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1 Introduction

Integrating large-scale distributed energy resources in the power grid has presented
significant obstacles to the reliable and stable operation of active distribution networks
(Murray et al., 2021). These challenges include voltage magnitude violation and frequency
fluctuations. Large-scale grid integration of DERs replaces synchronous units with high
resistance to interferences, which affects the voltage regulation capability (Hirase et al., 2022;
Zhou et al., 2021). If the ADNs suffers severe failures, the operation of off-grid renewable energy
stations may exacerbate voltage deterioration because the input power cannot support ADNs in
maintaining normal voltage range (Huang et al., 2017; Ding and Baggu, 2018). Moreover,
traditional voltage regulation equipment like transformer tapping terminal and capacitor banks
may struggle to handle voltage magnitude violation under a high proportion of DERs due to
their long control cycles (Islam et al., 2015; Srivastava et al., 2023). Recently, researchers have
explored options for improving the voltage quality of ADNs, including configuring energy
storage, reducing consumption of flexible loads and adjusting power factors of PV prosumers
(Amroune et al., 2019; Chandak et al., 2019; Sun et al., 2022). However, the capacity of energy
storage and PV prosumers to regulate voltage is limited. The voltage regulation characteristics of
DERs vary widely. Distributed energy storage provides flexible operation across all four
quadrants, with adjustable capabilities for active and reactive power. Distributed PV systems
typically operate at their maximum power point to maximize the utilization of solar energy.
Flexible loads are generally classified as interruptible or shiftable (Zhong et al., 2023). However,
frequent changes in flexible load states should be minimized to ensure customer satisfaction.
Considering the varying voltage regulation characteristics of DERs, coordinated voltage
regulation can significantly improve the efficacy of voltage emergency management and
expedite voltage recovery in the event of severe faults (Ye et al., 2018; Shahbazi and
Karbalaei, 2020; Ma et al., 2021; Huang et al., 2022). Therefore, this study aims to offer
valuable insights and discussions regarding emergency voltage control in ADNs with a
significant proportion of DERs.

The main contributions of this work can be twofold as listed: (1) A composite sensitivity
analysis for voltage prioritization control is proposed for determining the regulating
capacity and range of each distributed resource to achieve effective voltage control in
emergency situations; (2) a coordinated emergency voltage control strategy of ADNs has
been formulated based on various voltage regulation characteristics to minimize voltage
deviation and load shedding during emergencies, which enhances the operational reliability
of ADNs and enables efficient accommodation of DERs.
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2 Composite sensitivity analysis for
voltage prioritization control with
PV prosumers

To effectively address voltage magnitude violation caused by
ADNs faults and alleviate pressure on traditional voltage regulators,
adjusting power output of distributed energy storage and reactive
power output of PV prosumers is necessary to consider (Islam et al.,
2015; Panasetsky and Voropai, 2009). However, since each
distributed energy storage and PV prosumer has varying abilities
to regulate the voltage at each node of the distribution network, a
composite sensitivity analysis is necessary to determine the ability of
distributed resources to adjust voltage on each node (SeokJu et al.,
2019). A voltage prioritization control strategy has been proposed to
coordinate the voltage regulation by DERs and traditional regulation
equipment, as shown in Figure 1.

State variables such as voltage magnitude and phase angle can be
altered by injecting power into energy storage or PV cluster. When
the power of the energy storage or PV clusters increases, the power
transmitted from the upper grid decreases, which reduces the
voltage drop due to line losses and regulates the voltage of
ADNs. The sensitivity analysis method calculates the voltage
composite sensitivity matrix at each distribution network node by

deriving the Newton-Raphson power flow calculation equation in
polar coordinate form. The power equations expressed in polar
coordinate form are presented as Equation 1:

Pi � Ui∑n
j�1
Uj Gij cos δij + Bij sin δij( )

Qi � Ui∑n
j�1
Uj Gij sin δij − Bij cos δij( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1)

where Pi, Qi denotes the amount of active power and reactive power at
node i; Gij, Bij denotes conductance and susceptance respectively; δij
denotes phase angle difference between two nodes. The Jacobi matrix
expresses the connection between the increments of two variables in
terms of partial derivatives. Consequently, the voltage composite
sensitivity matrix can be derived by analyzing the Jacobi matrix.
Meanwhile, the voltage complex sensitivity matrix can be derived by
analyzing the power flow distribution under normal scenarios for
reducing calculation time as the network topology of the distribution
network has not changed and this processing still serves the practical
requirements of the project for ensuring effective voltage prioritization
control strategy. Equations 2, 3 illustrates the correlation between power
variation on voltage and phase angle in ADN, and the voltage composite
sensitivity matrix can be solved by following these steps:

FIGURE 1
Composite sensitivity analysis and voltage control strategy for ADNs.
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(3)

where ΔP, ΔQ denotes the amount of change in active power and
reactive power; J refers to the Jacobi matrix. It can be inferred from
these equations that the voltage sensitivity matrix, also known as the
inverse matrix of the Jacobi matrix, serves as a means to validate the
voltage regulating capability of each distributed energy storage and
PV cluster at every node. It can be inferred from these equations that
the voltage sensitivity matrix, also known as the inverse matrix of the
Jacobi matrix, serves as a means to validate the voltage regulating
capability of each distributed energy storage and PV cluster at every
node. For a clearer representation of the active and reactive power’s
potential to regulate the voltage at each node, two voltage diagonal
matrices are derived from the Jacobi matrix, and the process of
deriving the voltage composite sensitivity matrix is shown in
Eqs 4–7.
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⎧⎪⎪⎪⎨⎪⎪⎪⎩ (5)

UΔδ
ΔU[ ] � −B − Q′ G + P′

−G + P′ −B + Q′[ ]−1 ΔP/U
ΔQ/U[ ] (6)

ΔU � G + P′( ) + B + Q′( ) −G + P′( )−1 −B + Q′( )( )−1ΔP/U
+ −B + Q′( ) − −G + P′( ) −B − Q′( )−1 G + P′( )( )−1ΔQ/U

(7)
where P′, Q′ denotes diagonal matrices and the main diagonal
elements of the matrix are Pi/U2

i andQi/U2
i respectively. The voltage

prioritization is determined by defining voltage change thresholds to
identify flexibility resources that are more useful for voltage control
as shown in Eq. 8.

ΔUi,j ≥ΔUth (8)

where ΔUth denotes voltage change thresholds. In order to regulate
the node voltage, each distributed resource has a designated voltage
regulation area based on the degree of impact from changes in PV
and energy storage output. This ensures that each distributed storage
and PV prosumer can effectively regulate the node voltage within
their designated area while minimizing their impact on the node
voltage outside of it. If the voltage of a node exceeds limit, the
resources are scheduled based on voltage prioritization (Amjady and
Esmaili, 2005). Suppose the regulating resource cannot return the
voltage to the normal operating range. In that case, flexibility
resources are dispatched in descending order of voltage variation
to achieve coordinated voltage control during fault
conditions in ADNs.

3 Coordinated emergency voltage
control strategy of active distribution
networks

In the event of voltage collapse caused by severe disturbance in
ADNs, it is possible that scheduling distributed resources that
heavily impact overrun node may not necessarily result in
voltage recovery. In order to address this issue, a coordinated
emergency voltage control model for ADNs has been proposed
to minimize voltage deviation and load shedding under fault
scenarios (Cao et al., 2024a), as illustrated in Figure 1. This
paper’s approach reduces the need for dispatching voltage control
equipment and eases centralized control communication instead of
implementing coordinated emergency voltage control directly. The
objective function of emergency voltage control is formulated as
Equation 9:

minF � ∑
t∈T

∑N
i�1

λ1
Vi,t − V0

∣∣∣∣ ∣∣∣∣
V0

+ λ2
Ploss
i,t

SN
( ) (9)

where λ1 , λ2 denote the weighting of the objectives; V0 represents
the rated voltage of the node;Vi,t refers to actual operating voltage at
time period t; Ploss

i,t denotes the amount of load curtailment at
time period t.

When optimizing operations, it is essential to consider the
power balance of ADNs and the capacity and statues of DERs.
The voltage deviation in the distribution network is affected by the
active and reactive power flow, which can be controlled through
optimal power flow (Panasetsky and Voropai, 2009). The main
factors that affect the system power flow are the composite
conductance and injected power of ADNs. PV clusters can
regulate their own power output by changing the power factor,
but the output cannot exceed the inverter capacity limit (Islam et al.,
2015). To ensure the consumption ability of renewable energy
resources, PV units normally operate at the maximum power
point, which means the active output of PV prosumers is
typically not dispatchable (Larsson et al., 2002). Therefore, ADNs
need to be equipped with distributed energy storage with flexible
regulation capabilities to regulate the power flow timely for avoiding
the adverse effects of power fluctuations. Distributed energy storage
has a four-quadrant power regulation capability, allowing it to adjust
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its active and reactive power output through charging and
discharging (Xiong et al., 2020). However, distributed energy
storage output should not exceed its inverter capacity limit, and
must maintain a certain energy storage capacity (Tang et al., 2022).
Additionally, there is a limit to the charging and discharging power
of distributed energy storage.

When a fault strike causes the voltage of an active distribution
network node exceed its limit, the distribution network
coordinates the distributed resources in the regulation domain
to address the local voltage regulation. Suppose the local voltage
regulation is unsuccessful in restoring the voltage to the normal
range. In that case, the distribution network then assesses the
scheduling strategy of each voltage regulation resource and
manages the status of remote-controlled switches to
reconstruct network topology (Shi et al., 2021; Cao et al.,
2024b). This is based on the coordinated emergency voltage
control model, aiming to minimize voltage deviation and load
shedding under the fault scenario.

In order to optimize emergency dispatch strategy for ADNs,
several factors must be considered. The optimization variables of
coordinated emergency voltage control strategy include
diversified flexible resource regulation power source such as
PV cluster and energy storage, transformer tap position and
number of capacitor banks put into operation. The
transformer tap position and number of capacitor banks are
essential variables. While the proposed emergency dispatch
model can be solved using second-order cone programming,
the proposed emergency voltage control model for ADNs
requires convex relaxation due to non-convexity resulting
from secondary current constraints, etc. Therefore the
constraints must be convexly relaxed and transformed into
second-order cone constraints and linear constraints using the
second order cone relaxation technique. The converted
constraints are as shown in Equations 10–14:

∑Pt
i,j −∑Pt

j,k −∑ ri,j�Ii,jt � Pt
j,L − Pt

j,PV − Pt
j,ESS( ) t ∈ 1, NT[ ]

(10)
∑Qt

i,j −∑Qt
j,k −∑ xi,j

�Ii,jt � Qt
j,L − Qt

j,PV − Qt
j,ESS − Qt

j,CB( ) t ∈ 1, NT[ ]
(11)

�U
t
i − �U

t
j � 2 ri,jP

t
i,j + xi,jQ

t
i,j( ) − r2i,j + x2

i,j( )�Ii,jt (12)
Umin

i ≤ �U
t
i ≤U

max
i (13)

2Pt
i,j 2Qt

i,j
�Ii,jt − �U

t
i

T]
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2 ≤ �Ii,j

t + �U
t
i[

�������� (14)

where Pt
j,L, Q

t
j,L denotes the amount of load demand of node j at

time period of t; Pt
j,PV, P

t
j,ESS, Q

t
j,PV, Q

t
j,ESS, Q

t
j,CB represents the

power output of distributed power generation, energy storage and
capacitor banks at time period of t, respectively; Pt

i,j, Q
t
i,j refers to

power output of transmission lines; ri,j, xi,j is resistance and
reactance of power transmission lines; �Ut

i , �I
t
i,j represents squared

values of voltage and current in ADNs.

4 Case studies

Simulations are conducted on modified IEEE 33-bus system to
test the proposed emergency voltage control strategy with high PV
prosumers penetration. The system includes four PV clusters and
energy storage plants connected to ADNs. It is assumed that the
capacity of each PV cluster and energy storage plant is 1.5 MW and
0.4 MW, respectively. The allowable maximum voltage deviation is
set as 7%, with upper and lower voltage bounds at 1.07p.u. and
0.93p.u. The total output of the PV plants by 30 percent compared to
the previous forecast caused by climate change, which lasted for
almost an hour from the second moment. The total period and
interval are set to 1 h and 5 min in the emergency scheduling,
respectively.

The preeminence of the proposed strategy for emergency voltage
control is verified by the comparative analysis of three strategies.

(1) Strategy 1: Traditional voltage regulating equipment, such as
transformer tapping terminal and capacitor banks,
participates in emergency voltage control based on a
centralized optimization strategy.

(2) Strategy 2: DERs and traditional voltage regulating
equipment, such as transformer tapping terminal and
capacitor banks, participates in emergency voltage control
based on a centralized optimization strategy.

(3) Strategy 3: DERs and traditional voltage regulating
equipment, such as transformer tapping terminal and
capacitor banks, participates in emergency voltage control
based on the proposed strategy in this paper.

The division results of voltage regulation domain and the
comparison of the voltage assessment index and resilience
assessment index are shown in Table 1.

It can be found that the coordinated emergency voltage control
strategy proposed in this paper improves voltage eligibility rate by

TABLE 1 Division results of voltage regulation domain and comparison of assessment index.

Strategy Voltage assessment index (%) Resilience assessment index Division results of
voltage

regulation
domain

Voltage
eligibility

rate

Voltage
fluctuation

Voltage
overrun

Voltage
deviation

Amount of
load

shedding
(MWh)

Scheduling
counts

Strategy 1 78.27 11.24 4.24 8.97 1.582 11 (2–6, 22–25)
(7–10)
(11–17)
(18–21)
(26–29)

(30, 31, 32)

Strategy 2 98.48 7.04 0.04 3.08 0.647 107

Strategy 3 97.88 7.12 0.12 3.29 0.467 56
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19.61% and reduces the average voltage deviation by 5.68%
compared to Strategy 1. Meanwhile, the proposed strategy can
satisfy the load demand to a great extent and reduces the
amount of load shedding as the scheduling priority of local
control. Compared to Strategy 2, the scheduling counts of voltage
regulation equipment are reduced by 47.66%. The proposed strategy
pays more attention to the local control of DERs in the regulating
domain belonging to the overrun node than the centralized control,
which improves the response rate of ADNs to emergency situation
and the consumption of renewable energy resources.

5 Discussion and conclusions

A survey on emergency voltage control of ADNswith PVprosumers
is presented in this paper. The following are the keyfindings of this study:
1) the proposed voltage prioritization control strategy analyzes a
composite sensitivity matrix for determining voltage prioritization to
alleviate the influence caused by emergency events. 2) A coordinated
emergency voltage control strategy is proposed to reduce load shedding
and voltage deviation; the voltage deviation can be alleviated by 5.68%
and the scheduling counts of voltage regulation equipment are reduced
by 47.66%. 3) Further research will focus on the strategy of network
reconfiguration and the coordination of multiple repair teams during
extreme weather, which will facilitate the resilient operations of ADNs.
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