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The distribution grid experiences node voltage fluctuations due to the growing
uncertainty of large-scale renewable energy sources A practical solution is
establishing a chance-constrained optimal model to deal with the
uncertainties. However, using this method needs to know the accurate
probability distribution of node power injections, which has limitations in
application. Therefore, this paper proposes a distributionally robust chance-
constrained optimization method for power grid operation based on the
ambiguity set of probability distributions. Firstly, considering voltage security
constraints, this paper establishes a chance-constrained model to minimize the
cost of active power regulation. Besides, based on the Wasserstein ambiguity set,
a linearized method is proposed to convexify the objective function. Moreover,
the conditional risk value (CVaR) is applied to convert the uncertain model into a
deterministic model. The effectiveness of the proposed method is validated
through optimization results obtained for the modified PG&E69-bus
distribution grid.
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1 Introduction

The global energy crisis and environmental issues have prompted continuous energy-
resource structure transformation and upgrading. The gradual proliferation of renewable
energy sources (RESs) such as photovoltaic and wind power on a global scale has become an
inevitable trend. However, large-scale RESs have intense uncertainty, which brings
enormous challenges to the dispatch and operation of active distribution grids (Alismail
et al., 2017). For instance, in optimizing real-time operations using active and reactive
regulation devices, the traditional dispatch approach overlooks power output uncertainties,
leading to scheduling plans based solely on expected node power injections. As a result,
there is a risk of violating the secure constraints (Hu et al., 2022). Therefore, considering the
uncertainties of various RESs in the power grid and selecting appropriate optimal dispatch
strategies have become research hotspots. In other words, it is necessary to propose a new
dispatch method to integrate active power regulation devices, deal with the uncertainty of
various distributed energy sources, and make the distribution grid operate securely and
economically.
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Currently, there are three kinds of methods to describe the
uncertainty of RESs: stochastic optimization-based method, robust
optimization-based method, and distributionally robust chance-
constrained (DRCC) optimization-based method. When using the
robust optimization-based method, the dispatchers do not need all
probability distribution of RES outputs and only consider the worst-
case scenario during the optimization process, which often leads to
overly conservative results (Chen et al., 2020; Zhai et al., 2020; Chen
et al., 2021). Han et al. (2020) considered the security constraints
and established a robust optimization model for distribution
systems. The constructed probability distribution fuzzy set is
complex, resulting in plodding optimization speed. Ding et al.
(2015) proposed a robust two-stage operation model. Although
the proposed method considers the uncertainties within the
power grid, it leads to high economic scheduling costs. Xia et al.
(2019) considered the impact of wind power integration into the grid
and proposed a robust optimization-based operation model.
However, this method sacrifices significant economic costs to
ensure secure operation.

According to Zhai et al. (2022), Wang et al. (2012) and Zhao
et al. (2014), the stochastic optimization-based method mainly
includes the Monte Carlo method, scenario generation method,
and chance constraint method. This method needs to assume that
the uncertainty of each power injection follows a specific probability
distribution. Yang and Yu (2018) used the chance constraint method
to convert uncertainty problems into deterministic problems and
estimate the probability distribution of node voltages. Guggilam
et al. (2016) established a two-stage energy management model for
microgrids based on the chance-constrained method. Zhao et al.
(2018) applied chance-constrained programming dealing with
power flow, voltage, and reserve constraints. Tang et al. (2023)
proposed a chance-constrained optimization scheduling method for
distribution grids considering photovoltaic carrying capacity. Zhong
et al. (2023) proposed a distributed optimization method for
integrated transmission and distribution grids with chance
constraints. They established a restoration operation model for
the transmission and distribution grid to minimize restoration
costs. Roald et al. (2013) introduced the fuzzy theory and
credibility theory to handle wind power uncertainty,
converting deterministic constraints into fuzzy chance
constraints. The stochastic reactive power optimization model
is established to minimize the entire grid loss and voltage offset,
and it is solved by the improved particle swarm optimization
algorithm. Lubin et al. (2015) and Dai et al. (2017) proposed the
approximate derivation method for chance constraints based on
the analytical method and established the two-step optimal
scheduling for the power system. Zhao and Jiang, (2017)
introduced the chance-constrained programming method to
minimize the energy storage configuration in the distribution
grid and used the analytical method to establish the deterministic
optimal model. Ciftci et al. (2019) proposed a data-driven
chance-constrained optimization model for microgrid energy
management, constructing confidence sets for uncertainties
based on historical data. Since the established optimal model
of the stochastic optimization-based method has probability
constraints, it is nonlinear and usually solved by intelligent
algorithms (Li et al., 2013; Huang, 2017; Xu and Li, 2019).
However, the obtained results will likely fall into the local

optimum, which means the accuracy is far from the existing
engineering requirements.

In contrast to the stochastic optimization-based method, the
DRCC optimization-based approach does not necessitate precise
probability distribution information for uncertainties; instead, it
relies on ambiguity sets, which exhibit enhanced robustness (Cao
et al., 2021; Du et al., 2022). Proposed as a hybrid of stochastic and
robust optimization, the DRCC optimization-based method
addresses uncertain challenges. It operates under the assumption
that the probability distribution falls within a predefined ambiguity
set and employs the worst-case scenario from this set as the
optimization reference. By utilizing the worst-case probability
distribution in an ambiguity set, the optimization outcomes can
be adjusted, thus mitigating the risk of over-conservatism compared
to robust optimization-based methods. He et al. (2019) utilized the
moment of uncertainty is to distribute and robustly solve wind
power uncertainty and energy optimization problems. Ao et al., 2020
used the DRCC for multiple discrete scenarios to deal with the load
uncertainties in distribution grids. However, the above two methods
for constructing DRCC ambiguity sets fail to utilize historical data
fully and remain highly conservative (Esfahani and Kuhn, 2018).
Unlike the above methods, Wasserstein distance is data-driven and
uses historical data of distributed power generation outputs to
construct an ambiguity set. As the number of samples increases,
the ambiguity set gradually converges to the actual situation (Duan
et al., 2018). Based on this principle, the ambiguity set based on
Wasserstein distance is proposed to depict the degree of difference
between actual and empirical distributions (Zhu et al., 2019; Poolla
et al., 2020). The conservatism and economic benefits of the flexible
control optimization scheme and the established model are easy to
solve and have strong applicability. Based on the above, this paper
applies DRCC to the optimal operation in the distribution grid.

In addition, the existing nonlinear voltage chance constraints
significantly increase the number of variables processed in the
operation model. The second-order cone method is used to deal
with the voltage chance constraints, but the accuracy of the optimal
result is low (Cai et al., 2022). The relaxation variables and interval
estimation method were introduced to relax the nonlinear chance
constraints (Xiao et al., 2021). However, the approximate model
introduces too many variables, resulting in low solving efficiency.
For the nonconvex voltage chance-constrained forms, Liu et al.
(2020) and Xie W. (2021) used the conditional risk values to
transform the nonlinear chance constraints into convex
approximation. Chen et al. (2024) applied the risk value and
duality theory to transform the chance-constrained form of
nonconvex voltages into convex expressions. Although the above-
simplified method deals with fewer variables in the operation
process than the traditional nonlinear optimization methods,
there is still a time-consuming problem. Therefore, it is necessary
to propose a fast solution method.

In summary, this paper proposes a distributionally robust
chance-constrained dispatch for distribution grids that considers
voltage secure constraints. The specific structure is as follows.
Section 2 establishes a chance-constrained model considering
voltage constraints. In Section 3, based on the Wasserstein
ambiguity set, a linearized method is proposed for the objective
function. Section 4 uses the conditional risk value to convert the
uncertain model into the deterministic model. Simulations
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validating the effectiveness of the proposedmethod are conducted in
Section 5. Conclusions are shown in Section 6.

2 The chance-constrained model
considering voltage constraints

Assume the node set is N (where the dimension is n) and the
output of renewable energy sources set is W (where the
dimension is w) in the distribution grid. x0 �
(P0

1, .., P
0
n, Q

0
1, .., Q

0
n)T is the current operating point. To

minimize the regulation cost of distribution grids, the
objective function F is as follows:

F � minE ∑n
i�1

ciPi + cUi P
U
i + cDi P

D
i( )⎛⎝ ⎞⎠ (1)

where E(•) is the expectation of •; Pi and ci are the active power
injection and regulation cost at node i ∈ N , respectively; PU

i and PD
i

are the reserve capacity corresponding to the upper and lower power
limits at node i ∈ N, respectively; cUi and cDi are the corresponding
costs of PD

i and PU
i , respectively.

Considering the uncertainty of the power injection, we have:

Pi � �Pi − PL
i + ΔPi ξ( ) + ξ i,∀i ∈ N (2)

where �Pi is the power adjustment of node i; ΔPi(ξ) is the adjustment
error caused by the uncertainty of the power injection at node i;
ΔP(ξ) � [ΔP1(ξ)T,ΔP2(ξ)T, ....,ΔPn(ξ)T]T; PL

i is the load of node i.
ξi is the renewable energy output at node i.

According to the linearization method proposed by Ordoudis
et al. (2021), ΔP(ξ) can be transformed into the following:

ΔPi ξ( ) � Yiξ, Yi ∈ R1×n (3)
where Yi � [yi,1, yi,2, ..., yi,n] is the adjustment coefficient vector to
be solved.

Combining (1–3), we have (4):

F � min
�Pi,PU

i ,P
D
i ,Y
∑n
i�1

ci �Pi − ciP
L
i + cUi P

U
i + cDi P

D
i( ) + E cTYξ( ) (4)

where c � [c1, c2, ..., cn], Y � [YT
1 , Y

T
2 , ..., Y

T
n ]T.

Additionally, the operational constraints include:

�Pi − PD
i ≥Pm

i (5)
�Pi + PU

i ≤P
M
i (6)

0≤PU
i ≤ PM

i − Pm
i( ) (7)

0≤PD
i ≤ PM

i − Pm
i( ) (8)

ψ Vi ≤VM
i( )≥ 1 − εV (9)

ψ Vi ≥Vm
i( )≥ 1 − εV (10)

where (5) and (6) are the constraints for the outputs of power
regulation devices; (7) and (8) are the constraints for reserve
capacities; (9) and (10) are the chance constraints for node
voltage magnitudes; VM

i represents the upper limit, while Vm
i

denotes the lower limit of the node voltage magnitude; εV is the
confidence level.

For (9, 10), this paper linearizes the node voltage constraints based
on current constraints. According to Yang and Yu. (2018), the voltage
security constraints of nodes k ∈ N can be written as (11) and (12):

∑n
j�1

αMk,jPj + βMk,jQj( )≤ 1 (11)

∑n
j�1

αmk,jPj + βmk,jQj( )≤ 1 (12)

where αMk,j, β
M
k,j, α

m
k,j, and βmk,j can be represented as follows:

αMk,j �
1

VM
k H

M
k

∂Vk

∂Pj

βMk,j �
1

VM
k H

M
k

∂Vk

∂Qj

αmk,j �
1

Vm
k H

m
k

∂Vk

∂Pj

βmk,j �
1

Vm
k H

m
k

∂Vk

∂Qj

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where HM
k � VM

k − V0
0 + ∑

∀j∈N
(∂Vk
∂Pj

P0
j + ∂Vk

∂Qj
Q0

j), Hm
k � Vm

k − V0
k +∑

∀j∈N
(∂Vk
∂Pj

P0
j + ∂Vk

∂Qj
Q0

j).
Combining (2, 3), and (12), we can get the explicit expression of

the chance constraints for voltage magnitude as (14, 15):

ψ ∑n
j�1
αMk,jYjξ +∑n

j�1
αMk,jξj +∑n

j�1
αMk,j �Pj + βMk,jQj − αMk,jP

L
j( )≤ 1⎡⎢⎢⎣ ⎤⎥⎥⎦≥ 1 − εV

(14)

ψ ∑n
j�1
αmk,jYjξ +∑n

j�1
αmk,jξj +∑n

j�1
αmk,j �Pj + βmk,jQj − αmk,jP

L
j( )≤ 1⎡⎢⎢⎣ ⎤⎥⎥⎦≥ 1 − εV

(15)

3 Linearization of objective based on
distributionally robust theory

For the renewable energy sources output ξ, its historical
statistical data is ξ̂, and the empirical probability distribution is
in (16) P̂:

P
� � 1

m
∑m
i�1
δi (16)

wherem is the number of historical data vectors used; δi is the Dirac
measure of the ith historical statistical data ξ̂i.

Considering that the actual probability distribution P of the
distributed power generation vector ξ is unknown, this paper
constructs a Wasserstein ambiguity set D to describe the
uncertainty of ξ as (17):

D: � P ∈ M Ξ( ) W P,P
�( )≤ ρ∣∣∣∣∣∣∣{ } (17)

where ρ> 0 is the radius of the ambiguity set; M(Ξ) is the space set to
which the probability distributionP belongs.W(P, P̂) is theWasserstein
distance between the actual and empirical probability distribution of the
output of renewable energy sources, which can be expressed as (18):
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W P,P
�( ) � inf

Π
∫

Ξ2
ξ̂ − ξ
����� �����Π dξ̂, dξ( ){ }

� inf
Qi

1
m
∑m
i�1
∫

Ξ
ξ̂ i − ξ
����� �����Qi dξ( )⎧⎨⎩ ⎫⎬⎭ (18)

where Π is the joint distribution set of ξ̂ and ξ; Qi is the conditional
probability distribution of Π when ξ̂ � ξ̂i. we have (19):

Π dξ̂ i, dξ( ) � 1
m
Qi dξ( ) (19)

Then, based on the robust optimization theory, the objective
function is relaxed as (20, 21):

min
�Pi,PU

i ,P
D
i ,Y
∑n
i�1

ci �Pi − ciP
L
i + cUi P

U
i + cDi P

D
i( ) + sup

P∈D
E cTYξ( ) (20)

Let

l ξ( ) � sup
P∈D

E cTYξ( ) � sup
P
�
∫

Ξ
cTYξP

�
dξ( ) (21)

Considering the total probability equation:

P
�

dξ( ) � 1
m
∑m
i�1
Qi dξ( ) (22)

Based on the Lagrange function, we have (23):

sup
Qi

1
m
∑m
i�1
∫

Ξ
cTYξQi dξ( ) + λ ρ − 1

m
∑m
i�1
∫

Ξ
ξ̂ i − ξ
����� �����Qi dξ( )⎛⎝ ⎞⎠

� λρ + 1
m
∑m
i�1

sup
ξ

l ξ( ) − λ ξ̂ i − ξ
����� �����( )

(23)

where λ ≥ 0 is the Lagrange multiplier under the condition
W(P, P̂)≤ ρ.

By introducing the auxiliary variable si, the dual problem of (22)
can be expressed as (24, 25):

λρ + inf
si

1
m
∑m
i�1
si (24)

s.t. sup
ξ

l ξ( ) − λ ξ̂ i − ξ
����� �����# si,∀i ∈ 1, 2, ..., m{ } (25)

Besides, by introducing the intermediate variable
z i(‖z i‖∞ # λ), (24) can be equivalent as (26):

sup
ξ∈Ξ

l ξ( ) − zTi ξ̂ i − ξ( ) � −ziTξ̂i + sup
Qi

∫
Ξ
cTYξ + zTi ξ( )Qi dξ( )

� −ziTξ̂ i + sup
Qi

∫
Ξ
z i + YTc( )TξQi dξ( )≤ si

(26)
According to the dual theory, we have (27):

FIGURE 1
Improved PG&E69 power distribution system.

TABLE 1 Comparison of optimization results of various methods.

Method Adjustment cost/$

Robust optimization 3.10 × 104

The proposed method 2.77 × 104

Monte Carlo method 2.74 × 104

Frontiers in Energy Research frontiersin.org04

Wang et al. 10.3389/fenrg.2024.1440192

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1440192


zi � −YTc (27)

Then, the optimal objective can be expressed as (28, 29):

min
�Pi,PU

i ,P
D
i ,Y,λ,si ,γ

∑n
i�1

ci �Pi − ciP
L
i + cUi P

U
i + cDi P

D
i( ) + λρ + 1

m
∑m
i�1
si (28)

s.t. −ziTξ̂ i � cTYξ̂ i ≤ si
zi‖∞ ����� ���� − YTc‖∞ ≤ λ

{ (29)

4 Convex approximation of chance
constrained combining conditional
risk value

Given the nonconvex nature of chance constraints, solving the
model becomes challenging. To address this issue, the paper
proposes utilizing a conditional risk value, as suggested by Ben-
Tal et al. (2009), to formulate a convex approximation of these
constraints in the worst-case scenario. For the convenience of
expression, this paper takes the upper limit of node voltage as an
example to deduce, and (13) is recorded as (30):

ψ aMk ξ − bMk ≤ 0[ ]≥ 1 − εV (30)
where aMk � αMk (Y + I); αMk � [αMk,1, αMk,2, ..., αMk,n];
bMk � 1 −∑n

j�1
(αMk,j �Pj + βMk,jQj − αMk,jP

L
j ); I ∈ Rn×n is the unit

diagonal matrix.
This paper uses the conditional risk value to approximate the

chance constraint of node voltage upper limit in the worst case,
shown as follows:

sup
P∈D

ψ aMk ξ − bMk ≤ 0[ ]≥ 1 − εV (31)

And the following constraints can be established by conditional
risk value (Rockafellar and Uryasev, 2000) in (32):

sup
P∈D

inf
τM
k

τMk + 1
εV

E aMk ξ − bMk − τMk[ ]+
� inf

τM
k

τMk + 1
εV

sup
P∈D

E aMk ξ − bMk − τMk[ ]+ ≤ 0 (32)

where τMk is the dual variable; E[•] is the expectations of •;
[•]+ � max(•, 0). By (31), the original nonconvex chance
constraint form can be rewritten as a distributionally robust form

For (31), we have

sup
P∈D

E aMk ξ − bMk − τMk[ ]+( ) � sup
Qi

1
m
∑m
i�1
∫

Ξ
aMk ξ − bMk − τMk[ ]+Qi dξ( )

(33)

Then, based on the Lagrange function, we have (34):

sup
Qi

1
m
∑m
i�1
∫

Ξ
aMk ξ − bMk − τMk[ ]+Qi dξ( ) + λMk ρ − 1

m
∑m
i�1
∫

Ξ
ξ̂i − ξ
����� �����Qi dξ( )⎛⎝ ⎞⎠

� λMk ρ +
1
m
∑m
i�1

sup
ξ

E aMk ξ − bMk − τMk[ ]+( ) − λMk ξ̂i − ξ
����� �����( )

(34)

where λMk ≥ 0 is the Lagrange coefficient corresponding to
corresponding to the constraint W(P, P̂) ≤ ρ.

Then, by introducing auxiliary variables sMk.i, the dual problem of
(33) can be expressed as (35, 36):

λMk ρ + inf
sM
k,i

1
m
∑m
i�1
sMk,i (35)

s.t.

sup
ξ

E aMk ξ − bMk − τMk[ ]( ) − λMk ξ̂ i − ξ
����� �����( ) # sMk,i

sup
ξ

0 − λMk ξ̂i − ξ
����� �����( ) # sMk,i

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (36)

FIGURE 2
Power generation costs under different Wasserstein radius.
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Because sMk,i ≥ 0, − sup
ξ

(λMk ‖ξ̂i − ξ‖) ≤ 0 ≤ sMk,i should be
established.

Let

lMk ξ( ) � sup
P∈D

E aMk ξ − bMk − τMk[ ]( ) (37)

Introduce variables zMk,i,∀i ∈ 1, 2, ..., m{ }, where ‖zMk,i‖∞#λMk ,
and (35) can be equivalent to (38):

sup
ξ∈Ξ

lMk ξ( ) − sup
‖zk,i‖∞#λk

zMk,i( )T ξ̂i − ξ( )
� − zMk,i( )Tξ̂ i − bMk − τMk + sup

Qi

∫
Ξ
zMk,i + aMk( )T( )TξQi dξ( )≤ sMk,i

(38)

According to the duality theory, we have (39):

zMk,i � − aMk( )T (39)

The conditional risk value constraints can be depicted as (40):

− zMk,i( )Tξ̂ i − bMk − τMk � aMk ξ̂ i − bMk − τMk ≤ sMk,i

zMk,i‖∞ ����� ���� − aMk ‖∞ # λMk

τMk + 1
εV

λMk ρ +
1
m
∑m
i�1
sMk,i⎛⎝ ⎞⎠≤ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(40)

In the same way, the node voltage lower limit chance constraint
can be expressed as (41):

FIGURE 3
Adjustment cost curve with the confidence level.

FIGURE 4
Adjustment cost changes with sample size curve.
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amk ξ̂ i − bmk − τmk ≤ smk,i

−amk
���� ����∞ # λmk

τmk + 1
εV

λmk ρ +
1
m
∑m
i�1
smk,i⎛⎝ ⎞⎠≤ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(41)

where amk � αmk (Y + I); αmk � [αmk,1, αmk,2, ..., αmk,n];
bmk � 1 −∑n

j�1
(αmk,j �Pj + βmk,jQj − αmk,jP

L
j )

In summary, the distributionally robust chance-constrained
proposed in this paper is as (42, 43):

min
�Pi,r+ ,r− ,Y,λ,si ,γ

∑n
i�1

ci �Pi − ciP
L
i + cUi P

U
i + cDi P

D
i( ) + λρ + 1

m
∑m
i�1
si (42)

s.t.

cTYξ̂i ≤ si, −YTc
���� ����∞ ≤ λ

aMk ξ̂ i − bMk − τMk ≤ sMk,i, −aMk
���� ����∞ # λMk , τ

M
k + 1

εV
λMk ρ +

1
m
∑m
i�1
sMk,i⎛⎝ ⎞⎠≤ 0

amk ξ̂ i − bmk − τmk ≤ smk,i, −amk
���� ����∞ # λmk , τ

m
k + 1

εV
λmk ρ +

1
m
∑m
i�1
smk,i⎛⎝ ⎞⎠≤ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(43)

In summary, it is not difficult to see that the operation model of
the distribution grid proposed in this paper is linear and easy to
solve. In addition, compared with the traditional method, the model
proposed in this paper needs to deal with fewer variables, which can
shorten the calculation time.

Let the error rate function as (44):

FIGURE 5
Comparison of computational time with existing nonlinear chance constraint methods in IEEE33 and PG&E69 distribution grids. (A)
IEEE33 distribution grids. (B) PG&E69 distribution grids.

FIGURE 6
Comparison of computational time with existing nonlinear chance constraint methods in IEEE85 and IEEE 118 distribution grids. (A)
IEEE85 distribution grids. (B) IEEE118 distribution grids.
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ε � F − FMC
∣∣∣∣ ∣∣∣∣

FMC
(44)

Where FMC represents the result obtained by the Monte Carlo
method, and F represents the result obtained by other methods.

Besides, this paper defines the voltage deviation function as (45):

Δ � max
Vi − V0| |
V0

× 100%, i � 1, 2, 3,/n (45)

where |•| is the absolute value of •.

5 Simulation results

This paper tests the modified PG&E69-bus distribution grids for
simulations. The rated output power of the distributed generation device
in the example is 150 kW.The power grid in southeasternAustralia from
2012 to 2013 was used to construct the Wasserstein ambiguity set and
distributed power generation output data. The rated active power of each
active power regulating equipment is 333kW, 267kW, 300kW, 300kW,
333kW, 267kW, 300kW, 300kW, 333kW, 267kW, 300kW, 300kW,
respectively. The specific grid structure is shown in Figure 1. In addition,
the upper and lower limits of the voltage magnitude are 1.03 p.u. and
0.97 p.u. The sample capacity of the Wasserstein ambiguity set is 2000;
the Wasserstein radius is 0.5 × 10−3.

Compared with robust optimization and the Monte Carlo
method, the comparison of the optimization results between the
method proposed in this paper and the two is shown in Table 1:

Combined with the optimization results described in Table 1,
we can see that the optimization results obtained by the proposed
method have an error rate of only 1% compared to the Monte
Carlo method, while the error rate of the robust optimization
method is 13.1% compared to the Monte Carlo method.
Therefore, the method proposed in this paper can fully meet
practical engineering requirements in terms of
calculation accuracy.

Moreover, compared with the robust and stochastic
optimization methods, the adjustment cost of the optimization
method proposed in this paper varies with the Wasserstein
radius, as shown in Figure 2. It is observable from our
analysis that the optimization outcomes yielded by our
method gradually diverge from those of risk-neutral stochastic
optimization and incline towards robust optimization outcomes
as the Wasserstein radius increases. When leaning towards
stochastic optimization, it indicates that the decision-maker
believes that the probability distribution of uncertain variables
in constructing the ambiguity set is accurate enough or there is
sufficient historical data to describe the uncertainty of distributed
generation, and the decision tends to be economic. Conversely,
the shift towards robust optimization indicates the decision-

FIGURE 7
Comparison of computational time with existing nonlinear chance constraint methods.

TABLE 2 Voltage deviation comparison.

Maximum voltage deviation (%) Correspondent node/$

Before optimization 5.20 54

After optimization without voltage constraints 3.31 54

After optimization 2.80 54
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maker’s anticipation of significant future risks, prioritizing
decision reliability over economic concerns. In summary, the
proposed method can reflect the subjective risk preferences of
decision-makers by adjusting the Wasserstein radius parameter,
thereby achieving a reasonable choice between scheduling
economy and robustness. In other words, this method can
realize the flexible choice of optimization decision in economy
and robustness, but whether the optimization result tends to be
robust or economical is determined by the risk preference of
decision makers.

For the optimization case where the sample size is 2000, and the
Wasserstein radius is 0.5 × 10−3, the impact of different confidence
levels on the adjustment cost is shown in Figure 3. We can see that
the adjustment cost will also increase as the confidence level
increases. This is in line with the general law. When the
confidence level is improved, the tolerance of the grid to the
voltage limit is reduced, so the output of each active regulation
unit will be raised, which will further increase the cost. In general,
with the increase of confidence level, it is necessary to sacrifice
certain economy to meet the requirements.

In addition, when the confidence level is 95%, and the
Wasserstein radius is 0.5 × 10−3, changes in sample size will also
lead to adjustment costs, as shown in Figure 4. We can see that the
corresponding optimization cost will decrease as the sample size
increases. This is because as the sample size increases, the probability
information required by the Wasserstein fuzzy set is more
comprehensive. Therefore, the Wasserstein fuzzy set describes the
uncertainty of distributed generation output more accurately,
reducing the decision-making conservatism. As reflected in the
optimization results, the optimization cost will be reduced.

However, it should be noted that the selection of sample size is
closely related to the calculation speed. Although the increase in
sample size will reduce the optimization cost, the calculation
efficiency will also decrease. Therefore, this paper gives the
optimization time under different sample methods as shown in
Figures 5, 6.

We can see that, compared to the nonlinear chance constraint
form, the method proposed in this paper is more time-saving. The
calculation time will increase as the number of nodes in the system
increases, or the sample size increases. However, the method
proposed in this paper takes less time than the existing nonlinear
chance-constrained method. Especially when the number of nodes is
large and the sample size is enormous, the method proposed in this
paper is more time-saving and has more engineering
application value.

The maximum voltage deviation before and after optimization
and its correspondent node are shown in Table 2.

In addition, the voltage distribution of nodes before and after
optimization is shown in Figure 7. Based on Figure 7 and Table 2, it
is not difficult to see that the optimized voltage deviation of the
proposed method in this paper is significantly smaller than in the
other two cases. In addition, there are voltage violation situations
before optimization and situations without considering voltage
constraints. Still, there is no voltage violation after considering
voltage constraints, which is sufficient to demonstrate the
effectiveness of the proposed method in ensuring system
voltage security.

6 Conclusion

This paper proposes a distributionally robust chance-
constrained optimization dispatch model considering voltage
security constraints. First, the comparison between robust
optimization and stochastic optimization shows that the method
proposed in this paper can reflect the subjective risk preference of
distribution grid decision-makers by adjusting the Wasserstein
radius parameter, thereby achieving a reasonable choice between
dispatch economy and robustness. Second, compared to existing
calculation methods, this paper uses the linear power flow method
and conditional risk value to convert nonconvex chance constraints
into linear constraints, reduce computational complexity, and
shorten calculation time, especially for the system with multiple
nodes and a high sample size. Finally, as mentioned in the example,
the optimized voltage deviation is minor, and no voltage exceeds the
limit, indicating the effectiveness of the method proposed in this
article in ensuring the security of the distribution grids.
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