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Photovoltaic (PV) power is greatly uncertain due to the random meteorological
parameters. Therefore, accurate PV power forecasting results are significant for
the dispatching of power and improving of system stability. This paper proposes a
hybrid forecasting model for one-day-ahead PV power forecasting under
different cloud amount conditions. The proposed model consists of an
improved artificial neural network (ANN) algorithm and a PV power conversion
model. First, the ANN model is designed to forecast the plane of array (POA)
irradiance and ambient temperature. Backpropagation, gradient descent, and
L2 regularization methods are applied in the structure of the ANN model to
achieve the best weights, improve the prediction accuracy, and alleviate the
effect of overfitting. Second, the PV power conversion model employs the
forecasted results of POA irradiance and ambient temperature to determine
the PV power produced by a PV module. In addition to the basic temperature
factor, environmental efficiency and a reflection efficiency are incorporated into
the conversion model to account for real PV module losses. The performance of
the proposed model is validated with real weather and PV power data from Alice
Springs and Climate Data Store. Results indicate that the model improves the
forecast accuracy compared to four benchmark models. Specifically, it reduces
rootmean square error (RMSE) and normalized RMSE (nRMSE) by up to 25% under
cloudy conditions and offers a 3% shorter training time compared to extreme
gradient boosting.
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1 Introduction

Solar energy is the largest renewable energy resource available on our planet. Therefore,
power generation using solar energy is one of the priorities of current research on green
technology. Accurate forecasts of photovoltaic (PV) power production can not only
enhance the PV penetration rate within the electricity grid but also aid in grid dispatch
and operation (Visser et al., 2022). However, PV power generation has strong randomness,
intermittence, and volatility caused by many uncertain factors such as temperature, cloud,
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and humidity Therefore, the uncertainty of PV power poses huge
challenges to the security and reliability of power system operations
(Ma et al., 2021). Consequently, in order to reduce the disturbance
caused by the stochasticity of power generation and ensure the stable
operation of the grid in large-scale PV penetration, an accurate
prediction model should be built (Ge et al., 2020). There are three
popular methods in short-term PV power forecasting: physical
methods, statistical methods, and hybrid methods. The physical
methods describe the conversion relationship between solar
radiation and PV power through mathematical models (De la
Parra et al., 2017). For physical methods, the weather parameters
are obtained from the numerical weather prediction (NWP) or the
weather stations surrounding the PV plants. A physical model is
established to calculate the maximum power and the annual output
produced by four thin-film PV modules based on the datasets of
electrical and meteorological parameters in sunny inland climates
(Torres-Ramírez et al., 2014). However, in harsh weather conditions,
physical models are disturbed by various uncertain factors in the
environment, which leads to inaccurate forecasting (Mustafa et al.,
2020). The statistical methods are suitable for the short-term
forecasting horizon, which build the PV forecasting model based
on the relationship between the input and the output layers. Three
main models of statistical methods are time-series models,
regression models, and neural network models. Time-series
methods have been popular for relatively stationary sequence
prediction. The most common model is an autoregressive
integrated moving average (ARIMA) (Bouzerdoum et al., 2013),
which is improved by the autoregressive (AR) model and
autoregressive moving average (ARMA) model. In regression
models, support vector regression (SVR) stands out as a classic
model that utilizes the same input features and datasets, delivering
superior performance in forecasting stability. However, it demands a
significant amount of data for training (Wolff et al., 2020). Many
neural network methods are applied to PV power output prediction
with the deep development of artificial intelligence (AI) techniques.
The recurrent neural network (RNN) algorithm is a neural network
model that can find the connecting link in factors and accommodate
dependencies among continuous time steps (Gao et al., 2019). A
long short-term memory recurrent neural network (LSTM-RNN) is
established to forecast PV power, and the forecasting values are
updated based on the time correlation principles (Wang et al., 2019).
The artificial neural network (ANN) has been identified as an
appealing technique for one-day-ahead forecasting due to its
capability to establish relationships between input and output
datasets and its ability to integrate solar power data with other
meteorological data (Bishop, 1995). The ANN model is a popular
nonlinear data-driven model that is based on the pattern model
rather than a predefined math model. In addition, compared with
other models, it is easier to build models that are more cost effective
and consume less time (Barbieri et al., 2017). The ANN is
successfully used for 24-hour solar irradiance forecasting with
superior performance on sunny and cloudy days (Mellit and
Pavan, 2010). ANNs trained with datasets reduce the error of
12–18 h ahead of global horizontal irradiance forecasting by
approximately 15% (Martins et al., 2012). Moreover, the ANN
model is composed of interconnected ANN layers that are
trained via a supervised learning technique and applied for
power output or irradiance forecasting (Zhao et al., 2023). ANN

models are designed to forecast daily irradiance by using GHI
ground data, air temperature, and other meteorological
parameters (Diagne et al., 2009). However, for ANN models, as
the model structure becomes complex, its fitness will decrease.
Additionally, the selection of hyperparameters can also have an
impact on the prediction accuracy.

Hybrid methods aim to improve the forecasting performance by
combining different approaches or targeting multiple time horizons.
In fact, increasing number of research works indicates that hybrid
methods often outperform single methods in many aspects. A
hybrid model is applied to optimize the prediction value
forecasted by an ANN model on 4 sunny days (Diagne et al.,
2009). A hybrid model that combines a spatiotemporal
forecasting approach with a relatively accurate physical model is
employed to achieve impressive prediction values in various
positions (Tascikaraoglu Sanandaj et al., 2016). Although the
hybrid model can provide a more accurate prediction, distortion
can occur in bad weather.

With the further increase in renewable energy grid-connection
requirements, accurate forecasting in the event of weather changes
has become increasingly important. In this paper, to address the
complexity of the forecasting environment, the statistical and
physical models in the hybrid approach were enhanced. Since
statistical models have a much greater impact on the results than
physical models in hybrid models, three different methods have
been applied to improve the model fit, forecasting accuracy, and
computational speed of the ANN, particularly to compensate for the
non-stationary sequences caused by weather changes. Furthermore,
environmental factors were incorporated into the physical model to
enhance the conversion formula. As a result, a hybrid model
combining the refined ANN forecasting model with a well-
established PV conversion model is proposed to achieve more
precise PV power forecasting. The hybrid method can
significantly enhance the overall integrity of both the PV
prediction process and the forecasting results compared
with direct methods. The main contributions of this paper are
as follows:

1) First, this paper proposes a hybrid model consisting of an
ANN model and a PV conversion model for PV power
forecasting. In the PV conversion model, the temperature
derating factor, the environmental coefficient, and the
reflection coefficient are taken into consideration.

2) Subsequently, this paper improves the ANN model.
L2 regularization is applied to control the model structure
complexity and prevent overfitting. The backpropagation
algorithm is used to find the best weight. In addition, the
random Gaussian distribution is introduced for weighs
initialization to reduce the computation and improve
the accuracy.

3) Furthermore, this paper adds the cloud amount parameters
with three different locations into forecasting for reflecting the
importance and impact of the cloud amount on irradiance,
especially in variable weather conditions.

4) At last, to further determine the environmental conditions of
prediction, this paper not only divides the weather conditions
of datasets but also categorizes the weather classification based
on the weather variability and cloud cover.
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The remainder of this paper is organized as follows. Section 2
describes the PV conversion model. The weather classification is
provided in Section 3, and the proposed forecasting method is
introduced in Section 4. In Section 5, the proposed method is
applied to obtain the forecasting values, and the results are
compared with real data and benchmark models. Some
concluding remarks and outlines of the possible extensions are
included in Section 6.

2 Photovoltaic conversion model

To define the PV conversion model, the factors affecting PV
module behavior are considered. Although the conversion model is
mainly influenced by operating temperature, environmental and
physical factors also affect its results. Therefore, the derating factors
for basic temperature, environmental efficiency, and reflection
efficiency are incorporated into the conversion formula. The
derating factor for operating temperature is calculated as
Equation 1:

ηT � 1 + γmp · TC − TSTC( ), (1)

where γmp is the thermal coefficient of maximum power, relying on
the materials of the PV module, and TC is the cell temperature.

In order to receive better consequences, the PV cell temperature
TC is obtained by the following formula, which is the function of the
POA irradiance GPOA, the ambient temperature Tamb, and the
normal operating cell temperature (NOCT) Tc. NOCT of 42°C–50°C
(Wang et al., 2021) as Equation 2:

TC � Tamb + GPOA

GNOCT
Tc.NOCT − Tamb.NOCT( ), (2)

where GNOCT and Tamb. NOCT are the solar irradiance and the
ambient temperature in the NOCT conditions, respectively,
which are measured as GNOCT = 800 W/m2 and Tamb. NOCT = 20°C.

In addition to the operating temperature, environmental
efficiency and reflection efficiency are defined by the following
bulleted points to define an accurate PV conversion model:

1) Environmental coefficient ηdirt refers to the loss of
environmental pollutants such as soiling and dirt. The
impact of pollution accumulation is calculated according to
Equation 3:

ηdirt �
Ga.rain − Gb.rain( )

Ga.rain
, (3)

where Ga. rain and Gb. rain are the values of daily irradiation in two
clear-sky days: 1 day after raining and the other before raining,
respectively. The ηdirt coefficient is used to account for losses due to
soiling and dirt accumulation on the PV modules. In our study, we
specifically selected a 10-day summer period without rain, as
detailed in the text provided, to estimate the impact of dirt
accumulation. The corresponding value of ηdirt for a relatively
clean environment was found to be in the range of 0.97–0.98.
Based on our calculations, we determined that a value closer to
0.98 was more accurate for our model. Therefore, the corresponding
value of ηdirt is 0.98.

2) Reflection coefficient ηref describes the reflection of the PV
module glass, which is between 0.95 and 0.98.

On the basis of the previous efficiencies, the power is achieved by
Equation 4:

P � AGAηTηSTCηdirtηref , (4)
where A is the area of the power array and ηSTC is the conversion
efficiency of the PV module in STC.

The measurements of POA irradiance GPOA and ambient
temperature Tamb, as inputs, are delivered to the above-described
model to obtain the power outputs.

3 Classification and analysis of weather

The historical data for the PV power output and meteorological
conditions are primarily from the Desert Knowledge Australia Solar
Center (DKASC), Alice Springs (latitude 42.18°N and longitude
122.70°E). However, only the cloud datasets are obtained from the
Climate Data Store (CDS). The PV power curves exhibit numerous
peaks and valleys due to sudden changes in weather conditions.
Some example curves are shown in Figure 1.

Therefore, a weather distribution analysis is adopted in this
paper to reduce the nonlinearity of meteorological data and mitigate
its impact on the prediction model. Additionally, based on weather
clustering, the weather variability analysis is included to further
investigate the impact of weather, especially cloud changes.

3.1 Weather condition classification

Three indicators include clear sky index (K), total cloud cover
(TCC), and diffuse horizontal irradiance fraction (F). TCC describes

FIGURE 1
Curves of PV power in different weather conditions in 1 year.
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a proportion of a grid box covered by cloud, which ranges
from [0 to1].

K is an index that eliminates the seasonal and daily tendency in
time-series data, which is defined as Equation 5:

K � GHIm
GHIcs

, (5)

where GHIm is the measured global horizontal irradiance and GHIcs
is the hourly irradiance in the clear sky model for a specific
area and time.

The weather conditions from the view of irradiance are
distinguished by the diffuse horizontal irradiance fraction, which
is calculated by the ratio of diffuse horizontal irradiance (DHI) and
GHI as Equation 6:

F � DHI

GHI
. (6)

The detailed calculation process of the clear sky index and the
diffuse horizontal irradiance fraction are cited in Rizwan et al. (2021)
and Liu et al. (2021).

The irradiance data within the time range of the power
acquisition (from 6. a.m to 6. p.m) are used to meet the actual
power collection situations and facilitate data usage. The irradiance
datasets outside of the time range are zero. The datasets are classified
into three kinds of weather conditions according to the analysis of
weather distribution, namely, sunny day, partly cloudy day, and
overcast day, as reported in Table 1. In addition, the corresponding

data categories under different weather conditions are shown in
Figure 2. The sunny day, partly cloudy day, and overcast day account
for 58.3%, 33.7%, and 8% of datasets, respectively.

3.2 Weather variability analysis

Two parameters used in the weather variability analysis are the
mean clear sky index in 1 day �K and the variability index obtained by
the standard deviation of the change in the clear sky index V(ΔK).

The daily mean clear sky index characterizes the daily solar
radiation in the considered area, which is defined as Equation 7:

�K �
∑H
T�1

K T( )
H

, (7)

where H means the number of daytime hours; in this paper, the
daytime hours are the time range of power collection.

The variability index, namely, the nominal variability, indicates
the variability of the clear sky index, which is calculated as
Equation 8:

V ΔK( ) �

���������������∑H−1

T�1
ΔK T( ) − ΔK( )
H − 1

√√
, (8)

where ΔK is the difference ofK during its average value and ΔK(T) is
the difference of K during ΔT, as Equation 9:

ΔK T( ) � K T + 1( ) − K T( ). (9)

The weather variability is illustrated in Figure 3 based on the
clear sky index and the variability index. The variability is divided
into two aspects, namely, cloud coverage and variability magnitude,
to describe the changes better.

The days are classified into nine blocks, as presented in Figure 4.
The mean daily clear sky index is divided into A, B, and C days,
where A means heavily cloudy days (0< �K ≤ 0.45), B is partly
cloudy days (0.45< �K < 0.9), and C is the clear cloudy days

TABLE 1 Ranges of three kinds of weather conditions under three
indicators.

Weather condition CSI range TCC range F Range

Sunny day 0.6 <CSI ≤1 0 ≤ TCC ≤ 0.1 0 < F ≤ 0.15

Partly cloudy day 0.3 <CSI ≤0.6 0.1 < TCC ≤ 0.7 0.15 < F ≤ 0.45

Overcast day 0 <CSI ≤0.3 0.7 < TCC ≤ 1 0.45 < F ≤ 1

FIGURE 2
Result of weather condition category.

FIGURE 3
Weather variability of datasets and analyzed using two
parameters.
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(0.9≤ �K ≤ 1). In the same way, the Roman numbers I, II, and III are
used to classify the variability index, where I denotes the slightly
variable days (0 < V(ΔK) ≤ 0.05), II is variable days (0.15 ≤ V(ΔK) ≤
0.45), and III stands for terribly variable days (0.15 ≤ V(ΔK) ≤ 0.45).

The example day for each block is shown in Figure 4, and the
classification results in 1 year are presented in Table 2. According to
Table 2, although half of the days were taken up by sunny days in
Alice Springs in 1 year, the difficulty of power prediction in cloudy
weather increases a lot, and over 30% of weather conditions are high
in variability.

4 Forecasting model

In the POA irradiation forecasting of this work, usual
environmental factors such as wind speed and humidity are
added to indicate the environmental effects on the forecasting
results, and the cloudiness features are added to quantify the
influence of clouds on the irradiance. Therefore, the inputs in
POA irradiation forecasting are POA irradiance, temperature,
wind speed, relative humidity, lower cloud cover (LCC), medium
cloud cover (MCC), and high cloud cover (HCC). Indeed, the

function used to relate input datasets, and the irradiance is
expressed as Equation 10:

GPOA t + 1( ) � f(Tamb t( ),Wspeed t( ), RH t( ), GPOA t( ),

LCC t( ),MCC t( ), UCC t( )), (10)

where Tamb(t) is the temperature at time t, Wspeed(t) is the wind
speed at time t, RH(t) is the relative humidity at time t, and LCC(t),
MCC(t), and UCC(t) are LCC, MCC, and UCC at time t,
respectively.

The training dataset is divided into input vectors and output
vectors of N training patterns as Equation 11:

Q � xt, yt( ){ }pt , (11)

where p represents the pattern numbers. The input vector xt
contains POA irradiance data and meteorological data, while the
output vector yt contains POA irradiance at the forecasting time.

In relation to ambient temperature, numerous variables
influence temperature levels; however, the impact of these
individual variables is relatively minor. Upon closer examination,
a significant degree of interdependence and correlation among these

FIGURE 4
Example days of each classification block.

TABLE 2 Days of weather variability classification in 1 year.

Variability A: heavily cloudy 6.3% B: partly cloudy 38.3% C: clear 55.4%

I: slightly variable 64.2% 19 62 154

II: variable 24.3% 3 65 21

III: rapidly variable 11.5% 1 13 28
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variables is observed, which makes accurate prediction particularly
challenging. Therefore, a more streamlined approach is proposed,
where historical temperature data are directly used as inputs, rather
than attempting to forecast ambient temperature.

The flow chart of this paper is shown in Figure 5. In Module 1,
the pre-processed environmental data, including factors such as
temperature, irradiance, and cloud cover, are introduced into the
system for weather analysis and classification, where they are
categorized based on different weather conditions to enable more
accurate modeling. In Module 2, these categorized data are utilized
by four benchmark prediction models along with an improved ANN
model to predict key environmental variables, which are essential for
accurate PV power forecasting. Finally, in Module 3, the predicted
environmental variables from Module 2 are input into the PV
conversion model, which calculates the PV power output by
considering factors such as temperature derating, environmental
coefficients, and reflection coefficients, ultimately yielding the final
forecast of PV power generation.

4.1 ANN forecasting model

The ANN is adopted to find a relation between the input data
and output data. The ANN imitates the working mechanism of the
human brain, consisting of several individual intelligent units, called

neurons, which are used to receive information from the previous
neurons or outside and transmit them to the next. Neurons are
connected through weights, and linked weights are adjusted to
obtain the best weight distribution in the process of training. An
activation function is applied to evaluate the output correspondent

FIGURE 5
Flowing chart of the model.

FIGURE 6
Structure of the ANN model.
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with the input in each neuron. The activation function is a
hyperbolic tangent function in this work, which is calculated as
Equation 12:

f x( ) � tanh x( ) � e2x − 1
e2x + 1

. (12)

The structure of the ANN is composed of several input layers,
one or more hidden layers consisting of neurons, and layers of
outputs, which are shown in Figure 6. For the output and input
layers, a linear function is used as the activation function, which is
given as Equation 13:

f x( ) � x. (13)
One of the most significant issues that need to be considered is

the optimal weight. In this work, the gradient descent method is
applied to update weights during the training process. First, a
random weight set is chosen as the target set. Then, a cost
function, namely, the mean squared error (MSE) cost function, is
used to calculate the average of difference between the network

output (forecasting value) and the real value. At last, the minimum
value of the cost function is obtained by the backpropagation
algorithm. The cost function is expressed as Equation 14:

J w, b( ) � 1
m
∑m
i�1

h xi( ) − yi( )2, (14)

where h (xi) is the network output, yi represents the real value, w is
the weight coefficient, b is the bias coefficient, and m is the number
of unknowns.

Themodel complexity is another significant issue. Over complex
ANN structures may lead to poor results due to the problem of
overfitting. L2 regularization is proposed to control the complexity
and achieve good generalization results. The L2 regularization
method considers the sum of squares of weight parameters,
which smooths the cost function, and a new hyperparameter λ is
introduced to control the error. The smooth cost function reduces
the influence when the input is corrupted by the noise in the training
process. The optimal complexity corresponds to theminimum of the
following new cost function as Equation 15:

FIGURE 7
Flowing chart of the ANN model.

FIGURE 8
Effect of L2 regularization,(A) with L2 regularization and (B) without L2 regularization.
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L w, b( ) � 1
m
∑m
i�1

h xi( ) − yi( )2 + λ

2m
∑m
j�1
w2

j . (15)

In addition, a Gaussian distribution is applied to initialize the
weights randomly, in order to decrease the computation of the
backpropagation algorithm and improve the computational
precision, which is calculated as Equation 16:

N w
∣∣∣∣μ, σ2( ) � �����

1
2πσ2

√
e−

x−μ( )2
2σ2 . (16)

FIGURE 9
Forecasting results of irradiance on the sunny day.

FIGURE 10
Performance metrics of irradiance forecasting for each model on sunny day.

TABLE 3 Computational time of each model on the sunny day.

Model Computational time (s)

SVR 193

LSTM 186

ARIMA 179

XGBOOST 182

ANN 174
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An iteration process should be followed to obtain the optimal
hyperparameter λ and weight parameter w. At first, the weights are
randomly initialized by Gaussian distribution, and the
hyperparameter values are in an appropriate range. Then, the
first optimized weight sets are obtained by the backpropagation
algorithm, which are used in the calculation of the hyperparameter.
At last, the hyperparameters are computed by the L2 regularization.
These steps are repeated until the sum of squares of weights is less
than the critical value C(C = 1).

4.2 ANN model optimization

In this paper, the Keras library written by Python is used for
building the ANN structure. The improvement of the ANN
forecasting results combining irradiance data, temperature
data, and other meteorology data as inputs is focused on this
paper. The flowing chart of the ANN model is illustrated
in Figure 7.

In this paper, ANN model complexity and overfitting are taken
into consideration to improve forecasting results. The normal ANN
model will undergo overfitting due to the complex structure.
Therefore, L2 regularization is used for controlling the complexity
and avoiding overfitting. The effect of L2 regularization is shown in
Figures 8, 8A, while Figure 8B shows the results without
L2 regularization. After applying L2 regularization, the forecasted
results align more closely with the measured data.

5 Case study

Studies and evaluations of the ANN forecasting model are
presented in this section. All simulations are realized on a
workstation with Intel(R) i7-10875CPU @2.30 GHz, NVIDIA
RTX 2070s, and 32 GB RAM memory. This section consists of
dataset description, benchmark models, performance evaluation
metrics, experimental studies, and results of PV power.

5.1 Dataset description

The PV power historical data collected from the DKASC are
used. The data of cloud amount are from the CDS, and other
weather data are collected from the meteorological stations
surrounded with the DKASC. The time interval of datasets used
in this paper is 5 minutes. The length of all data is 1 year, which is
from 1st January 2020 to 31st December 2020. The dividing ratio of
the training set, validation set, and testing set is set as 0.7:0.1:0.2. In
addition, in the process of validation, 10-fold cross-validation is
applied in evaluating the training results. The forecasting horizon of

FIGURE 11
Forecasting results of irradiance on the partly cloudy day.

TABLE 4 Computational time of each model on partly cloudy day.

Model Computational time (s)

SVR 220

LSTM 217

ARIMA 229

XGBOOST 213

ANN 207
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this paper is 24 h. In addition, three typical days are selected from
each of the three clustering results as the prediction day.

5.2 Benchmark models

A total of four benchmark models are used to compare with
the MLPmodel to evaluate the performance. The four benchmark

models are LSTM, ARIMA, SVR, and XGBOOST. The LSTM
model has high prediction accuracy, but there may be some
prediction bias in case of too much training data. The ARIMA
model is suitable for stationary datasets, but its prediction results
may be inaccurate when there are many fluctuations. The SVR
model belongs to linear regression models and may have lower
accuracy than neural networks, but it can better describe data
fluctuations. XGBOOST is a commercially available prediction

FIGURE 12
Performance metrics of irradiance forecasting for each model on the partly cloudy day.

FIGURE 13
Forecasting results of irradiance on the overcast day.
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model with high accuracy and can be applied to
various scenarios.

5.3 Performance evaluation metrics

Four standard evaluation metrics widely used in the forecasting
community are adapted to evaluate the performances of models,
including the root mean squared error (RMSE), normalized RMSE
(nRMSE), mean absolute error (MAE), and normalized MAE

FIGURE 14
Performance metrics of irradiance forecasting for each model on overcast day.

TABLE 5 Computational time of each model on partly cloudy day.

Model Computational time (s)

SVR 253

LSTM 246

ARIMA 264

XGBOOST 239

ANN 227

FIGURE 15
Photoelectric conversion model results.
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(nMAE). In addition, the forecasting skill parameter is calculated to
compare the improvement of different models with the persistence
model. These metrics are defined as Equations 17–20:

RMSE �

�������������
1
N

∑N
t�1

Ŷt − Yt( )2√√
, (17)

nRMSE �

������������
1
N ∑N

t�1
Ŷt − Yt( )2√
Ya

× 100%, (18)

MAE � 1
N

∑N
t�1

Ŷt − Yt

∣∣∣∣ ∣∣∣∣, (19)

nMAE �
1
N ∑N

t�1
Ŷt − Yt

∣∣∣∣ ∣∣∣∣
Ya

× 100%, (20)

where Ŷt and Yt are the forecasted and measured values at time t,
respectively, and Ya is the average of the measured values. The
performance of the proposed models is dependent on the decrease in
RMSE, nRMSE, MAE, and nMAE.

5.4 Outage probability

5.4.1 Sunny day forecasting
The irradiance prediction results on a sunny day are shown in

Figure 9. Under sunny weather, not only the ANN model proposed in
this paper has accurate prediction values but also the four benchmark
prediction models have better results. As shown in Figure 10, the
evaluation indexes of each prediction model show that RMSE and
nRMSE of ARIMA are superior to those of othermodels on sunny days.
The computational time of each model is shown in Table 3. The ANN
model proposed in this paper is superior to the four benchmark models
in MAE and nMAE and is almost the same as ARIMA in RMSE and
nRMSE. The RMSE of ANN is 2.34%, which is higher than that of
ARIMA, but the computational time is 2.87%, which is better than that
of ARIMA, indicating that the proposed method has a good prediction
effect in the case of flat curves. The SVR has the worst prediction result
because the linear regression model faces difficulty in describing the
complex nonlinear mapping relationship, so its prediction effect is
worse than that of the neural network and other models.

5.4.2 Partly cloudy day forecasting
In cloudy weather, cloud formation and subsequent cloud

movement can cause fluctuations in irradiance and also increase the
difficulty in prediction. The irradiance prediction results under cloudy
weather are shown in Figure 11. It can be seen from the figure that
several of them can better capture the fluctuations. The computational
time of each model is shown in Table 4. The evaluation indexes of
different prediction models are shown in Figure 12. In terms of RMSE
and nRMSE evaluation indicators, the results of the proposed ANN
model are better than those in other models, which are 25.4% and 25%
lower than XGBOOST, respectively. However, in terms of MAE and
nMAE, the results of XGBOOST are better than those of the proposed
ANN model, which are 5.56% and 4.97%, respectively. This is because
XGBOOST can traverse all the eigenvalues in the data information to
increase the information gain, so it has better prediction results in such

scenarios with partial fluctuations, but this will increase the
computation and training time. The proposed ANN model has a
small gap with XGBOOST in terms of indicators, but the training
time is 3%, which is better than that of XGBOOST. Therefore, the
comprehensive prediction result of the ANN is better than that
of XGBOOST.

5.4.3 Overcast day forecasting
On overcast days, the sky is obscured by various clouds, which have

a strong blocking effect on solar radiation, so there will be a lot of
fluctuations. The irradiance predicted values of each forecasting model
under cloudy skies are shown in Figure 13. The computational time of
each model is shown in Table 5. Figure 14 shows the performance
indicators of different models in irradiance prediction. As can be seen
from the figure, the evaluation indexes of the ANNmodel proposed are
superior to those of the other four models, which are 3.31% lower than
that XGBOOST on RMSE and 2.87% lower than XGBOOS on MAE.
The reason for the worst performance of ARIMA is that ARIMA is only
applicable to curves with a relatively stable wave shape, and there are a
lot of fluctuations in the data. This method cannot capture a lot of
fluctuation characteristics, indicating that it will have poor prediction
effects on cloudy days with large fluctuations.

5.4.4 Results of the PV power output
The predicted POA irradiance and ambient temperature are inputted

into the photoelectric conversion model, and the photovoltaic power
obtained through the photoelectric conversion model is shown in
Figure 15. The loss refers to the difference between these two power
values. The maximum loss point is 0.5 kW, which is enlarged and shown
in red in the figure. Theminimum loss is 0.07 kW, which is enlarged and
shown in blue in the figure. The average error is 0.16 kW, and the error
loss is within the acceptable range. Compared with the measured power,
the error rate is 3.3% in sunny days, 4.5% in cloudy days, and 5.2% in
partly cloudy days. Through the hybrid prediction model, the prediction
error and physical error in the prediction can be intuitively seen to
achieve the effect of error separation, and the photovoltaic power
obtained by this is more real.

6 Conclusion

An accurate short-term forecasting method plays a significant
role in enhancing power grid dispatch. This paper proposes a hybrid
forecasting model to improve the accuracy of short-term PV power
forecasts under various weather conditions.

1) The photovoltaic power obtained by the proposed hybrid model
differs by 4.3% from the true value and is approximately 2%more
accurate than directly predicting photovoltaic power, meeting
practical requirements. The PV .power obtained by the proposed
hybrid model is closer to true values and meets actual demands
due to the accurate forecasting results by the ANNmodel and the
PV conversion model.

2) The ANN network improved by L2 regularization, and gradient
descent reduced the error of irradiance prediction by
approximately 6%. On sunny day, partly cloudy day, and
overcast day forecasting, the improved MLP model can
perform better than other benchmark models. The proposed
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ANN model has shown good prediction results in all three
weather models, with an overall evaluation index of
approximately 15% higher than other models and a calculation
time reduction of approximately 8% compared to other models.

3) Cloud amount plays a significant role in the process of
irradiance forecasting. The addition of cloud amount to
irradiance forecasting can obviously influence the
forecasting accuracy, especially on cloudy and variable days.

4) Weather classification can divide the forecasting scenarios and
improve the quality of the PV generation under different
weather conditions. Weather variability analysis further
classifies different variable days and provides a basis for the
increased prediction accuracy of PV power in various
meteorological conditions.
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