11 (bottom) shows the surplus and deficit
electricity profiles after the feasible stored energy transfer reduces
demand for each region.

The surplus electricity over a given hour is zero if it is less than
the demand over that hour; this means that the available wind and
solar power are completely dispatched at the given time and that the
demand may still not be met. Otherwise, the surplus electricity is the
difference between the supply and demand (supply > demand). The
deficit electricity over a given hour is zero if it is less than the supply
over the same hour; otherwise, the deficit electricity is the difference
between the demand and supply (demand > supply). These
operations are performed by generating the energy storage
duration (Δt) randomly within any given storage duration, 0 <
Δt < ΔT, for each time resolution step (t ∈ TT) until all time
resolution steps are exhausted (by applying the RADA
calculations shown in Figure 3).

After deploying the stored energy, the second and third quarters
have surplus wind and solar electricity, whereas the first and fourth
quarters have a deficit of wind and solar electricity. Solar radiation

FIGURE 10
Daily median electricity demands as well as combined wind and solar electricity generation profiles over the four quarters in the three regions. The
darker areas show the data coverage within the 50th percentile. The outer lighter areas show the data coverage within the 95th percentile.
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primarily impacts the shapes and sizes of these profiles. Remarkably,
because of the highest electricity demand in the southeast region, all
surplus wind and solar electricity can be utilized to reduce the
demand deficit after applying energy storage, and there will still be
unmet load demand, for which other forms of dispatchable power
supply must be sought.

Figure 12 shows the relationship for reliability (percentage of
electricity demand met by excess wind and solar or other renewable
power in each discharge time or the ratio between combined wind
and solar non-coincided power discharge and total demand) against
the stored energy discharge time. These profiles have some common
characteristics as follows: the highest slope within the first 4 h of
stored energy dispatch time, a lower slope over 4–87 h of discharge
time, and almost no improvement in the percentage reliability above
96 h of stored energy discharge time. Based on the fractional values
of reliability, these slopes are 0.014–0.025 h-1, 0.0008–0.0014 h-1, and
0.00009–0.0002 h-1 for <4 h, 4–87 h, and 87–168 h of energy storage,
respectively. Beyond 168 h of energy storage, the reliability shows
only an infinitesimal increment. BESSs offer such energy storage
durations (Sadhukhan and Christensen, 2021).

5.2 Seasonal storage evaluation mapping for
integration with wind and solar generation
and comparison against bioenergy and gas
with CCS

About 63%, 62%, and 55% of the annual electricity demands (25,
17, and 38 TWh annually) can be met directly with dispatchable
wind and solar power without energy storage in the southwest,
Greater London, and southeast regions, respectively. Further, stored
energy can provide 21%, 22%, and 13% of the current electricity
demands after 4 days of storage (13.5 TWh out of the total demand
of 80 TWh annually in the South of the United Kingdom). The
greater the demand, the less is the electricity demand met by energy
storage. Thus, wind and solar power can meet 15.8 TWh, 10.5 TWh,
and 20.9 TWh of energy demands in the southwest, Greater London,
and southeast regions, respectively, without energy storage. Further,
BESSs can store 5.3 TWh, 3.7 TWh, and 4.9 TWh of wind and solar
energy up to a feasible storage duration of 1 week in these three
regions, as shown in Section 4.1. The unmet demands in the three
regions would then be 4 TWh, 2.7 TWh, and 12.2 TWh. Figure 13
illustrates the annual electricity demands met by direct wind and
solar power, wind and solar with battery energy storage, and the
unmet demand.

The remaining electricity demands can be met by non-
coincident wind and solar power through the incorporation of
SES systems like PHS, CAES, and HES. The unmet demands can
be met by these SES systems or directly by dispatchable power from
bioenergy and gas with CCS systems (nuclear energy is not
considered here because of its waste disposal cost implications).
Thus, all these options need to be compared for costs (using Eq. (4))
and GHGs (based on Figure 4), as shown in Figure 14.

The suitable systems based on increasing order of costs are
CAES < gas with CCS < PHS < bioenergy < HES (Figure 14 (top)).
The solar or wind power (at $36/MWh and $108/MWh in Figure 4)

FIGURE 11
For each region, the annual electricity surplus and deficit profiles
are shown after balancing supply and demand every hour without
energy storage (top) along with the electricity surplus and deficit
profiles with energy storage (bottom).
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integrated CAES is still the minimal cost choice. The systems based
on increasing order of GHGs are HES < bioenergy < gas with CCS <
CAES < PHS (Figure 14 (middle)). The systems based on increasing
order of cost per GHG (EURO/kg CO2e) are solar + CAES < wind +
CAES < solar + PHS < wind + PHS < gas with CCS < bioenergy <
solar + HES < wind + HES (Figure 14 (bottom)). As the minimum
cost choice, CAES also has the least cost per GHG when integrated
with solar and wind electricity. Gas with CCS is a better option than
bioenergy and HES with solar or wind electricity based on the cost
per GHG. The UK’s NZE by 2035 can thus be met predominantly by
renewable self-generation, first through coincided renewable power
and then by non-coincided solar and wind power through battery
energy storage, followed by non-coincided solar and wind power
through SES options like CAES and PHS. Dispatchable wind and

solar energy can meet 63%, 62%, and 55% (15.8, 10.5, and
20.9 TWh) of the electricity demands in the southwest, Greater
London, and southeast regions, respectively. Further, BESSs can
increase the wind and solar energy in the NZE mix in the three
regions by 5.3, 3.7, and 4.9 TWh. The proportions of wind and solar
electricity availabilities are 65:35, 62:38, and 66:34 in these three
regions. The remaining demand of 4, 2.7, and 12.2 TWh can be met
by solar + CAES < wind + CAES < solar + PHS < wind + PHS < gas
with CCS < bioenergy < solar + HES < wind + HES based on
increasing order of cost per GHG of 0.33, 0.69, 0.84, 1.13, 2.18, 5.89,
8.54, and 26.97 EURO/kg CO2e, respectively. However, owing to the
infinitesimal increment in reliability beyond 96 h of energy storage
provided by BESSs, gas with CCS or bioenergy is likely to meet the
balance load demand (4, 2.7, and 12.2 TWh).

FIGURE 12
Percentage reliability against stored energy discharge time.

FIGURE 13
Directly dispatchable wind and solar energy, battery energy storage, and unmet electricity demand distributions in the three regions of the
United Kingdom South.
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FIGURE 14
(top) Costs, (middle) GHG, and (bottom) cost per unit GHG to meet the 4 TWh, 2.7 TWh, and 12.2 TWh of electricity demands in the three regions
through various options: PHS, CAES, HES, gas with CCS, bioenergy, and wind and solar integrated with PHS, CAES, and HES.
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A value analysis diagram (Sadhukhan et al., 2003; Sadhukhan
et al., 2004; Sadhukhan et al., 2008; Sadhukhan et al., 2014) is shown
in Figure 15, which is a plot of the levelized cost of electricity in
EURO/MWh along the y axis versus annual electrical energy supply
in TWh along the x axis. Figure 15 shows the electrical energy
contributions from direct solar and wind, indirect solar and wind
with BESS, and indirect solar and wind with CAES systems at
various levelized costs of electricity. For example, direct solar electrical
energy supply is 16.5 TWh at the levelized cost of electricity of
32.4 EURO/MWh. The area bounded by the direct solar energy
(parallel line to the x axis) and x axis is the total cost incurred by the
direct solar electrical energy supply, i.e., 16.5 × 32.4 � 535.5 million
EURO. Direct wind provides (47.2 − 16.5) or 30.7 TWh of electrical
energy at the levelized cost of electricity of 97.2 EURO/MWh. Next, solar
and wind electrical energy supply with BESS accounts for (52.1 − 47.2)
or 4.9 TWh and (61.1 − 52.1) or 9 TWh at the levelized costs of
electricity of 41.1 and 105.9 EURO/MWh, respectively. Thereafter, the
least-cost solar andwind electrical energy supplywithCAES from among
all the SES options accounts for (67.6 − 61.1) or 6.5 TWh and (80 −
67.6) or 12.4 TWh at the levelized costs of electricity of 95.2 and
160 EURO/MWh, respectively. Thus, the total solar and wind
electrical energy contributions from direct, indirect BESS, and indirect
CAES systems are 47.2 TWh, 13.9 TWh, and 8.9 TWh at the levelized
costs of electricity of 75, 83, and 138 EURO/MWh, respectively. The
resulting overall levelized cost of electricity is 91 EURO/MWh, which is
less than the previously obtained levelized cost of electricity (Sadhukhan
et al., 2022). The cost contributions (million EURO/year) are as follows:
direct solar: 536, direct wind: 2,981, indirect solar with BESS: 201, indirect
wind with BESS: 953, indirect solar with CAES: 622, and indirect wind
withCAES: 1978; these account for costs of 3,517, 1,154, and 2,600 for the
direct, indirect with BESS, and indirect with CAES options, respectively.
Thus, an overall cost of 7.3 billion EURO/year will be incurred to achieve
NZE for the South of UK.

Because of the infinitesimal increment in reliability beyond 96 h
of energy storage needing SES, gas with CCS or bioenergy could be

likely candidates for meeting the balance load demands (4, 2.7, and
12.2 TWh in the three regions). Gas with CCS and bioenergy can
increase the overall levelized cost of electricity by 112 and
145 EURO/MWh, i.e., 9–11 billion EURO/year in costs, which is
an increase from 7.3 billion EURO/year for CAES to meet the
balance load demands for NZE for UK South.

Our NLP optimization model suggests the following optimal
electricity mix: 55% wind, 29% solar, 0.5% hydro, 0.4% geothermal,
and 1% bioenergy (high supply with medium-to-high demand); 52%
wind, 32% solar, 0.5% hydro, 0.5% geothermal, and 1% bioenergy
(low supply with medium demand); 45% wind, 23% solar, 0.7%
hydro, 0.7% geothermal, and 10% bioenergy (high supply with high
demand) (Sadhukhan et al., 2022). The resulting least levelized cost
of electricity was 120 EURO/MWh (Sadhukhan et al., 2022). The
NZE projections for the whole of United Kingdom would be wind:
40 GW, solar: 21 GW, bioenergy and other renewables: 5 GW,
nuclear: 6 GW, and gas with CCS: 5 GW by 2050, which mirrors the
government’s NZE plan for the entire United Kingdom, with
670 TWh or 77 GW in the high-innovation scenario (Sadhukhan
et al., 2022). With the CAES integration proposed in this work, there
is an expected annual savings of 19.5 billion EURO (i.e., 29 EURO/
MWh) by displacing gas with CCS, bioenergy, and nuclear sources
in the previous study for the NZE of the whole of United Kingdom
(670 TWh or 77 GW in the high-innovation scenario (Sadhukhan
et al., 2022)).

The cost and Ecoinvent-based GHG parameters for the energy
storage systems are derived from reliable as well as universally
accepted and respected sources (Bogdanov et al., 2019; Bogdanov
et al., 2021; Sadhukhan, 2021). Their temporal variations could still
occur, especially with the learning curve effects (Sadhukhan et al.,
2004). However, decisions made by models are less sensitive to the
absolute values of these parameters than relative values, which are
unlikely to change. Hence, the conclusions are less likely to change,
as seen in other studies (Lund and Vad Mathiesen, 2009; Bogdanov
et al., 2019; Bogdanov et al., 2021). The spatial variations of the cost

FIGURE 15
Levelized cost of electricity (EURO/MWh) versus annual electrical energy contributions (TWh) for the individual components (green), total direct,
indirect with BESS, indirect with CAES (red), and overall (grey) cases.
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parameters are less likely as the market is global. This work employs
the NLP approach for optimization of the NZE system. This
approach is comprehensive, as it accounts for various costs
(capital, fixed, variable, resource, pollution, upgrading, and
decommissioning), capacity-factor-based wind and solar power
generations, and levelized parameters. The comprehensive model
with the right level of complexity remains practical and
interpretable. The methodological framework presented herein is
generic and may be extended to include further energy storage
options and other geographic regions.

6 Conclusion

A novel framework integrating NLP, RADA, and SES
performance evaluations is used herein to maximize the
technoeconomic and environmentally feasible NZE mix.
Spatiotemporal climate/geophysical/meteorological and electrical
load demand data are used to constrain the optimization
problem. The total cost objective, including the weighted average
capital, fixed, variable, resource, pollution (including GHG),
upgrading, and decommissioning costs, over a designated time
scale (e.g., annual, decadal, or multidecadal) is formulated, and
the spatiotemporal variations of the energy storage systems are
captured using non-linear regression equations. The constraints
include upper and lower bounds of each unit capacity in the
entire energy system and energy balance equations at the finest
time resolution. Adherence to the energy balance principles is
ensured while accounting for power generation, storage, losses,
and load requirements.

The UK’s NZE by 2035 can thus be met predominantly by
renewable self-generation, first by coincided renewable power
and then by non-coincided solar and wind power through
battery energy storage, followed by non-coincided solar and
wind power through SES like CAES and PHS. Dispatchable
wind and solar energy can meet 63%, 62%, and 55% (15.8,
10.5, and 20.9 TWh) of the electricity demands in the
southwest, Greater London, and southeast regions,
respectively. Further, BESSs increased the wind and solar
energy portions in the NZE mix by 5.3, 3.7, and 4.9 TWh for
the above three regions. Correspondingly, the proportions of
wind and solar electricity availabilities are 65:35, 62:38, and 66:
34 in these three regions. The balance demands (4, 2.7, and
12.2 TWh) can be met by solar + CAES < wind + CAES < solar +
PHS < wind + PHS < gas with CCS < bioenergy < solar + HES <
wind + HES based on increasing order of cost per GHG as 0.33,
0.69, 0.84, 1.13, 2.18, 5.89, 8.54, and 26.97 EURO/kg CO2e,
respectively. However, given the infinitesimal increment in
reliability beyond the 96 h of energy storage provided by
BESS, gas with CCS or bioenergy can likely meet the balance
load demands (4, 2.7, and 12.2 TWh). Policymakers, investors,
and power system operators are thus provided with actionable
insights to facilitate informed decision-making regarding energy
infrastructure investments and policy formulation.
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