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In today’s world, a country’s economy is one of the most crucial foundations.
However, industries’ financial operations depend on their ability to meet
their electricity demands. Thus, forecasting electricity consumption is vital
for properly planning and managing energy resources. In this context, a
new approach based on ensemble learning has been developed to predict
monthly electricity consumption. The method divides electricity consumption
time series into deterministic and stochastic components. The deterministic
component, which consists of a secular long-term trend and an annual
seasonality, is estimated using a multiple regression model. In contrast,
the stochastic part considers the short-run random fluctuations of the
consumption time series. It is forecasted by four different time series, four
machine learning models, and three novel proposed ensemble models: the
time series homogeneous ensemble model, the machine learning ensemble
model, and the heterogeneous ensemble model. The study analyzed data
on Pakistan’s monthly electricity consumption from 1991-January to 2022-
December. The evaluation of the forecasting models is based on three criteria:
accuracy metrics (including the mean absolute percent error (MAPE), the
mean absolute error (MAE), the root mean squared error (RMSE), and the
root relative squared error (RRSE)); an equality forecast statistical test (the
Diebold and Mariano’s test); and a graphical assessment. The heterogeneous
ensemble model’s forecasting results show lower error values compared to
the homogeneous ensemble models and the singles models, with accuracy
metrics measured by MAPE, MAE, RMSE, and RRSE at 5.0027, 460.4800,
614.5276, and 0.2933, respectively. Additionally, the heterogeneous ensemble
model is statistically significant (p < 0.05) and superior to the rest of the
models. Also, the heterogeneous ensemble model demonstrates considerable
performance with the least mean error, which is comparatively better than
the individual and best models reported in the literature and are considered
baseline models. Further, the forecast values’ monthly behavior depicts that
electricity consumption is higher during the summer season, and this demand
will be highest in June and July. The forecast model and graph reveal that
electricity consumption rapidly increases with time. This indirectly indicates that
the government of Pakistan must take adequate steps to improve electricity
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production through different energy sources to restore the country’s economic
status by meeting the country’s electricity demand. Despite several studies
conducted from various perspectives, no analysis has been undertaken using
an ensemble learning approach to forecast monthly electricity consumption
for Pakistan.

KEYWORDS

Pakistan electricity consumption, monthly electricity consumption forecasting, times
series models, machine learning models, homogeneous and heterogeneous ensemble
learning models

1 Introduction

Electricity cannot be efficiently stored. Thus, it must be utilized
as it is generated. As a result, it is critical to use onlywhat is necessary.
The distribution subsidiary orders electricity from the generating
subsidiary and then delivers it to clients. Overproduction, or energy
created but not delivered, is deemed a dead loss by the corporation.
Thus, a greater forecast of consumer demand lowers mistakes in
manufacturing orders, minimizing losses due to overproduction
(Hu et al., 2024; Iftikhar, 2018; Wang et al., 2024; Hou et al., 2017).

At the distribution subsidiary level, there are also electricity
losses that can have a significant impact. Losses can be classified into
two types: technical and nontechnical. Non-technical losses include
meter failures, fraudulent customer conduct, and management
problems (Shah et al., 2019; Li et al., 2021; Lei et al., 2023).
Technical losses are caused by electrical networks and equipment.
Electricity losses may be calculated by summing technical and non-
technical losses (Iftikhar et al., 2024c; Shirkhani et al., 2023; Ju et al.,
2022). As a result, power suppliers established a yearly piloting
system with a monthly verification point to monitor losses and
implement operational changes to maintain a normative loss rate.
Accurate monthly customer projections are critical to preventing
outcomes from deviating from expectations (Duan et al., 2023;
Wang et al., 2017; Iftikhar et al., 2024a). Therefore, the proposed
high-accuracy forecasting method aims to improve the electricity
suppliers’ piloting system.

Monthly electricity consumption forecasting has been
extensively studied over the last four decades. Researchers
have developed various techniques to forecast monthly
electricity consumption, broadly classified into four categories:
statistical methods, machine learning models, decomposition-
combination techniques, and hybrid approaches (Shah et al., 2022;
Gonzales et al., 2024). Statistical models, such as autoregressive-
based models, exponential-smoothing models, and linear and
nonlinear regression methods, are simple mathematical functional
forms that are easy to apply (Elsaraiti et al., 2021; Omogoroye et al.,
2023; Krstev et al., 2023). For instance, a study Shah et al. (2020)
conducted in Pakistan used a component-wise forecasting
approach to predict electric power consumption 1 month in
advance, dividing the data into the deterministic component
and the stochastic component. To model and forecast the
first component (the deterministic), linear (parametric) and
nonlinear (nonparametric) regression methods were used, while
the second component (the stochastic) was modeled by four various
time series models. The study found that linear and nonlinear
regression approaches had the highest accuracy and efficacy with

the combination of the autoregressive moving average model.
Similarly, a study (Hussain et al., 2016) utilized the Holt-Winter
and the ARIMA time series models to model and analyze secondary
data from 1980 to 2011 to forecast Pakistan’s total electric power
consumption and its individual components.The findings indicated
that the Holt-Winter time series model was the most appropriate for
this forecasting analysis. Furthermore, the research work projected
an increase in electric power consumption, leading to a wider gap
between consumption and production. The research recommended
several strategies to mitigate the demand-supply disparity and
ensure a consistent supply of electric power to various sectors of
the economy.

In contrast, machine learning algorithms address the most
complex nonlinear time series forecasting problems (Pham et al.,
2020; Khalil et al., 2022; Gonzalez-Briones et al., 2019; Meng et al.,
2024). For example, in a study Leite Coelho da Silva et al. (2022)
conducted in Brazil, various time-series and machine-learning
forecasting models were applied to the industrial electricity
consumption dataset to forecast 1 month ahead. The findings
showed that the multi-layer perceptron model had the best
forecasting performance compared to all the other competitor
models. In the decomposition-combination technique, the original
time series data is divided into sub-series to improve performance
by creating a more reliable form (Iftikhar et al., 2023c; Carbo-
Bustinza et al., 2023; Feng et al., 2024). For instance, a study
Iftikhar et al. (2023d) analyzing monthly electricity consumption
in Pakistan decomposed the original electric power consumption
series into three new subsequent: a secular long-term trend sub-
series, a seasonal sub-series, and a stochastic sub-series. When
applied to Pakistan’s monthly electric power consumption dataset,
which ranges from 1990 to 2020, the proposed framework provided
highly accurate and efficient gains, outperforming benchmark
approaches and improving the performance of the final aggregate
model forecasts. On the other hand, many researchers have also
introduced hybrid models by merging the specific features of two
or more models to build new models (Fan et al., 2020; Ding et al.,
2022; Iftikhar et al., 2024b; Hajirahimi and Khashei, 2023). For
example, a study Pełka (2023) proposed a method for mid-term
load forecasting using hybrid statistical models that employ input
data representing a load time series’ normalized annual seasonal
cycle with filtered trend and unified variance. The proposed
approach avoids the need to understand the complex time series
and has several advantages over an alternative method that does
not involve forecasting coding variables. The proposal tested mid-
term load forecasting issues for thirty-five European countries and
outperformed predecessors Prophet, ETS, and ARIMA by about
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13.7%, 17.4%, and 25% in the case ofMAPE error.The author claims
the proposal can be used for short-term electric power demand
forecasting.

As seen in the previous works on Pakistan’s electricity
consumption (Hussain et al., 2016; Shah et al., 2020; Yasmeen and
Sharif, 2014; Iftikhar et al., 2023a). The researchers have done
their effects to achieve an accurate and efficient monthly forecast
of electric power consumption in Pakistan. They used different
forecasting models and methods in this context. However, there is
a research gap among these studies; there is no reachable available
to model and forecast the electric power consumption for Pakistan
using the ensemble learning approach. Specifically to investigate
the ensemble-based technique in the context of component-based
forecasting. Thus, this work proposes three novel ensemble models
based on various time-series and machine-learning models to
implement and boost the forecasting accuracy of monthly electricity
consumption in Pakistan. To do this, the electricity consumption
time series is separated into two parts: the deterministic and
the stochastic. The deterministic component, which includes a
secular long-term trend and yearly seasonality, is modeled and
forecast by amultiple regressionmodel. However, the stochastic part
considers the short-run fluctuations of the consumption time series.
To model and forecast the stochastic part using four time-series
models, four machine-learning models, and three novel proposed
ensemble models: the time-series homogeneous ensemble model,
the machine-learning ensemble model, and the heterogeneous
ensemble model. The trials gathered data on Pakistan’s monthly
power usage from 1991-January to 2022-December.

However, in Pakistan, energy consumption does not often
provide any inferential analysis to examine variations in prediction
accuracy amongst the models under consideration. Thus, this
research’s primary contribution is to investigate the ensemble-
based technique in the context of component-based forecasting.
Furthermore, the forecasting ability is assessed over 6 years, and
the importance of variations in prediction accuracy is studied.
In addition, the introduced ensemble learning can capture the
deterministic properties (secular long-term trend and yearly
seasonality) of the power consumption time series, resulting in
improved forecasting accuracy.

On the other hand, the critical differences among the past
studies on the electric consumption of Pakistan are the following:
a) the estimation of the deterministic part was parametric and
nonparametric regressionmodels. Conversely, some authors directly
treated the deterministic part in a single forecasting model. While
the current work only uses the multiple regression model. b) The
stochastic component was modeled using four single time series
models. In contrast, the current research work uses eleven different
forecasting models, such as four different time series, four machine
learning models, and three novel proposed ensemble models: the
time series homogeneous ensemble model, the machine learning
ensemble model, and the heterogeneous ensemble model to model
and forecast the stochastic components. In this sense, despite several
studies conducted from different perspectives, no analysis has
been undertaken using an ensemble learning approach to forecast
monthly electricity consumption for Pakistan.

The rest of the paper is organized in the following
manner: In Section 2, the proposed ensemble-based forecasting
methodology and its general procedure are described. Section 3

demonstrates an empirical application of the proposed ensemble
forecasting methodology using Pakistan’s monthly electricity
consumption data. Section 4 is a comparative discussion about
the best ensemble model of this work versus the best models
available in the literature and some well-known baseline
models. Finally, Section 5 concludes the paper with remarks and
future research directions.

2 The general procedure of the
developed ensemble learning

This section describes the proposed ensemble forecasting
approach for one-month-ahead power consumption forecasts. The
electric power consumption time series has complicated properties.
These properties are expected to include a secular long-run trend,
pronounced seasonality, high volatility, non-normality, and non-
stationarity. For instance, see Figure 1A for the monthly electric
power consumption time series from 1991-January to 2022-
December surprisedwith long-run linear secular trend components.
In addition, It can show an increasing secular trend component in
the electric power consumption time series. Figure 1B shows yearly
consumption data for the past 32 years (1991–2022), which shows
a continuously increasing trend in electric power consumption
till 2008, while a slight decline in 2009 and again increasing in
the consumption of electric power and attained a peak in 2019.
However, it can also be observed that during the 2020 years,
there was lower consumption, which was the leading cause of
the COVID-19 pandemic. Figure 1C shows the average monthly
electricity consumption over the past 32 years; it is confirmed
from this figure that the consumption of electric power is lower
during January, February, and March, while moderate during
April, November, and December. However, higher electric power
consumption was observed during the summary winter (May,
June, July, and August). In the same way, September and October
have higher consumption than the other months without the
summary months. Figure 1D illustrates the monthly consumption
for three consecutive years and confirms an annual seasonal effect.
Figure 1E for the autocorrelation plot of the original electric
power consumption at sixty lags, and Figure 1F for the partial
autocorrelation plot of original electric power at sixty lags. These
figures clearly illustrate a discernible nonlinear long-run trend
and an annual seasonality. Furthermore, non-normality and non-
stationarity are also evident from these visual representations.
Thus, adding these patterns into the predictive model considerably
improves forecast accuracy. The power consumption time series
is divided into deterministic and stochastic to do this. The
deterministic component, which includes a secular long-term
trend and yearly seasonality, is calculated by a multiple regression
model. However, the stochastic portion considers the short-
run random changes in the consumption time series. It is
predicted by four distinct time series, four machine learning
models, and three new suggested ensemble models: the time series
homogeneous ensemble model, the machine learning ensemble
model, and the heterogeneous ensemble model. After estimating
both sections individually, the estimates of the deterministic
and stochastic components are combined to provide the final
projections.
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FIGURE 1
Characterization of Pakistan electric power consumption (kWh) (1991–2022): monthly electric power consumption time series plot (A); Yearly electric
power consumption bar plot (B), displays average monthly electric power consumption over the past 32 years (C); monthly electric power
consumption line plot for over the 3 years (D), autocorrelation function plot (E), partial autocorrelation function plot (F).

Let (log(En)) be consumption time series of electric power for
nth month. To model the features of the electric power consumption
time series, the (log(En))might be as follows:

log (En) = dn + sn (1)

In the above Equation 1, the electric power
consumption time series En includes two significant
components: dn, which is deterministic, and sn, which is
stochastic. The deterministic component comprises secular
trends and annual cycles. The mathematical definition
of dn is:

dn = tn + an (2)

In Equation 2, tn represents the secular trend (long-term), and
an represents the annual periodicity. In contrast, sn is a stochastic
component (residuals) that determines the short-term dynamics.

Multiple regression calculates the deterministic component dn.
However, for stochastic component estimation, this work considers
eleven different forecasting models, including four different time-
series models: the AutoRegressive Moving Average (ARMA)model,
the simple exponential smoothing (SES) model, the Nonparametric
AutoRegressive (NPAR) model, and the Theta model; four different
machine-learning models: the Artificial Autoregressive Neural
Network (AANN) model, the Support Vector Regression (SVR)
model, the Random Forest (RF) model, and the Decision Tree (DT)
model; and there are three novel proposed ensemble models: the
time series homogeneous ensemble model, the machine learning
ensemble model, and the heterogeneous ensemble model. Hence,
three of the eleven forecasting models are used for comparison
purposes, eight are single-base models, and three are the ensemble
models within the proposed forecasting technique.
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2.1 Modeling and forecasting the
deterministic component

This section outlines the process of modeling and estimating
the deterministic part using a multiple regression method. In
this context, the response variable, denoted as dn, is modeled by
estimating the secular trend component, denoted as tn, which is a
function of the series (1,2,3,…,n) and it estimated by the fourth-
degree polynomial regression model. The mathematical model of
tn is:

tn =Φ0tn +Φ1t
2

n +Φ2t
3

n +Φ3t
4

n

However, the yearly periodicity is described using dummies
represented as

an =
12

∑
i=1

ΦiIi,n

where Ii,n = 1 if n refers to the ith month of the year and 0 otherwise.
However, the regression coefficients (Φi) for the deterministic part
are computed using the ordinary least squares approach. Thus,
once all regression coefficients have been determined, the resulting
equation may be expressed as:

d̂n =
4

∑
h=0

Φ̂ht
h
n +

15

∑
i=4

Φ̂iIi,n (3)

Once the deterministic component is estimated by usingEquation
3, the random (stochastic) part can be obtained:

sn = log (En) − (t̂n − ân) (4)

2.2 Modeling and forecasting the
stochastic component

After estimating the deterministic component using the
multiple regression technique, we obtain the remaining
part, which is considered as a stochastic component was
obtained through Equation 4. To model and forecast the stochastic
part, this work explores four different univariate time series models:
the ARMA model, the SES model, the NPAR model, and the Theta
model. Additionally, we explore four different univariate machine
learning models: the AANN model, the SVR model, the RF model,
and the DTmodel. On the other hand, three novel ensemble models
have been proposed: the time series homogeneous ensemble model,
the machine learning ensemble model, and the heterogeneous
ensemble model. Details about these models are given below.

2.2.1 Autoregressive moving average model
The autoregressive moving average (ARMA) model is a strong

strategy that considers the target variable’s previous values and
integrates pertinent information using moving average terms. The
ARMA model describes the behavior of the current study variable,
sn, using the preceding r terms and the delayed residual values. By
considering both the AR and the MA process, the ARMA model

provides a comprehensive framework for describing the dynamics
of the variable in question. The model may be expressed as follows:

sn = u+
v

∑
l=1

βlsn−1 +
r

∑
o=1

ηoen−o + en (5)

In Equation 5, u denotes the intercept, βl (l = 1,2,…,v) and
ηo (o = 1,2,…, r) are the parameters of the AR and the MA
components, respectively, and en is the white noise process,
having zero mean (μ = 0) and variance σ2e . Based on the visual
investigation (autocorrelation and partial autocorrelation plots) and
the theoretical analysis (theAIC andBICmeasures), theARMA(3,2)
model is the best model for the stochastic series of the eclectic power
consumption (sn) forecasting.

2.2.2 The Simple Exponential Smoothing Model
The Simple Exponential Smoothing Model (SES) is a group of

forecasting models that apply exponentially decreasing weights to
previous observations. It is a time-series forecasting model that
uses a weighted average of past observations to predict the future
value of a variable. The ES model assumes that a variable’s future
value depends on its past values, with greater emphasis placed
on recent values than on older ones. The SES model can be
expressed as follows:

sn+1 = α ⋅ sn + (1− α) ⋅ sn−1 (6)

In the given Equation 6, sn+1, sn, and sn−1 are the actual values
of the stochastic component time series at times n+1, n, and n-1. At
the same time, α is the smoothing parameter determining the weight
assigned to the most recent observation.

2.2.3 The Theta Model
The Theta Model is a forecasting method that predicts future

values based on the average change in the time series data. It involves
calculating the average change between consecutive time points and
extrapolating it into the future. The equation for the Theta Model
is given by:

sn+1 =
1
N
(sn + sn−1 +⋯+ sN−n+1) (7)

In the above Equation 7, sn+1, sn, sn−1, and sN−n+1 are the
actual values of the stochastic series of electric power consumption
time series at times n + 1, n, n − 1, and N − n + 1. Here, n denotes
the number of past values used in the average.

2.2.4 The nonparametric autoregressive model
The nonparametric autoregressive model (NPAR) presents an

alternative to the conventional parametric AR model, departing
from the latter’s reliance on specific mathematical equations to
elucidate the relationship between past and future values. In
contrast, NPAR models employ flexible and adaptive techniques,
such as kernel regression or spline functions, to capture dynamic
patterns in the data without explicit parameter estimation. These
models are distinguished by their flexibility, absence of predefined
parameters, emphasis on local relationships, and reliance on data-
driven structures to address intricate and nonlinear dependencies
within time series data. In this model, the relationship between the
variable sn and its previous values is not restricted to a specific
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parametric form, thereby allowing for the possibility of nonlinear
associations.

sn = u1 (sn−1) + u2 (sn−2) +⋯+ um (sn−m) + εn (8)

In the above Equation 8, the relationship is represented as
a series of smoothing functions, denoted as uj (j = 1,2,…,m),
which describe the association between sn and its previous
values. This study uses cubic regression splines to represent the
smoothing functions, and the model employs the first three lags for
Nonparametric Additive Regression modeling.

2.2.5 The Artificial Autoregressive Neural
Network model

The Artificial Autoregressive Neural Network (AANN) model
is a machine learning approach that uses past observations to
predict future values in a time series. This is done by analyzing a
mathematical function that considers the previous values, denoted
by sn−1,sn−2,…,sn−m, wherem is the time delay parameter. During
training, the backpropagation and steepest descent approaches
minimize the difference between predicted and actual values. When
forecasting, the autoregression order is determined, which indicates
the number of previous values needed to predict the current value
of the time series. The AANN is then trained using a dataset that
reflects the autoregression order, and the number of input nodes
is determined based on this order. These input nodes represent
past lagged observations in univariate time series forecasting. The
AANN’s output provides predicted values. However, choosing the
number of hidden nodes often requires trial and error and lacks
a theoretical basis. Careful consideration is necessary to prevent
overfitting when selecting the number of iterations. In this study,
an NNA design of (4, 2) is utilized, expressed as sn = f(sn−1),
where sn = (sn−1,sn−2,sn−3,sn−4) represents past values of the
monthly stochastic electric power consumption time series (sn),
and f denotes a neural network with four hidden nodes in a
single layer.

2.2.6 Random Forest model
Random Forest (RF) is a machine learning technique that

combines the predictive strength of many decision trees with
randomization to reduce overfitting. It generates a series of decision
trees and uses bootstrapping to train each tree on a different
subset of the training data. The final classification or prediction is
determined by combining individual tree outputs, which can be
achieved using majority voting for classification tasks or averaging
for regression tasks. RF is powerful, as it can average or combine
the outputs of several trees, improving model resilience and
generalization capacity.

2.2.7 Support Vector Regression model
Support Vector Regression (SVR) models are powerful tools

for classifying linear and nonlinear data. They map data points
into a multi-dimensional space and use a hyperplane to separate
data into two classes. The goal is to maximize the margin
between classes while minimizing classification errors. SVR uses
kernel functions like radial, Bessel, Laplacian, and linear kernels
to modify input data and achieve linear separation in higher-
dimensional spaces.

TABLE 1 Mean accuracy metrics.

S.No Error Formula

1 MAPE 1
N

N
∑
n=1
|En−Ên

En
|

2 MAE 1
N

N
∑
n=1
|En − Ên|

3 RMSE [
N
∑
n=1

(En−Ên)
2

N
]
0.5

4 RRSE [

[

N
∑
n=1
(En−Ên)

2

N
∑
n=1
(En−En)

2
]

]

0.5

5 CCP Correlation(En,Ên)

2.2.8 Decision Tree
A decision tree (DT) is a structure that resembles a tree, with

nodes representing characteristics, branches representing decision
rules, and leaves representing results. DTs create a tree for a
dataset, each leaf handling a specific outcome. It divides data into
branches to enhance prediction accuracy, identify variables, and
segment observations. DTs are non-parametric, and modifying
hyperparameters control overfitting.Themathematical equation for
decision tree splitting involves dividing the dataset into subsets
based on a feature and cutoff value. The goal is to find the feature
and cutoff value that optimize the splitting criterion, typically aiming
to maximize information gain or minimize impurity. The choice
of splitting criterion depends on the decision tree algorithm and
problem type.

2.2.9 The proposed homogeneous and
heterogeneous ensemble models

At its core, an ensemble technique integrates outcomes from
various models, each meticulously calibrated before unity. This
approach capitalizes on the inherent strengths of individual models
while compensating for their inherent limitations. Within the
scope of this study, ensemble techniques are initially employed to
compute weights for the results derived from individual models.
The weight assignment is based on training data set average
accuracy errors (see Table 1). The model allocates greater weight
to the ensemble model for training and validation datasets with
lower mean accuracy errors, while models exhibiting higher mean
accuracy errors contribute comparatively less importance to the
ensemble. Notably, the model weights assume small positive values,
and their accumulation equates to one, signifying the percentage
of reliance or anticipated performance on each model. Thus, three
novel proposed ensemble models are the following: the time series
homogeneous ensemble (EnsembleTS) model, the machine learning
ensemble (EnsembleML) model, and the heterogeneous ensemble
(EnsembleTM) model based on the combining the time series and
the machine learning models.

Thus, after estimating the secular trend component and annual
periodicity using the multiple regression model discussed above,
the next step is forecasting the remaining part (dn) using eight
single (four time series and four machine learning models) and
three proposed ensemble models (EnsembleTS, EnsembleML, and
EnsembleTM).Thus, this work can obtain themonthly electric power
consumption for the next month’s forecast as follows:
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FIGURE 2
Pakistan electric power consumption (kWh): The developed
Heterogeneous and Homogeneous Ensemble Learning
Approach Layout.

Ên+1 = exp(t̂n + ân + ŝn) (9)

2.3 Accuracy measures

This study evaluates the performance of eleven different
forecasting models, which consist of eight single base models
(four univariate time series models and four univariate machine
learning models) and three novel proposed ensemble models (the
time series homogeneous ensemble model, the machine learning
ensemble model, and the heterogeneous ensemble model). The
evaluation is based on three criteria: accuracy metrics (including
the mean absolute percent error (MAPE), the mean absolute error
(MAE), the root mean squared error (RMSE), the root relative
squared error (RRSE), the person correlation coefficient (CCP));
an equality forecast statistical test (the Diebold and Mariano’s

TABLE 2 Descriptive statistics.

Statistic Original series log (series)

Minimum 2546.00 7.84

First Quartile 4671.75 8.45

Median 6368.00 8.76

Mean 6695.20 8.75

Mode 3752.00 8.23

Variance 5,489,426.69 0.12

Standard Deviation 2342.95 0.35

Skewness 0.72 −0.02

Kurtosis 3.29 2.91

Third Quartile 8228.50 9.02

Maximum 14981.00 9.61

TABLE 3 Pakistan electric power consumption (kWh): One month ahead
forecasting accuracy metrics for all eleven forecasting models within the
proposed forecasting technique.

Model MAPE MAE RMSE RRSE CCP

ARMA 5.3717 506.9180 690.1303 0.3294 0.9477

SES 5.5962 527.0255 709.7749 0.3388 0.9424

Theta 5.5962 527.0259 709.7752 0.3388 0.9424

NPAR 5.7791 543.1076 698.0856 0.3332 0.9434

AANN 6.0792 558.0787 741.4021 0.3539 0.9365

SVR 5.3107 482.2916 666.6848 0.3182 0.9514

RF 5.7447 547.3708 705.7901 0.3369 0.9439

DT 6.6037 611.7342 778.8630 0.3718 0.9299

EnsembleTS 5.1922 484.2537 653.9029 0.3121 0.9520

EnsembleML 5.5702 521.2896 676.9925 0.3232 0.9485

EnsembleTM 5.0027 460.4800 614.5276 0.2933 0.9560

test); and a graphical assessment (dot plot, bar plot, correlogram
plot, and line plot). The accuracy metrics, including their names,
formulas, and notations, are listed in Table 1. In the given table,
En denotes observed values, while Ên represents forecasted electric
power consumption for the nth observation (n = 1,2,…,72 = N).
Consequently, diminishing values for MAPE, MAE, RMSE, and
RRSE generally signify heightened predictive accuracy of themodel.

On the other evaluation criteria, the equal forecast statistical test,
including Diebold andMariano’s (DM) test, assesses the importance
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TABLE 4 Pakistan electric power consumption (kWh): The outcomes(p-values) of the DM test using the squared loss function for all considered
forecasting models.

Model ARMA SES Theta NPAR AANN SVR RF DT EnsembleTS EnsembleML EnsembleTM

ARMA 0 0.9061 0.9061 0.8676 0.9057 0.1111 0.8935 0.9087 0.0936 0.4565 0.1116

SES 0.0939 0 0.9092 0.5101 0.9055 0.1025 0.7237 0.909 0.0937 0.1625 0.1059

Theta 0.0939 0.0908 0 0.5101 0.9055 0.1025 0.7237 0.909 0.0937 0.1625 0.1059

NPAR 0.1324 0.4899 0.4899 0 0.8633 0.0908 0.8857 0.9028 0.0962 0.0928 0.0939

AANN 0.0943 0.0945 0.0945 0.1367 0 0.0988 0.1427 0.9088 0.0941 0.1137 0.1018

SVR 0.8889 0.8975 0.8975 0.9092 0.9012 0 0.9089 0.9068 0.7714 0.9077 0.1122

RF 0.1065 0.2763 0.2763 0.1143 0.8572 0.0911 0 0.9038 0.0928 0.0957 0.0948

DT 0.0913 0.091 0.091 0.0972 0.0912 0.0932 0.0962 0 0.0916 0.0961 0.0954

EnsembleTS 0.9064 0.9063 0.9063 0.9038 0.9059 0.2286 0.9072 0.9084 0 0.8767 0.1298

EnsembleML 0.5435 0.8375 0.8375 0.9072 0.8863 0.0923 0.9043 0.9039 0.1233 0 0.0943

EnsembleTM 0.8884 0.8941 0.8941 0.9061 0.8982 0.8878 0.9052 0.9046 0.8702 0.9057 0

FIGURE 3
Accuracy metrics: (A) the MAPE, (B) the MAE, (C) RMSE, and (D) RRSE for all considered eleven forecasting models.
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FIGURE 4
Autocorrelation function and partial autocorrelation plots for the three best models among all nine considered models: the EnsembleTM model (A, B),
the EnsembleTS model (C, D), and the SVR model (E, F).

of differences in the model’s forecast performance Diebold and
Mariano (1995).TheDM test is frequently applied in the literature as
a statistical test for evaluating predictions from various forecasting
models. See (Iftikhar et al., 2023e; a,b) for further information on
the application of time series and machine learning forecasting
models. Likewise, the graphic assessment uses line plots, dot
plots, and correlograms (autocorrelation and partial autocorrelation
functions).

To complete this section, the main steps, including the
developed Heterogeneous and Homogeneous ensemble learning
approach, are shown in the visual representation of the procedural
flow provided in Figure 2.

3 Empirical application of the
proposed ensemble technique

This study utilizes monthly averages of Pakistan’s electrical
power consumption (kWh) from 1991-January to 2022-December

(a total of 384 months). The statistics were acquired from the
Pakistan Bureau of Statistics. To develop a dependable and effective
forecasting data model, the dataset was separated into two sections:
training for the model estimate and testing for an out-of-sample
forecast. The training portion made use of 312 observations
made between 1991-January and 2016-December. Model testing
included the period from 2017-January to 2022-December, with 72
observations.

To analyze the electric power consumption time series database,
this work computes the descriptive statistics (smallest, first quartile,
median, arithmetic mean, mode, variance, standard deviation, third
quartile, and highest values) listed in Table 2. In Table 2, the first
column contains the name of each statistic; the second column in
this table contains information about the original electric power
consumption without any treatment; and the third column contains
the natural log of the original electric power consumption time
series. It is seen that after taking the natural log, the variance and
standard deviation are stabilized. On the other hand, normality
is also achieved, as confirmed by the mean, median, and mode,
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FIGURE 5
Comparison of Original and Forecasted Pakistan’s Electric Power
consumption: the EnsembleTM, the EnsembleTM, and the SVR Models
(72 Months).

which have approximately the same values. In addition, after
capturing the deterministic part (the secular long-run trend and
the yearly seasonality components), the remaining series (sn) have
no evidence of seasonality, and the nonstationarity concentres. To
model the stochastic component (sn), this work used eleven different
forecasting models, including four different univariate time series:
the ARMA model, the SES model, the NPAR model, and the
Theta model; four different univariate machine learning models: the
AANN model, the SVR model, the RF model, and the DT model;
and there are three novel proposed ensemble models: the time series
homogeneous ensemble model, the machine learning ensemble
model, and the heterogeneous ensemble model. Finally, combining
the forecasting results from the deterministic and the stochastic
components using Equation 9, three are eleven final forecasting
models for comparison, eight are single base models, and three are
the ensemble models within the proposed forecasting technique.
Therefore, this study evaluates the performance of these models
based on three criteria: a) accuracy metrics, b) an equal forecast
statistical test, and c) a graphical assessment.Within the developed
one-month-ahead electric power consumption forecasting, there are
three key possibilities for comparison among the eleven forecasting
models: compare the performance of eight single models, compare
the performance of the proposed three ensemble models, and
compare single versus the proposed ensemblemodels. Table 3 shows
the 1-month forecast accuracy measures (MAPE, MAE, RMSE,
RRSE, and CCP). Table 3 demonstrates that the EnsembleTM model
outperformed all other competing models, single base models,
and the suggested ensemble models in terms of forecast accuracy.
EnsembleTM is the most effective forecasting model, with results of
5.0027, 460.4800, 614.5276, 0.2933, and 0.9560 for MAPE, MAE,
RMSE, RRSE, and CCP. The EnsembleTS, SVR, and ARMA models
achieved the second, third, and fourth-best results. However, when
all single models were compared, the SVR model had the highest
predicting accuracy, with the ARMA model coming in second.
Among all eleven forecasting models, the EnsembleTM produces

more accurate forecasts than rivals’ single base models or the
proposed ensemble models.

After calculating the performance metrics (MAPE, MAE,
RMSE, RRSE, and CCP), we used the Diebold-Mariano (DM)
test to statistically assess the superiority of models within the
proposed ensemble technique (see Table 4 for p-values). Our
analysis indicates a 5% significance level—the performance of eleven
forecasting models, including eight base models and three proposed
ensemble models. Statistical analysis (the DM test) revealed that
the EnsembleTM model achieved statistically superior performance
across all models. Notably, the EnsembleTM model also showed
strong results, outperforming ten other models.Thus, these findings
confirm EnsembleTM’s accuracy as the most reliable model for one-
month-ahead electric power consumption forecasting within the
scope of this study.

In addition to the above performance criteria, this comparative
analysis also performed a graphical analysis to validate the current
work proposed EnsembleTM model’s superiority further. Figure 3
displays graphical representations of performance measurements
(MAPE, MAE, RMSE, and RRSE) for all 11 models (a–d). The
suggested EnsembleTM model outperforms the evaluated single
base and ensemble models in terms of accuracy (MAPE, MAE,
RMSE, and RRSE), as shown in the figures. Additionally, the
authors examined the correlogramplots (autocorrelation and partial
autocorrelation) of the residuals for these three models (Figure 4).
The absence of significant autocorrelation in the residuals of all
models indicates that they have been sufficiently whitened, signaling
satisfactory model performance. Finally, Figure 5 visually compares
the actual and forecasted electric power demand for the top three
models: the EnsembleTM model, the EnsembleTS model, and the
SVR model. The EnsembleTM model’s forecasts closely track the
actual consumption, demonstrating its exceptional accuracy.

Therefore, the forecasting accuracy metrics, an equal
forecast statistical test, and a graphical assessment show that
the proposed one-month-ahead electric power consumption
forecasting technique is highly accurate and efficient. Specifically,
the EnsembleTM model consistently generates the most precise
forecasts compared to this study’s other single and the proposed
ensemble models.

4 Comparative analysis

The best model (EnsembleTM) was selected among eleven
forecasting models based on three assessment criteria: 1. accuracy
average errors (MAPE, MAE, RMSE, RRSE, and CCP); 2. an equal
forecast accuracy test (the DM test); and 3. graphical evaluation
(line-plot, bar-plot, dot-plot, and correlogram plots). This section
compares our study’s best model, EnsembleTM, to the best models
offered in the literature as standard benchmark models. The current
study discovered that this work is the best model to be highly
comparable with the literature’s best proposal and the widely
accepted standard benchmark techniques.

Table 5 provides a numerical comparison, while Figure 6
presents a graphical comparison of our model with other models
proposed in the literature and the baseline models. Our study
applied the best model proposed by Krstev et al. (2023), the neural
network artificial autoregressive model (NNAR), to our dataset and
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TABLE 5 Pakistan electric power consumption (kWh): accuracy metrics of the proposed versus the literature best and the standard baseline
forecasting models.

Model MAPE MAE RMSE RRSE CPP

EnsembleTM 5.0027 460.4800 614.5276 0.2933 0.9560

NNARKrstev et al. (2023) 5.9892 540.0787 720.0021 0.3415 0.9359

proposed Meng et al. (2011) 5.2922 499.2537 691.7029 0.3291 0.9482

DR-SFGM Ding et al. (2022) 5.3019 480.0816 651.8848 0.3182 0.9504

MLP Leite Coelho da Silva et al. (2022) 5.7911 559.0076 708.0856 0.3392 0.9434

GSM Zhou et al. (2023) 5.3447 507.0708 675.7901 0.3309 0.9479

SARIMA 5.3599 536.0180 689.1303 0.3394 0.9469

DHW 5.4599 546.9080 699.0003 0.3399 0.9458

TBTAS 5.3499 526.9999 679.0991 0.3344 0.9475

FIGURE 6
Accuracy performance metrics: the proposed heterogeneous ensemble model () versus the literature best models. (A) MAPE; (B) MAE; (C) RMSE, and
(D) RRSE.
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calculated their average accuracy errors. The accuracy average error
values reported by Krstev et al. (2023) for their best model were
higher than the average error values of our best model, EnsembleTM.
However, another study proposed a final best model (Proposed
M1) Meng et al. (2011), and the authors computed their prediction
accuracy average errors, which also exceeded our EnsembleTM

model’s average forecasting errors. Similarly, the best-proposed
model (DR-SFGM) in reference Ding et al. (2022), the proposed
best model (MLP) in Leite Coelho da Silva et al. (2022), and the
best-proposed model (GSM) in reference Zhou et al. (2023) were
comparatively worse than our best model (EnsembleTM).

Additionally, we compared our best ensemble model
(EnsembleTM) with different standard benchmarkmodels, including
SARIMA, DHW, and TBATS. The comparison shows that our best
model (EnsembleTM) produces significantly more accurate and
efficient outcomes than the othermodels. For instance, the SARIMA
model produces higher mean errors and lower person correlation
coefficients when compared to our heterogeneous ensemble model
(EnsembleTM). Similarly, the best outcomes are obtained by the
DHW and TBTAS models, but they still show significantly worse
results compared to our best forecasting model. In summary, our
best heterogeneous model obtained high accuracy and efficiency
compared to all competitive models, both the literature best and the
baseline models, as presented in Table 5 and Figure 6.

Thus, significantly accurate and efficient monthly electric
power consumption forecasting offers numerous benefits, including
practical short- and medium-term strategic forecasting for lower
operational and maintenance costs, improved stock and demand
management, increased system reliability, and future reserves.
Furthermore, monthly demand forecasting helps to reduce risks and
make sound economic decisions that effect returnmargins, revenue,
supply allocation, growth planning, inventory accounting, operating
expenditures, personnel, and overall disbursement.

5 Conclusion

Understanding electricity consumption is vital for making
informed decisions regarding infrastructure investment, demand
planning, pricing strategies, and system reliability. Historical data
analysis is essential for forecasting studies that offer insights into
trends, seasonality, and peak consumption periods. This study
aims to uncover the evolution of electric power consumption,
which provides a foundation for accurate forecasting and assists
private sector entities, regulatory bodies, and stakeholders inmaking
informed decisions. By understanding electric power consumption
evolution, authorities and private entities can take measures to
ensure a stable electricity demand, supply, and system reliability. To
accomplish this, the study introduces a novel approach based on
ensemble learning to forecast monthly electricity consumption. The
electricity consumption time series is divided into deterministic and
stochastic components. The deterministic component, including a
secular long-term trend and an annual seasonality, is modeled and
estimated using a multiple regression model. On the other hand,
the stochastic part considers the short-run random fluctuations
of the consumption time series. It is modeled and forecasted by
four different time-series models, four machine-learning models,
and three novel proposed ensemble models: the time-series

homogeneous ensemble model, the machine-learning ensemble
model, and the heterogeneous ensemble model. The data used in
the experiments were monthly electricity consumption data from
Pakistan from 1991-January to 2022-December. The results show
that the proposed ensemble models perform better than individual
models, the best models reported in the literature, and are standard
baseline forecasting models.

However, It was observed that the monthly pattern in our
projected values shows that electricity usage is higher during the
summer, with the peak demand expected in June and July. The
forecast model and graph indicate a rapid increase in electricity
consumption over time. This suggests that Pakistan’s government
needs to enhance electricity production through various energy
sources to improve the country’s economic status by meeting the
electricity demand. Additionally, energy forecasting for all types of
fuels and electricity by the financial sector in Pakistan can help
policymakers understand future energy consumption trends and
ensure a balance between energy supply and demand.

On the other hand, it should be noted that the study only
focuses on Pakistan’s electric power consumption. In the future,
the approach of the current research study should be extended
to other countries. Additionally, the current study proposal relies
on only time-series and machine-learning models and may use
different models, like deep learning, in future projects within the
current proposal.
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