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With the increasing demand for the refined management of residential loads, the
study of the non-invasive load monitoring (NILM) technologies has attracted
much attention in recent years. This paper proposes a novel method of residential
load identification based on load feature matrix and improved neural networks.
Firstly, it constructs a unified scale bitmap format gray image consisted ofmultiple
load featurematrix including: V-I characteristic curve, 1–16 harmonic currents, 1-
cycle steady-state current waveform, maximum and minimum current values,
active and reactive power. Secondly, it adopts a convolutional layer to extract
image features and performs further feature extraction through a convolutional
block attentionmodule (CBAM). Thirdly, the feature matrix is converted and input
to a bidirectional long short-term memory (BiLSTM) for training and
identification. Furthermore, the identification results are optimized with
dynamic time warping (DTW). The effectiveness of the proposed method is
verified by the commonly used PLAID database.
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1 Introduction

The informatization, automation, and intellectualization of smart grids are accelerating,
resulting in increasing demands for transparency on the demand side of power systems. As
a consequence, Non-Intrusive Load Monitoring (NILM) has become a burgeoning area
of research.

In the realm of NILM technology, the interplay between load characteristics and
identification algorithms assumes a pivotal role in shaping the ultimate identification
outcome. The extraction of load characteristics indirectly governs the precision of the final
NILM identification result. In reference (Sun et al., 2022), novel load characteristics emerge
through the extraction of the gray and RGB elements from the V-I characteristic curve, and
a comparative analysis of several lightweight Convolutional Neural Network (CNN)models
ensues. Notably, this approach solely relies on the V-I characteristic curve, and encapsulates
limited information. Reference (Feng et al., 2022) pioneers a method by fusing spatial
features extracted by the CNN with temporal features extracted by the recursive neural
network, presenting a novel avenue for creating load features. Nevertheless, the features
generated pose challenges in their integration with diverse machine vision algorithms.
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Reference (Yin et al., 2023) provides empirical evidence supporting
the notion that the amalgamation of multiple features significantly
enhances the accuracy of algorithmic recognition. Reference
(Kumar, 2024) and (Kumar et al., 2023a) extract the maximum
power from the panel utilising MPPT (Maximum Power Point
Tracking). Because using MTTP is oscillation in a steady-state
condition, reference (Sukanya Satapathy and Kumar, 2020)
proposes “Weight of Set Point Similarity” (WSPS) technique to
obtain the maximum power point, and reference (Sukanya
Satapathy and Kumar, 2019) proposes Modulated Perturb and
Observe (MoPO) Maximum Power Point Tracking (MPPT)
algorithm. To solve fixed step-change issues of classical “Perturb
and Observe (P&O)” MPPT technique, reference (Kumar et al.,
2023b) introduces a novel “Single-input Adaptive Fuzzy-Logic
(SIAFL)” tuned P&O MPPT algorithm.

In response to the aforementioned challenges, this article
proposes a unified grayscale image in a bitmap format,
incorporating multiple load feature matrices, including the V-I
characteristic curve, 1–16 harmonic currents, 1-cycle steady-state
current waveform, maximum and minimum current values, active
and reactive power. This grayscale image comprehensively
encapsulates the characteristic information of each dimension of
the load and allows for further expansion as needed.

The accuracy of NILM identification results is directly
influenced by the choice of the identification algorithm. To solve
the unit commitment (UC) problem, reference (Kumar et al., 2016)
adopted a new hybrid method of “Gaussian Harmony Search”
(GHS) and “Jumping Gene Transfer” (JGT) algorithm (GHS-
JGT). Reference (Kumar et al., 2022) used human psychological
optimization to track the global maximum power point. References
(Liu et al., 2022) leverage Dynamic Time Warping (DTW) to
mitigate the overlearning phenomenon in deep learning
algorithms, thereby enhancing identification accuracy. Reference
(Liu et al.) adopts a Bidirectional Long Short-Term Memory
(BiLSTM) network to implement a probabilistic sparse attention
mechanism for identifying multi-state processes of devices. In
summary, this article presents a non-invasive load recognition
algorithm that combines the CBAM-BiLSTM neural network
with DTW. This algorithm effectively extracts pertinent
information from images, filters out extraneous data, mitigates
overfitting in certain samples by the neural network, and
enhances the overall accuracy of load recognition.

Traditional CNN are limited to extracting coarse feature
matrices from images. To enhance the extraction of detailed
features related to load characteristics, the CBAM is employed to
further refine the extraction process. This paper introduces a non-
intrusive residential electrical monitoring method based on an
enhanced neural network model incorporating CBAM. The
method consists of the following steps: 1) Extraction of a
grayscale image representing the load feature matrix; 2)
Extraction of image features through convolutional layers; 3)
Further feature refinement using the Channel Attention Module
(CAM) and Spatial Attention Module (SAM); 4) Training and
identification using a BiLSTM neural network; 5) Optimization
of identification results using the DTW algorithm. The key
advantage of this algorithm lies in its ability to effectively extract
relevant load features through CAM and SAM, discard irrelevant

information, ultimately leading to a significant improvement in load
identification accuracy.

2 Improved neural network load
identification algorithm flow based on
attention mechanism

Based on the Enhanced Neural Network with CBAM, this paper
introduces a non-intrusive load identification algorithm, integrating
CBAM-BiLSTM and DTW. Figure 1 illustrates the algorithm’s
flowchart, comprising the following steps:1) Collect voltage and
current data from household appliances, extracting features such as
V-I characteristic curve, current fundamental wave, 2–16th
harmonic currents, one-cycle steady-state current waveform,
maximum and minimum current values during steady-state
operation, active power, and reactive power. Normalize the data
and convert it into a standardized grayscale image in Bitmap (BMP)
format. 2) Employ a convolutional layer for image feature extraction,
transforming the image into a preliminary feature matrix. 3)
Conduct additional feature extraction using CBAM, refining the
coarse feature matrix of each electrical appliance into a detailed load
feature matrix. 4) Train and identify the load using a BiLSTM neural
network. The fine feature matrix is processed through a fully
connected layer and input to the BiLSTM network, yielding the
identification result PBiLSTM (Probability vector obtained from
CBAM BiLSTM neural network) = {p1, p2, . . . , pn}, where pn
represents the probability that an unknown load is identified as a
known load. 5) Optimize identification results using the DTW
algorithm. Compare the similarity between DTW and the feature
vector in the load database to obtain the identification result
PDTW (Probability vector obtained by using the DTW
optimization algorithm.) = {p1, p2, . . . , pn}, where pn
represents the probability that an unknown load is identified
as a known load. Combine PBiLSTM and PDTW to derive the final
identification result.

3 Construction of grayscale map of the
load feature matrix

This paper utilizes the publicly available Plug-Level Appliance
Identification Dataset (PLAID) (Medico et al., 2020) for simulation
verification. PLAID gathers current and voltage data from various
appliances, extracting key features such as the V-I characteristic
curve, current fundamental wave, 2–16th harmonic currents, one
cycle of the current steady-state waveform, current maximum and
minimum values, active power, and reactive power. To transform
this data into grayscale images representing the load feature matrix,
a normalization process is initially applied, followed by permutation
and combination techniques to construct the load grayscale image.

3.1 Data normalization

To commence, normalization is applied to the seven types of
feature data. The specific steps are outlined as follows.
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3.1.1 V-I characteristic curve
Starting from the same time point, the steady-state waveform of

one cycle of current and voltage is considered. One cycle is set to be
represented by k data points, and the current and voltage data are
then normalized to a uniform scale of 0–1 through a normalization
process. The formula for this normalization is as follows in
Equations 1, 2:

ii* � Ii − min I
max I − min I
[ ], i � 1, 2,/, k (1)

u*
i �

Ui − minU
maxU − minU
[ ], i � 1, 2,/, k (2)

where, ii * (ui*) represents the data of the i-th sampling point of the
normalized current (voltage); Ii (Ui) represents the data of the i-th
sampling point of the original current; minI (minU) represents the
minimum value of the original current (voltage) in one cycle; maxI
(maxU) represents the maximum value of the original current
(voltage) in one cycle; [ ] denotes a rounding operation.

Drawing the grayscale image of the V-I characteristic curve
involves using voltage as the abscissa and current as the ordinate.

This image can be viewed as a k * k matrix, where the elements’
values range from 0 to 1.

3.1.2 1–16th harmonic currents
The current data is decomposed into the current fundamental

wave I1 and the 2–16th harmonic current Ih through Fourier
series transformation, and the harmonic current is normalized
with the current fundamental wave I1 as the reference value, as
follows in Equation 3.

I*h �
Ih
I1
, h � 2, 3, . . . , 16 (3)

where, Ih* is the per-unit value of Ih after normalization with I1 as the
reference value.

3.1.3 One-cycle current steady-state waveform
Suppose a current cycle is represented by k data points (k is

taken as 64 in this article), where the maximum current value is
maxI and the minimum value is minI. At each k/m point, a data

FIGURE 1
Flow chart of the improved load identification algorithm based on attention mechanism.

FIGURE 2
Schematic diagram of the construction of the grayscale image of the load feature matrix.
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FIGURE 3
The flow chart of the convolution block attention mechanism module extracting fine feature matrix.

FIGURE 4
Schematic diagram of the CAM.

FIGURE 5
Schematic diagram of the SAM.
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point is taken and converted into an m × n matrix. It is then
normalized, as shown in Equation 4.

I*i �
Ii − min I

max I − min I
*n, i � 1, 2,/,

k

m
(4)

where, Ii * is the per-unit value of the i-th current data point after
normalization; Ii represents the data of the i-th sampling point of the
original current.

3.1.4 Current maximum and current minimum
The maximum current and the minimum current are

normalized, as shown in Equations 5, 6.

max I* � max I − Imin

Imax − Imin
(5)

min I* � min I − Imin

Imax − Imin
(6)

FIGURE 6
Schematic diagram of result coupling.

FIGURE 7
Schematic diagram of spatial attention module (SAM) extracting refined feature matrix from a grayscale image.
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Where, maxI* (minI*) represents the normalized per-unit value
of the maximum (minimum) current value. Imax (Imin) represents
the reference value of the maximum (minimum) current in
normalization. The current of a typical household load is usually
between −20A and 20A. Therefore, this article takes Imax for 20A,
and Imin is equal to −20A.

3.1.5 Active and reactive power
The active and reactive power are normalized, as shown in

Equations 7, 8.

P* � P

Pmax
(7)

Q* � Q −Qmin

Qmax − Qmin
(8)

where, P*(Q*) is the per-unit value of the normalized active
(reactive) power. Pmax represents the reference value of the
maximum active power in normalization. Qmax (Qmin) represents
the reference value of the maximum (minimum) reactive power in
normalization. After testing various household appliances, this
article found that the active power of ordinary household loads
usually does not exceed 2,500 W, and the reactive power is usually
between −200 var and 150 var. Therefore, in this article, Pmax is
taken as 2,500 W, Qmax is taken as 150 var, and Qmin is
taken as −250 var.

3.2 Draw the load grayscale image

After normalization, the seven types of feature data are all
converted into data in the range of 0 to 1, but their data sizes
are different, and they need to be combined to form a grayscale
image of a uniform size. According to the different specifications of
the data used by scholars, data formats of different sizes will
eventually be formed. In this paper, the format of the V-I
characteristic curve is a two-dimensional matrix of 48 × 48, and
the format of the steady-state current waveform is 48 × 24. The two-
dimensional matrix of the current fundamental wave and the 2–16th
harmonic currents is a one-dimensional vector of 1 × 16, and the
format of the current maximum value, current minimum value,
active power, and reactive power is a one-dimensional vector
of 1 × 4.

To arrange and combine the seven types of characteristic data. 1)
Generate an empty matrix of size 72 × 72. 2) Fill the V-I
characteristic curve into the element range of the empty matrix
(1:48, 1:48). 3) Fill the steady-state current waveform into the empty
matrix (49:72, 1:48). 4) Fill the current fundamental wave and the
2–16th harmonic currents into the element range (1:48, 49:72), with
each feature occupying a range of 6 × 12 elements. 5) Fill the current

FIGURE 8
The LSTM algorithm structure.

FIGURE 9
The structure of the BiLSTM algorithm.
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maximum value, current minimum value, active power, and reactive
power into (49:72, 49:72), where each feature occupies a 12 ×
12 element range.

A schematic diagram of the process is shown in Figure 2. Using
MATLAB, a feature matrix consisting of seven types of feature data
is converted into a uniformly scaled BMP format load feature
grayscale image, and a 72 × 72 matrix is output on the
computer. The range of matrix elements is from 0 to 255,
representing 256 gray levels in the image.

4 Convolutional block attention
module to extract refined features

The fine feature matrix is further extracted through CBAM
(Woo et al., 2018). The CBAM includes both a CAM and a SAM, in
which the activation function is sigmoid, and the dimension of the
extracted fine feature matrix is 72 × 72 × 20.

Figure 3 is the flow chart of fine feature matrix extraction by
CBAM. First, a rough feature matrix is extracted from the two-
dimensional code gray image of the load feature through a multi-
layer convolution layer, and then a fine feature matrix is extracted by
CBAM. It is noted that CBAM includes two independent sub-modules:
the CAM and the SAM, which respectively focus on the attention
mechanism on the channel and space, and then couple the feature data.

A. Multi-layer Convolutional Layers to Extract Coarse
Feature Matrix

The grayscale image of the load feature matrix is input into the
CNN, and the rough feature matrix of each electrical appliance is
extracted. The structure of the CNN is as follows: 1) An input layer with
dimensions 72 × 72 × 1. 2) A convolution layer with dimensions72 ×
72 × 20, and the kernel function with dimensions 5 × 5 (20). 3) The
activation function of the CNN is sigmoid.

The grayscale image of the load feature matrix is processed by
the CNN to obtain a rough feature matrix of size 72 × 72 × 20.

B. Channel Attention Module (CAM) Computation

Figure 4 shows the schematic diagram of the CAM.
The specific calculation process of the CAM is as follows in

Equation 9:

F′ � sigmoid MLP avgpool F( )( ) +MLP maxpool F( )( )( )
� sigmoid w1w2FC×1×1

avg + w1w2F C×1×1
max( ) (9)

where, F′ represents the channel attention output feature matrix; F
represents the rough feature matrix; sigmoid is the activation
function; MLP represents the multi-layer perceptron; maxpool
(avgpool) represents the maximum (average) pooling layer; w1

and w2 represent the weight of the MLP; Fmax
C × 1 × 1 (Favg

C × 1 × 1)
represents the one-dimensional vector after the maximum (average)
pooling operation.

C. Spatial Attention Module (SAM) Computation

Figure 5 shows the schematic diagram of the SAM.

FIGURE 10
The original signal of load 1 and load two.

FIGURE 11
The signal of load 1 and load 2 after dynamic time warping (DTW)
processing.

FIGURE 12
DTW optimal point matching.
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The formula for calculating spatial attention is in Equation 10:

F″ � sigmoid convd avgpool F′( )( ); convd maxpool F′( )( )( ) (10)
where, F″ represents the fine feature matrix; F′ represents the channel
attention output feature matrix; sigmoid represents the activation
function; convd represents the convolution operation; avgpool
(maxpool) represents the average (maximum) pooling operation.

D. Results Coupled Calculation

Figure 6 is the schematic diagram of the CBAM. It is noted that
the CBAM contains two independent sub-modules, namely the
CAM and the SAM. The attention mechanism transforms and
subsequently couples the feature data.

The process is shown in the following Equations 11, 12:

F′ � F ⊗ MC (11)
F″ � F ⊕ F′ ⊗ Ms( ) (12)

where, F′ represents the output feature matrix of channel attention;
F represents the rough feature matrix; Mc represents the output of
the CAM; Ms represents the output of the SAM, represents the
corresponding multiplication of each element. F″ represents the
CBAM output feature matrix, represents the corresponding addition
of elements in the two matrices.

E. Convolutional Block Attention Module (CBAM) Extracts
Refined Feature Matrix

Figure 7 shows a schematic diagram of the feature extraction of
the grayscale image by the SAM. The upper row of black background
pictures in the figure is the grayscale image of the V-I characteristic
curve, and its values are distributed from 0 to 1, with 0 representing
pure black, and 1 representing pure white. The lower row is the
weight extraction of the grayscale image by the SAM, the spatial
attention output two-dimensional weight matrix Ms, whose matrix
elements are distributed from 0 to 1, representing the weight by
which the pixel should be multiplied. The larger the weight, the
higher the information importance of the pixel.

As observed in the figure, for pixels containing characteristic
information in the grayscale image, CBAM increases the weight
value by multiplication. Pixels with less information correspond to
smaller weight values. Similarly, in channel attention, a larger weight is
multiplied for a layer with more information content, and a smaller
weight is multiplied for a layer with less information content. Finally, a
fine feature matrix with more useful information is obtained.

5 Bidirectional long short-term
memory neural network training and
identification

5.1 Principle of bidirectional long short-term
memory (BiLSTM) artificial neural network

Long short-term memory (LSTM) (Karim et al., 2018) is an
improved recurrent neural network (RNN). It is mainly aimed at

FIGURE 13
Schematic diagram of DTW finding the optimal path.
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solving the problem of gradient vanishing during RNN training
process. It exhibits robust performance when dealing with sequential
data. LSTM and its variants have found extensive applications in the
NILM problem in recent years (Kaselimi et al., 2020; Le et al., 2021).

LSTM is composed of multiple identical cell structures. Each cell
structure includes three essential components: Forget gate, Input
gate, Output gate.

The cell structure topology is illustrated in Figure 8:
In Figure 8, Ct represents the cell state information at time t, ht

represents the cell output information at time t, and xt represents the
cell input information at time t. ft represents the output of the forget
gate at time t, and its operation can be expressed by the Equation 13:

ft � σ wFG · ht−1, xt[ ] + bFG( ) (13)
where, σ is the sigmoid activation function, wFG and bFG represent
the weight and bias of the forget gate, respectively, [ht-1, xt]
represents the combination of the input at time t and the output
at the previous time.

it and ~Ct together represent the output of the input gate, and
their operations can be represented by Equations 14, 15:

it � σ wi · ht−1, xt[ ] + bi( ) (14)
~Ct � tanh wc · ht−1, xt[ ] + bc( ) (15)

where, σ and tanh represent the activation function, wi and wc

represent the weight, and bi and bc represent the bias.
The operation of the cell state update can be expressed by

Equation 16:

Ct � ft · Ct−1 + it · ~Ct (16)
where, Ct (Ct-1) represents the cell state information at time t (t-1), ft
represents the output of the forget gate at time t, it and ~Ct together
represent the output of the input gate.

The operation of the final output gate can be expressed by
Equations 17, 18:

Ot � σ WOG ht−1, xt[ ] + bOG( ) (17)
ht � Ot · tanh Ct( ) (18)

where, Ot represents the intermediate information of the output
gate, ht (Ct) represents the cell output (state) information at time t, σ
and tanh represent the activation function, WOG represents the
weight, and bOG represents the bias.

The BiLSTM algorithm is a variant algorithm of LSTM. It
consists of one layer of LSTM for forward propagation and
another layer of LSTM for backward propagation. The forward
layer initiates the input iteration from the starting point of the
sequence, and the reverse layer starts the input iteration from the
end of the sequence (Xie et al., 2022). Finally, the output results of
the two layers are concatenated to obtain the identification result. Its
network structure is illustrated in Figure 9:

The BiLSTM algorithm can be expressed by the following
Equations 19–21:

ht � f W1xt +W2ht−1( ) (19)
rt � f W3xt +W5rt+1( ) (20)

FIGURE 14
Identification result when V-I characteristic curve is used as load identification feature.
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yt � g W4ht +W6rt( ) (21)
where, xt represents the input at time t; ht and rt represent the output
of the forward layer and reverse layer at time (t), respectively; yt
represents the output of the output layer at time t; f represents the
activation function of the forward layer and reverse layer; g
represents the activation function of the output layer; W1 and
W3 are the weight matrices of the input layer mapped to the
forward layer and the reverse layer; W2 and W5 are the weight
matrices of the forward layer and the reverse layer from the previous
calculation moment mapped to the current calculation moment;W4

and W6 are the weight matrices that map the output of the forward
layer and the reverse layer to the output layer.

5.2 Neural network training parameters

We convert the fine feature matrix F″ of each electrical appliance
into a one-dimensional feature vector through a 1 × 1 × 100-
dimensional fully connected layer. This vector is then input into
the BiLSTM neural network model for learning. In the final
identification step, the unknown load undergoes the same Steps
1 to 3, and the processed data is input into the trained neural
network for identification, yielding the final identification result.
The load is identified by training the BiLSTM neural network.The
structure of the BiLSTM neural network is as follows: 1) A fully
connected layer with a dimension of (1, 100). 2) A BiLSTM layer
with a layer dimension of (1, 100), where the activation functions are

sigmoid and tanh. 3) A fully connected layer with a dimension of (1,
11). 4) A classification layer with a dimension of (1, 11), where the
activation function is Softmax.

During the training process, the following settings are applied: 1)
Gradient threshold: 1. 2) Training period: 100,857 iterations per
cycle. 3) Learning rate: 0.001. 4) The training process utilizes the
adaptive moment estimation optimization algorithm.

Inputting the unknown load results in the identification output,
which takes the form of 11 values. Each value, ranging between 0 and
1, represents the probability that the load consists of one of the
11 kinds of electrical appliances.

6 Dynamic time warping programming
optimization identification algorithm

6.1 Principles of dynamic time
warping (DTW)

The DTW algorithm, commonly utilized in speech recognition,
operates on the principle of dynamic programming. It calculates the
most matching part of two time series, breaking down the process of
finding an optimal solution into an optimal path that automatically
identifies a local optimal solution. Unlike the Euclidean distance, the
DTW algorithm excels in accurately measuring similarity for locally
scaled and locally drifted curves. In practice, DTW is often coupled
with CNN (Chen et al., 2022) for identification purposes (Afrasiabi
et al., 2020; Trelinski and Kwolek, 2021).

FIGURE 15
The identification result when the grayscale image is used as the load identification feature.
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In Figures 10, 11 the amplitude, phase, and frequency of the two
current signals for Load 1 and Load 2 are different. Through some
deformation and displacement processing, the coincidence rate of
the two signals is improved.

Here’s an explanation of how to find similarities between two
different signals. In Figure 12, there are two signals, A and B. The
DTW algorithm finds the optimal path by calculating the local best
matching point of the A signal corresponding to the B signal and
computing the distance between them.

Figure 13 is a schematic diagram of the DTW algorithm
illustrating the process of finding the optimal path. The
algorithm involves the following steps: 1) Calculate the Euclidean
distances for each point in Signal 1 and Signal 2, forming a matrix of
distances. 2) Identify two diagonal axes in this matrix. 3) Find a
special path between points along these diagonals, where the sum of
each element should be the smallest among all possible paths.

The mathematical model of the DTW algorithm is summarized
as follows: There are two time-series signals A = {a1, a2, . . . , an} and
B = {b1, b2, . . . , bm}. First calculate the cost matrix D between A and
B, which is an n × m-order matrix. Its expression is shown in
Equation 22:

D �
d11 d12 / d1m

d21 d22 / d2m

..

. ..
.

1 ..
.

dn1 dn2 / dnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (22)

Where, dnm represents the Euclidean distance between an and
bm, where dnm = ||an-bm||

2; ||·||2 represents the 2-norm.
Then, we find the optimal path from d11 to dnm in the cost

matrix, minimize the sum of d on the path, and construct a new cost
matrix Ddist, where the element distij is shown in Equation 23:

D �
d11 d12 / d1m

d21 d22 / d2m

..

. ..
.

1 ..
.

dn1 dn2 / dnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (23)

where, the weighted sum of the shortest local cost measures between
A and B is the value of the element distnm of the cost matrix Ddist.

6.2 Coupling of identification results

Since the identification mechanisms of the BiLSTM neural
network and DTW algorithm are quite distinct, especially for
electrical appliances with high identification degrees, combining
the results from both algorithms can effectively enhance the final
identification accuracy. The final probability vector Pfinal, is formed
by combining the results of the two algorithms using the following
Equation 24:

Pfinal i( ) � PBiLSTM i( ), PDTW i( )<PBiLSTM i( )
PDTW i( ), PDTW i( )≥PBiLSTM i( ){ (24)

FIGURE 16
Algorithm identification results before the CBAM is added.
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where, i represents the number of elements, ranging from 1 to k;
Pfinal(i) represents the final probability value of the i-th test sample;
PBiLSTM(i) represents the i-th test sample identified by the CBAM-
BiLSTM network. The probability value of PDTW(i) represents the
probability value of the i-th test sample identified by the
DTW algorithm.

The elements PBiLSTM(i) and PDTW(i) in Equation 24 are the
largest in the load identification vectors PBiLSTM = {p1,p2, . . . ,pn}
and PDTW = {p1,p2, . . . ,pn} respectively. They represent the
probability that the target appliance i is identified as a certain
appliance by the two algorithms, and their calculation formulas
are as follows in Equations 25, 26:

PBiLSTM i( ) � Softmax W4 hi( ) +W6 ri( )( ) (25)

PDTW i( ) �
∑n
k�1

dist k( ) − dist i( )

∑n
k�1

dist k( )
(26)

In the formulas: i represents the recognized electrical
appliance; Softmax represents the activation function; W4

represents the weight matrix from the output of the BiLSTM
forward layer to the output layer; W6 represents the weight
matrix from the output of the BiLSTM reverse layer to the
output layer; hi represents the forward layer of the output
neuron corresponding to the i-th electrical appliance; ri
represents the output of the output neuron corresponding to
the i-th electrical appliance in the reverse layer; dist(k) represents
the calculated DTW between the target sample and the k-th

electrical appliance feature distance. The smaller the distance, the
more similar the target sample is to the appliance.

7 Simulation analysis

To verify the practicality of the algorithm, relevant simulation
experiments were designed for verification. In this study,
11 electrical appliances from PLAID, including air conditioners,
energy-saving lamps, electric fans, refrigerators, hair dryers, electric
heaters, incandescent lamps, laptop computers, microwave ovens,
vacuum cleaners, and washing machines, were selected as
experimental appliances. A robust algorithm should exhibit good
generalization performance (Rafiq et al., 2021; Schirmer and
Mporas, 2022). 100 sets of randomly selected data from each
category of electrical appliances were chosen as the test set, with
the remaining collected data serving as the training set.

7.1 Comparison of V-I characteristic curve
and the load feature matrix

Figure 14 displays the recognition results using the common V-I
feature curve as the feature matrix, while Figure 15 shows the
recognition results using the grayscale image as the feature
matrix. The recognition algorithm employed is the CBAM-
BiLSTM algorithm. The results are presented in the form of a
confusion matrix commonly used in deep learning (Salmana

FIGURE 17
Algorithm identification results after the CBAM is added.
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et al., 2022). Confusion matrix is commonly used for performance
evaluation of supervised learning algorithms, which can intuitively
reflect the comparison between real labels and predicted labels.

The vertical axis of the confusion matrix represents the
predicted electrical appliances, while the horizontal axis
represents the actual electrical appliances. In this study,
11 electrical appliances were selected as experimental
appliances. Therefore, the elements range (1:11, 1:11) of the
confusion matrix are recognition results. For example, in
Figure 15, the value “96” in the first row and first column
indicates that 96 air conditioning samples were identified as
such; the value “1” in the first column of the fifth row
represents that 1 air conditioning sample were identified as
hair dryers. The elements range (12, 1:11) of the confusion
matrix represent recall of electrical appliances. The elements
range (1:11, 12) of the confusion matrix represent precision of
electrical appliances. The elements range (12, 12) of the
confusion matrix represents the overall accuracy.

The overall accuracy, precision and recall of electrical appliances
can be calculated through the confusion matrix, and the formula is
as follows in Equations 27–29:

E �
∑11
i�1

Ti + Ri( )
N

(27)

Hi � Ti

Ti + Qi
, i � 1, 2, . . . , 11 (28)

Gi � Ti

Ti + Fi
, i � 1, 2, . . . , 11 (29)

where, i represents the i-th electrical appliance, a total of 11 electrical
appliances; E represents the overall accuracy; Gi (Hi) represents the
precision (recall) of electrical appliance i; N represents the actual
total number of electrical samples; Ri (Ti) represents that the real
category of the electrical appliance i is negative (positive), and the
model recognizes it as negative (positive); Qi (Fi) represents that the
real category of the electrical appliance i is positive (negative), but
the model recognizes it as negative (positive).

When the V-I characteristic curve is used as a load recognition
feature, the overall recognition accuracy through Equation 27 is
93.8%. When the grayscale image is used as the load recognition
feature, the overall recognition accuracy through Equation
27 is 94.6%.

By comparative analysis, the new load identification features are
not universally applicable to all electrical appliances. For example, in
the identification of washing machines, compared to using the V-I
characteristic curve to identify four errors, the grayscale image did
not recognize 19 samples as washing machines. However, except for
individual appliances, the new load characteristics can improve the
recognition accuracy of appliances to varying degrees. For example,
in laptop recognition, compared to the V-I characteristic curve, the
grayscale image corrected the recognition results of 13 samples.
Overall, the grayscale images exhibit better recognition
performance.

FIGURE 18
Identification results after DTW optimization algorithm.
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7.2 Comparison: Before and after adding
convolutional block attention
module (CBAM)

Figures 16, 17 present the identification results of 11 electrical
appliances before and after the addition of CBAM, showcased in the
form of a confusion matrix. The objective is to assess whether adding
CBAM to CNN can enhance recognition accuracy and reduce false
detection rates.

Before the addition of CBAM, the overall identification accuracy
through Equation 27 is 91.5%. After the addition of CBAM, the
overall identification accuracy through Equation 27
increases to 94.6%.

By comparative analysis, The CBAM module proves to be
beneficial for improving the overall identification effect of the
algorithm. For example, in the identification of refrigerators,
before CBAM addition, six samples were mistakenly identified as
electric fans. After the CBAM module, by further extracting fine
features, rectifies this misclassification. What’s more, in the
identification of washing machines, before CBAM addition,
16 samples were misclassified as laptop computers. After CBAM
incorporation, this number is reduced to 5 cases. Therefore, the
addition of CBAM contributes to the improved accuracy of load
identification.

7.3 Comparison before and after dynamic
time warping (DTW) optimization algorithm

Figures 14–17 present the load recognition results without
the utilization of the DTW optimization algorithm, while
Figure 18 illustrates the recognition outcomes after
incorporating the DTW-optimized neural network algorithm.
Figure 17 shows that the maximum accuracy is 94.6% before
adding DTW optimization algorithm. According to Figure 18,
after adding DTW optimization algorithm, the overall
recognition accuracy through Equation 27 experiences a
notable improvement, reaching 96.9%.

Through comparative analysis, the beneficial complementary
effect of DTW on the error recognition of neural networks becomes
apparent, leading to an effective enhancement in the recognition
accuracy for most electrical appliance types. For example, in the
identification of incandescent lamps, before adding DTW
optimization algorithm, six samples were mistakenly identified as
electric fans. After adding DTW optimization algorithm, only one
sample was mistakenly identified as an electric fan.

Therefore, DTW serves as a valuable complement, addressing
errors in neural network recognition and significantly improving
accuracy. Optimizing the CNN-BiLSTM network through DTW
proves to be an effective strategy for enhancing the overall
recognition accuracy of the algorithm.

8 Conclusion and outlook

This paper introduces a Non-Intrusive Residential Load
Identification Algorithm incorporating an Attention Mechanism.
The introduction of grayscale images solves the problem of low

identification accuracy in traditional V-I characteristic curve.
Adding CBAM can extract a fine feature matrix from feature
matrix transformations. The fine feature matrix improves the
overall recognition accuracy of the algorithm. After coupling with
DTW algorithm optimization, the recognition accuracy can be
further improved.

This paper is research on NILM technology based on event
detection. By default, the total load curve is decomposed into several
unknown loads, and there is still room to improve the load
decomposition accuracy in practical applications. In the next
step, we can study the total load curve decomposition method, or
directly identify the load combination without decomposing the
load (Schirmer and Mporas, 2023).
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