
TYPE Original Research
PUBLISHED 31 October 2024
DOI 10.3389/fenrg.2024.1443814

OPEN ACCESS

EDITED BY

Yuanxing Xia,
Hohai University, China

REVIEWED BY

Renyou Xie,
University of New South Wales, Australia
Jilin Cai,
Nanjing Tech University, China

*CORRESPONDENCE

Yang Zhou,
19112874852@163.com

RECEIVED 04 June 2024
ACCEPTED 17 October 2024
PUBLISHED 31 October 2024

CITATION

Zhenglei Z, Jun C, Zhou Y, Wenguang W and
Hong D (2024) Research on urban power load
forecasting based on improved LSTM.
Front. Energy Res. 12:1443814.
doi: 10.3389/fenrg.2024.1443814

COPYRIGHT

© 2024 Zhenglei, Jun, Zhou, Wenguang and
Hong. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Research on urban power load
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LSTM
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In this paper, the maximal information coefficient method-variational mode
decomposition-bidirectional long short term memory network-adaptive
boosting (MIC-VMD-Bi-LSTM-Adaboost) algorithm is used to forecast the power
load. Firstly, MIC is used to determine the correlation degree of meteorological
parameters influencing power load. Features having a high correlation degree
are then chosen to be input vectors. Secondly, the input characteristics are
decomposed using VMD, and five distinct IMF components are retrieved in
order to remove unnecessary information. Lastly, different assessment indices
are computed and the power load is predicted using the Bi-LSTM-Adaboost
method. In order to determine the benefit of the approach used in this work, the
outcomes of LSTM, Bi-LSTM, and LSTM-Adaboost are compared concurrently.

KEYWORDS

power load forecasting, MIC, VMD, LSTM, adaboost

1 Introduction

Power load forecasting is a key step in power industry planning. It comprehensively
predicts and calculates future power load, power consumption situation, power demand
and power consumption based on historical power load data and other relevant interfering
factors (such as weather changes, human activities, industrial process types, time and
seasonal characteristics, etc.) (Habbak et al., 2023). Accurate forecast and rapid response
to power demand are critical to the safety, stability and efficiency of power system operation
(Kumar, 2024). Electric vehicles, renewable energy, flexible loads and other unpredictable
loads are being added to the modern power grid. It also enhances the accuracy of load
forecasting (Kumar et al., 2013).

Existing load prediction approaches can be categorized into two types: conventional
mathematical statistics and machine learning (Chen et al., 2023). Traditional mathematical
statistics approaches include regression analysis, kalman filtering, load derivation, and
exponential smoothing (Kumar et al., 2016). These approaches are basic in structure,
operate and forecast quickly, and may be scaled. However, they rely on statistical law
characteristics, and the results of nonlinear data processing are poor, with low precision
(Kumar et al., 2020).

Machine learning methods for load forecasting, including neural network (NN),
support vector machine (SVM), and long short term memory network (LSTM), have
been developed with advancements in computer technology (Cordeiro-Costas et al.,
2023). These strategies improve prediction accuracy and overcome the limitations of
nonlinear data (Kumar et al., 2023b). In the actual prediction process, two or more
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algorithms are generally used to complement each other, and other
meteorological factors are included, to make the forecast findings
more realistic (Kumar et al., 2023a).

Currently, researchers have employed a combination of multiple
techniques to anticipate load. Tian et al. (2022) Neural networks (NN)
were integrated with type-2 fuzzy systems (T2FSs), and feedback was
introduced to the fuzzy neural networks. This approach achieved an
accuracy of 98%. Rafi et al. (2021) used a combination of CNN and
LSTMto anticipate power load in the short term. It outperformsLSTM,
RBFNN, and XGBoost in terms of prediction accuracy. Compared
with the prediction of LSTM, radial basis function neural network
(RBFNN) and extreme gradient boosting (XGBoost), it has higher
accuracy. Guo et al. (2022) proposed a MES load prediction algorithm
according tomulti-task learning of Bi-LSTM, analyzed the relevance of
load in four seasons, and selected different load combinations with
MIC as input vectors to realize the associated information sharing
between loads. Bareth et al. (2024) used LSTM to predict the average
daily load demand per month in 2023 based on the average daily
load demand per day, considering the average daily load demand
per month from 2018 to 2022. The results show that the LSTM
network is more appropriative for real-time load demand forecasting.
Aguilar MadridandAntonio (2021)usedXGBoost algorithmtopredict
power load.Comparedwithmultiple linear regression(MLR),k-nearest
neighbor regression (KNN), epsilon-support vector regression (e-SVR)
and random forest regression (RF), it shows that the algorithm has
stronger performance. Álvarez et al. (2021) proposed a logical load
prediction approach according to adaptable online learning of hidden
Markov model, developed adaptable online learning technology, and
recursively updated model parameters. In Deng et al. (2021), a short-
term load prediction model according to enhanced genetic expression
mechanismandabnormal loadidentificationisproposed.Theabnormal
load identification algorithm according to degree distribution and
cross-verification solves the problem ofmisjudgment of normal values.
By designing the adaptive evolution strategy of population variables,
the individual evolution strategy of population and the dynamic
modification strategy of genetic performance probability, a modified
geneexpressionplanningapproachaccordingtoevolutionaryparameter
improvement ispresented.Thealgorithmissuperior tootheralgorithms
in misdetection rate, error detection rate and accuracy. Moreira-
Júnior et al. (2022) used Fuzzy-ARTMAP neural network to predict
substation load, to enhance the precisionofmulti-node loadprediction.
In Deng et al. (2022), a quantitative combined load prediction model
(QCLF) is presented. The improved k-means algorithm is combined
with the least squares algorithm to boost the reliability of the data,
and the gene expression programming optimization is used. Wan et al.
(2023) proposed CNN-LSTM-Attention to improve the accuracy of
load forecasting. Pearson correlation coefficient analyzes the main
factors affecting load. Attention mechanism optimizes LSTM output
weight and enhances key information. Nie et al. (2020) proposed
the radial basis function-generalized regression neural network-
extreme learningmachine (RBF-GRNN-ELM) fusionalgorithm,which
considers data preprocessing, individual prediction algorithm and
weight determination theory, and improves the prediction accuracy.
In Ge et al. (2020), the power load is predicted by the combination of
improved k-means clustering, reinforcement learning, particle swarm
optimization and least squares support vectormachine.Wuet al. (2020)
proposedafusionalgorithmofautoregressiveintegratedmovingaverage
(FARIMA) and cuckoo search algorithm (CSA), and the prediction

effect is perfect. In Du et al. (2020), an optimization technique for
predicting power load is proposed using Bi-LSTM-Attention fusion.
Compared to other algorithms, the algorithm is more robust.

The above literature uses MIC, LSTM and XGBoost algorithms
for load forecasting, but does not combine the algorithms, and
does not consider the impact of various feature vectors on load
forecasting. Considering the large amount of data, the direct
prediction calculation is large and the data is redundant, which
will also reduce the prediction accuracy. Therefore, a VMD of
various meteorological factors affecting power load is proposed in
this paper, and the Bi-LSTM combined with Adaboost algorithm
is used to predict power load. Firstly, MIC is used to analyze the
relevance of input factors affecting prediction, and the features
with high correlation coefficient are extracted as input. Secondly,
the input factors are decomposed by VMD to eliminate noise and
avoid redundant data. Finally, Bi-LSTM combined with Adaboost
algorithm is used to predict urban power load, and root mean
square error (RMSE), mean absolute error (MAE), mean absolute
percentage error (MAPE) and coefficient of determination (R2) are
used as evaluation indexes to judge the prediction results, which
are compared with the forecasting outcome of LSTM, Bi-LSTM
and LSTM-Adaboost respectively, so as to highlight the superiority
of this method. At the same time, the calculation amount of this
method is small, the prediction time is short, and it is feasible for
the situation with high time requirement.

2 Feature processing

2.1 Maximal information coefficient
method

The MIC is used to assess the extent of significance between
variables, linear or nonlinear strength, and is frequently employed
in feature selection. It has good universality, fairness, and
symmetry (Lin et al., 2022). Table 1 presents a comparison
of commonly used methods. It can be seen that MIC has
minimal computing complexity, great stability, and apparent
advantages.

The theory of MIC is according to the concept of mutual
information. Mutual information refers to the measure of
interdependence between variables, that is, the degree of
uncertainty reduction of random variable X to Y, which is
expressed by Equation 1. The larger the value, the stronger the
correlation between the two variables; conversely, the weaker the
correlation. When I (X; Y) = 0, X and Y are independent.

I (X;Y) = ∫
Y

∫
X

p (x,y) log2
p (x,y)

p (x)p (y)
dxdy (1)

Here, I(X;Y) is the mutual information measure of two random
variables. x and y are two vectors, p(x,y) is the joint probability
density of vector x and y, p(x) and p(y) are the marginal probability
density of vector x and y, respectively.

The idea of MIC is as follows: according to the relationship
between the two variables, the scatter plot is used to distribute in
the two-dimensional space, and a certain interval is divided in the
x and y directions respectively, and the distribution of all scatters in
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TABLE 1 Comparison of various algorithms.

Algorithms Sphere of application Standardization Computational complexity Stability

Pearson Linear data ✓ Low Low

Spearman Linear, simple monotone nonlinear ✓ Low Moderation

Kendall Linear, simple monotone nonlinear ✓ Low Moderation

Maximal correlation coefficient Linear and nonlinear data ✓ High Moderation

Kernel density estimation (KDE) Linear and nonlinear data × High High

k-nearest distance Linear and nonlinear data × High High

MIC Linear and nonlinear data ✓ Low High

TABLE 2 Correlation.

MIC Correlation degree MIC Correlation degree

MIC = 0 Zero correlation 0.5 < |MIC| < 0.8 Significant correlation

0 < |MIC| < 0.3 Weak correlation 0.8 < |MIC| < 1.0 High correlation

0.3 < |MIC| < 0.5 Low correlation |MIC| = 1 Perfect correlation

TABLE 3 MIC correlation analysis.

Feature MIC Correlation degree

Maximal temperature 0.6988 Significant correlation

Minimal temperature 0.7552 Significant correlation

Average temperature 0.7258 Significant correlation

Humidity 0.1148 Weak correlation

Rain height 0.1362 Weak correlation

Pressure 0.5549 Low correlation

each interval is checked (Surapunt and Wang, 2024). Formula 2 is
the calculation of MIC.

MIC (x,y) = max
a∗b<B

I (x,y)
log2min (a,b)

(2)

In the formula, a and b are the number of intervals divided
horizontally and vertically respectively, and B is a variable, which
is approximately 0.6 power of the total data.

According to Equations 1, 2, MIC can be divided into
three steps:

1. Given i and j, the scatter plot composed of XY is gridded
by i columns and j rows, and the maximum mutual
information value is obtained;

2. Normalize the maximummutual information value;
3. The maximum value of mutual information at different scales

is selected as the MIC value.

2.2 Feature extraction

MIC analyzes the degree of correlation between each feature and
the load size since it is uncertain how much each affecting factor
will effect the load (Sukanya Satapathy and Kumar, 2020; Satapathy
and Kumar, 2019). The correlation is higher the greater the value’s
absolute value. The correlation degree corresponding to various
correlation coefficients is displayed in Table 2.

The correlation between the seven meteorological factors
affecting the power load and the power value are obtained by MIC,
and the outcomes are presented in Table 3.

Table 3 shows significant correlationsbetweenhighest temperature,
lowest temperature, average temperature, and power load. However,
humidity, rain height, and pressure show weak and low correlations,
which can be ignored.Therefore, the first three are used as inputs.

2.3 VMD decomposition

VMDenablesthesimultaneousextractionofdecompositionmodes.
The model looks for a group of modes and their respective center
frequencies so that they can replay the input signal together, and
each mode is smooth after demodulation to the baseband. The
algorithm’s essence is to expand the conventional Wiener filter to
multiple adaptive bands, giving it a solid theoretical foundation while
remaining simple to understand. The alternate direction multiplier
method is utilized to successfully improve the variational model,
increasing its robustness to sampling noise. The adaptability of VMD
refers to the effective decomposition of intrinsic mode function (IMF)
components and frequency domain section of signals by adaptively
matching theoptimal central frequency andbandwidthof everypattern
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FIGURE 1
Feature decomposition. (A) The highest temperature VMD
decomposition. (B) The lowest temperature VMD decomposition. (C)
Average temperature VMD decomposition.

while performing pattern decomposition on a given sequence, in
order to obtain effective signal decomposition components and get
the suitable results of the variational problem (Zhao et al., 2023;
Wangetal.,2023).ThefollowingEquations 3–6arethesolutionformulas
of VMD decomposition (Geng et al., 2023). The VMD decomposition
of highest temperature, lowest temperature and average temperature
is shown in (Figures 1A–C).

[(δ (t) +
j)
πt
)vk (t)]e−jωkt (3)

min{∑
k
‖∂t[(δ (t) +

j
πt
)vk (t)]e−jωkt‖

2
}. (4)

L({vk} , {ωk} ,τ) = α∑
k
‖∂t[(δ (t) +

j
πt
)vk (t)]e−jωkt‖

2
+ ∣ s (t) −∑

k
vk (t)‖2

+⟨τ (t) , s (t) −∑
k
vk (t)⟩

(5)

v̂n+1k (ω) =
̂s (ω) −∑ v̂i (ω) + τ̂ (ω)/2

1+ 2α(ω−ωk)
2 (6)

In these formulas, δ(t) is Dirac function and∗is convolution
operation. vk(t) is the analysis signal after Hilbert transform.
{vk} = {v1,…,vk} is the decomposed IMF component, and {ωk} =
{ω1,…,ωk} is the center frequency of every component part. τ(t) is
the Lagrange multiplier and α is the second-order penalty factor, so
as to reduce the interference of Gaussian noise. ω is the frequency
and v̂n+1k (ω), ̂s(ω), τ̂(ω)is the Fourier transformation of vnk(t), s(t),
τ(t), respectively.

3 Forecasting model

3.1 LSTM network

As a peculiar recurrent neural network, LSTM is primarily
applied to predict time series (Abumohsen et al., 2023).The Figure 2
is a typical LSTM structure diagram. Bi-LSTM is an improved
version of LSTM. The prediction process mainly includes three
stages: forgetting stage, selective memory stage and output stage.

The following Formula 7–11 is the calculation of LSTM network
(Madhukumar et al., 2022; Jailani et al., 2023).

f(t) = σ(W fh(
t−1) +W fx(

t) + b f) (7)

i(t) = σ(Wih(
t−1) +Wix(

t) + bi)

c(t) = tanh(Wch(
t−1) +Wcx(

t) + bc)
(8)

C(t) = C(t−1) ⋅ f(t) + i(t) ⋅ c′(t) (9)

o(t) = σ(W0h(
t−1) +W0x(

t) + b0)

h(t) = o(t) tanh(C(t))
(10)

̃y(t) = σ(Vh(t) + c) (11)
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FIGURE 2
LSTM structure diagram.

Among them, σ is the sigmoid activation function, b f is the
forgetting gate boundary, and W f is the forgetting gate weight. Wi,
Wc are the weights and bi, bc are the boundaries of the input gate,
respectively. W0 is the weights and b0 is the boundary according
to the output gate, respectively, and h(t) is the output vector in the
hidden layer. V and c are the weights and boundaries linking the
hidden layer to the output layer, respectively.

3.2 Adaboost algorithm

Boost is also known as reinforcement learning, which is
an important ensemble learning strategy. It can help weak
learners become strong learners with excellent predicting accuracy
(Huang et al., 2022). The Adaboost (adaptive boosting) algorithm is
self-adaptive in that it increases the weight of samples incorrectly
classified by the prior fundamental classifier while decreasing the
weight of correctly classified samples, which are reused for training
the next basic classifier (Park and Son, 2023). Meanwhile, in each
iteration, a newweak classifier is addedwhen a low enough error rate
or a certain maximum number of iterations is reached, confirming
the final strong classification.

3.3 MIC-VMD-Bi-LSTM-Adaboost model

In this study, the MIC-VMD-Bi-LSTM-Adaboost fusion
algorithm is applied to forecast urban power demand. To
begin, MIC is used to calculate the correlation degree of each
meteorological element to power load, and the meteorological
parameters with a high correlation degree are selected as input.
Second, the VMD technique is used to breakdown the input
object, removing superfluous data and improving accuracy. Finally,
the Bi-LSTM fusion Adaboost solver is utilized to perform
the final predicting, and the results are produced. Figure 3
depicts the prediction flow chart.

4 Example analysis

4.1 Data pre-processing

Firstly, the data is cleaned, that is, the wrong data and missing
data are eliminated; then, the data is normalized to make the
data in the same order of magnitude, which is also used in
the subsequent prediction. The normalized calculation formula
is shown in Equation 12:

x, =
x− xmin

xmax − xmin
(12)

In the formula, x, is the processed data, x is the raw data, xmin and
xmax are the minimum andmaximum values under a certain feature
respectively.

After the prediction, the normalized data is denormalized,
as shown in Equation 13.

x = x(xmax − xmin) + xmin (13)

4.2 Evaluating indicator

TheMAE,MAPE, RMSE and R2 are used as evaluating indicator
to comprehensively compare the prediction accuracy of each
model. The calculation equations are shown in Equations 14–17,
respectively.

MAE = 1
m

m

∑
i=1
|(xi − x̂i)| (14)

MAPE = 1
m

m

∑
i=1
|
xi − x̂i
xi
| × 100% (15)

RMSE = √ 1
m

m

∑
i=1
(xi − x̂i)

2 (16)
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FIGURE 3
Prediction flow chart.

R2 = 1−
∑
i
(xi − x̂i)

2

∑
i
( ̄xi − xi)

2
(17)

4.2.1 Results and analysis of prediction
The MIC-VMD-Bi-LSTM-Adaboost algorithm is used to

forecast power load. Figure 4A displays the prediction results,

Figure 4B depicts the prediction error, and Table 4 displays the
evaluation index.

As shown in Figure 4A, the forecast curve is nearly
identical to the original curve, and the prediction accuracy is
excellent, but there are minor differences at the start of the
prediction. The error curve in Figure 4B similarly shows a
considerable mistake.

Table 4 shows that the suggested technique has MAE, MAPE,
RMSE, and R2 values of 3.1477 MW, 1.8276 %, 4.1819 MW, and
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FIGURE 4
Prediction results. (A) MIC-VMD-Bi-LSTM-Adaboost prediction results.
(B) Prediction error.

TABLE 4 Evaluating indicator.

MAE/MW MAPE/% RMSE/MW R2

3.1477 1.8276% 4.1819 0.97965

0.97965, respectively. The R2 value is close to one, indicating good
forecasting accuracy.

5 Comparison of prediction results

5.1 Prediction results

Figure 5 compares the viability of the hybrid forecastingmethod
using a single and combined model. Figure 5A shows that in a
single model, both the LSTM model and the Bi-LSTM model may

FIGURE 5
Comparison of models. (A) Single model prediction. (B) Comparison
of combined models.

fit loads. Bi-LSTM is more accurate than LSTM. When the load
varies abruptly, resulting in a peak or peak valley, the single model
cannot adequately anticipate; the inaccuracy is considerable, and
there is some lag. Figure 5B shows that LSTM-Adaboost and Bi-
LSTM-Adaboost models outperform other models in fitting load
curves with peaks and valleys. At the same time, the combined
model’s fitting curve is closer to the actual load at all times,
demonstrating that the suggested method can better exploit the
law and time aspects of load data. However, the effect of the two
combined models is not significantly different, implying that the
improved method’s optimization effect on LSTM and Bi-LSTM
is comparable.

The models are assessed using MAE, MAPE, RMSE, and R2.
Table 5 summarizes the results. Table 5 shows that compared
to LSTM and Bi-LSTM, MAE decreased by 2.0347 MW and
0.3658 MW, MAPE decreased by 1.207 % and 0.2211 %, RMSE
decreased by 2.7026 MW and 0.3699 MW, and R2 increased by
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TABLE 5 Evaluation indexes of different models.

Model MAE/MW MAPE/% RMSE/MW R2

LSTM 5.1824 3.0346% 6.8845 0.94484

Bi-LSTM 3.5135 2.0487% 4.5518 0.97589

MIC-VMD-LSTM-Adaboost 3.4168 1.9976% 4.5445 0.97597

MIC-VMD-Bi-LSTM-Adaboost 3.1477 1.8276% 4.1819 0.97965

FIGURE 6
Four model prediction errors.

TABLE 6 Ablation experiment results.

Model MAE/MW MAPE/% RMSE/MW R2

M1 3.3764 1.9596% 4.5088 0.97634

M2 3.6886 2.1717% 4.8659 0.97245

M3 3.8126 2.2546% 4.9013 0.96884

0.03485 and 0.00376 respectively. Compared to the LSTM-Adaboost
algorithm, MAE dropped by 0.2691 MW. MAPE reduced by 1.17
%, RMSE decreased by 0.3626 MW, and R2 increased by 0.00368,
demonstrating the proposed method’s lower prediction error and
improved accuracy.

Figure 6 displays the relative absolute error distribution for
each model. Figure 6 shows that this method has a lower relative
absolute error and more steady load forecasting results than
previous models. This is because the method presented in this
paper employs VMD to decompose the sequence, remove the noise
term, reduce the randomness of the sequence, and ensure that
the sequence’s time characteristics are not discarded, allowing the
Bi-LSTM model to be better used for error correction, resulting

in a more detailed load forecasting process and improved load
forecasting accuracy.

5.2 Ablation experiment

The ablation experiment of the method is equivalent to the
control variable method. MIC, VMD, and Adaboost are used as the
“variables” to be controlled, which are divided into the following
three cases:

1. M1: MIC-Bi-LSTM-Adaboost was used and VMD
was removed;

2. M2: VMD-Bi-LSTM-Aadboost was used and MIC
was removed;

3. M3: MIC-VMD-Bi-LSTM was used and Adaboost
was removed.

The results are shown in Table 6.
The table shows that all three techniques can enhance forecast

accuracy. In comparison to M1, M2, and M3, Adaboost contributes
the most to improving prediction accuracy. Compared to M1
and M2, selecting data meteorological elements can increase the
prediction impact to some level, and removing factors with low
correlation can minimize the number of principal components,
simplify the method, and speed up prediction time. VMD primarily
decomposes data and removes superfluous data, resulting in reduced
algorithm complexity and improved prediction accuracy.

6 Conclusion

In this paper, a hybrid forecasting model according to MIC-
VMD-Bi-LSTM-Adaboost is built by integrating the advantages of
MIC, VMD, LSTM, Bi-LSTM and Adaboost. Firstly, the correlation
analysis ofmeteorological factors influencing power load is ontained
by using MIC, and the factors with higher correlation degree are
extracted as input. Secondly, the input vector is decomposed by
VMD to eliminate redundant data and extract features.Then, the Bi-
LSTM-Adaboost fusion algorithm is applied to forecast the power
load, calculate the error, and evaluate the model. Finally, the model
is compared with two single algorithms of LSTM and Bi-LSTM
and LSTM-Adaboost combination algorithm, so as to reflect the
advantage of the algorithm in this paper. The following conclusions
were reached:

1. MIC outperforms other correlation analysis functions in
terms of computational complexity and robustness, providing
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significant advantages in correlation analysis. MIC chooses
meteorological factors with high correlation as the input
feature vector, which increases prediction accuracy in the
subsequent combination process.

2. The Bi-LSTM network compensates for the LSTM network’s
limitation of processing features in only one direction and
outperforms it in terms of prediction effect.

3. Adaboost’s self-adaptability enhances the prediction accuracy
of LSTM and Bi-LSTM, resulting in a more precise combined
model than the individual models. The ablation experiment
demonstrates that Adaboost contributes the most to the
optimization algorithm in this research. The reason for this
is that Adaboost may adaptively alter the anticipated error
rate based on the weak classifier’s feedback, resulting in great
execution efficiency.

4. The forecasting accuracy of the LSTM-Adaboost and Bi-
LSTM-Adaboost algorithms is nearly same, showing that the
Adaboost method has a similar influence on LSTM and Bi-
LSTM optimization. Because of the lengthy prediction time
of Bi-LSTM, LSTM can be combined directly in practical
applications.

5. The combined approach suggested in this study outperforms
the single algorithm in terms of accuracy, although there is
still a significant inaccuracy at the start of the prediction. The
evaluation coefficient is 0.97965, and there is still plenty of
space for improvement. Future research will examine several
aspects of the algorithm, including enhancing the attention
mechanism, swapping out the GRU (Bi-GRU) algorithm,
Transformer, and more.
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