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This paper intends to provide key insights to the manufacturing industrial
park designers for selecting the typical days of electric load and planning
the resources for energy-producing infrastructure. First, a hybrid time-series
model of energy-consuming equipment based on the autoregressive integral
moving average model (ARIMA) and temporal convolutional network (TCN) is
generated. According to this model, the energy consumption (EC) curve of large
equipment in the industrial park can be depicted. Moreover, the present study
designed a TLSM-IPML (typical load stratificationmethod for industrial parkswith
manufacturing load) algorithm based on the typical day-selected method. The
data clustering method is utilized to analyze the energy usage characteristics.
Furthermore, an energy usage-based planning model is proposed, network
constraints are considered, and amulti-optional method is designed to solve the
problem. Finally, case studies validate the superior performance of TLSM-IPML
in analyzing the characteristics of energy consumption and planning the model
in reducing MES (manufacturing industrial factory integrated energy system)
economic costs.

KEYWORDS

manufacturing industrial integrated energy system, load data clustering, typical day,
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1 Introduction

With the evolution of energy infrastructure, integrated energy systems (IES) have been
developed to improve efficiency and lower carbon emissions. The electrical systems in
industrial parks, especially heavy equipment manufacturing, face challenges due to variable
energy consumption, high peak loads, and operational schedules (Shao et al., 2023; Lv et al.,
2020). Maintaining power quality is critical to prevent disruptions, but the long-term effects
on equipment and efficiency are underexplored (Araghian et al., 2023; Zhong et al., 2018).
Integrating renewable energy is essential for reducing emissions, yet the economic feasibility
and optimization of large-scale integration need more study (Mehrjerdi et al., 2021).
Energy storage solutions like batteries are vital for mitigating peak loads and improving
system efficiency, but their integration requires further research (Pombo et al., 2023). The
evolution of energy infrastructure has led to integrated energy systems (IES) that improve
efficiency and lower carbon emissions by supplying heat and electricity simultaneously
using the combined cold, heat, and power (CCHP) approach. However, effectively
modeling large-scale equipment in industrial parks remains challenging. To address
this, a template-based load modeling technique is developed for a better representation
of industrial energy consumption within an IES. Overall, advanced strategies are
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needed to predict and manage energy fluctuations, optimize load
distribution, maintain power quality, integrate renewable energy,
and enhance storage solutions, addressing gaps in current research
and practice.

To gain insights into users’ electricity consumption behaviors,
data clustering algorithms are utilized to analyze load data. Density-
based clustering algorithms like DBSCAN (Fang et al., 2023) are
popular for identifying dense regions and measuring point density.
Despite its effectiveness (Fan et al., 2019), DBSCAN’s performance
is highly sensitive to parameters like neighborhood radius and
minimum points. OPTICS (Mahran and Mahar, 2008) extends
DBSCAN to handle varying densities but has a high computational
cost. DPeak and its variants (Muja and Lowe, 2014; Cheng et al.,
2021) identify density peaks for non-convex clusters but require
complex parameter tuning. The mean shift (Fan et al., 2017) shifts
points toward higher densities, converging at local maxima without
predefined cluster numbers, but struggles with high-dimensional
data due to computational expense. DCore (Chen et al., 2018)
improves core point identification but involves intricate parameter
settings.Thesemethods face challenges such as parameter sensitivity
and computational complexity, limiting their effectiveness on large-
scale data. For instance, K-means has a complexity of O(ktn), and
DBSCAN runs in O(n2). Due to these high complexities, most
clustering approaches struggle with large-scale data.

Recent studies have constructed renewable energy models for
new-energy park planning, but handling the complexity of grid
connections for renewable energy is challenging. Non-linearity
and modeling complexity often lead to overlooked constraints
in the internal energy network and operational uncertainties.
Martinez Cesena and Mancarella (2019) proposed a robust
operational optimization framework for smart districts with multi-
energy devices and integrated energy networks (Rhodes et al., 2014).
Building on this, Good and Mancarella (2019) considered network
constraints for IES planning yet faced challenges in engineering
applications due to neglecting the non-linearity of hub equipment.
Clegg and Mancarella (2016) addressed these difficulties by
introducing a unified energy flowmodel with refined devicemodels.
Despite demonstrating the coupling model of integrated energy
systems (IES), the increased system scale complicates computation
and convergence. To address this, Zhao et al. (2021) developed a
decomposed method for the IES under grid-connected modes,
and Zhang et al. (2021) extended this to combine heat, gas, and
electric systems for better computational performance. Improving
hydrogen production efficiency via electrolysis is also a key focus,
with studies like Fu et al. (2020) and Li et al. (2019) exploring
the impact of electrolyzer sizes, system efficiencies, and optimal
dispatch models. However, these studies often face issues such as
ignoring the temporal dynamics of equipment energy use, failing
to select typical load days effectively, and lacking a comprehensive
analysis of operation and maintenance costs. These gaps highlight
the need for efficient and scalable solutions in integrated
energy management.

In distribution system planning, the total cost depends on the
efficient use of renewable distributed generation, related to network
capacity and system loading levels. Demand controllability and
connections with renewable generation also impact optimal energy
infrastructure distribution. However, existing studies often overlook
the temporal dynamics of large equipment energy use, which is

critical for accurate energy planning and optimization. This paper
proposes a novel time-series energy consumption (EC) model and
uses clustering methods to select typical days for load analysis,
better analyzing the EC and load characteristics of manufacturing
industrial parks. Additionally, the operation and maintenance costs
of large-scale energy-consuming equipment and their benefits are
considered, emphasizing their role in the park’s overall objective
function. The existing literature falls short in the following ways:
1) it ignores equipment temporal dynamics, 2) fails to effectively
select typical load days, and 3) lacks a comprehensive analysis of
operation and maintenance costs. The main contributions of this
paper are as follows:

• First, a hybrid time-series model of energy-consuming
equipment based on the autoregressive integral moving average
model (ARIMA) and temporal convolutional network (TCN)
is generated. According to this model, the EC curve of large
equipment in the industrial park can be depicted.

• Second, in this paper, a load clustering method based on the
TLSM-IPML algorithm is proposed for selecting typical days of
electrical loads in manufacturing industrial parks. The impact
of energy use behavior on the planning results is revealed.

• Third, a maintenancemodel is proposed to analyze the adaptive
maintenance of energy-consuming equipment. Moreover,
this paper suggests a manufacturing industrial integrated
energy system (MES) planning model considering the load
characteristics to minimize the total cost, including investment
in facilities, operation, purchase energy costs, and benefits from
energy production.

The rest of this paper is as follows: The industrial park’s
renewable energy models and large types of equipment are
introduced in Section 2. The load clustering method based on
the TLSM-IPML algorithm is introduced, and the clustering
efficiency of different clustering methods is comparatively analyzed
in Section 3. The objective and restriction functions are proposed
in Section 4. Section 5 shows the solution method of the planning
model. In addition, the case studies are given in Section 6. Last,
conclusions are drawn in Section 7.

2 Representation of system
generation and energy-consuming
equipment

This section introduces the MES model with nonlinear power
and gas flow equations, including the resource endowment
assessment, renewable energy equipment models, and ESS model.
Furthermore, a mathematical model of EC equipment is built to
conduct EC analysis.

2.1 Energy-supplying equipment

In this section, models of the energy equipment are shown.
The structure of the IES contains the following parts: the
photovoltaic power generation model, wind power generation
model, and HP model.
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TABLE 1 Annual total solar radiation level.

Level StandardData
MJ/(m2∗a)

Level symbol

Most G> = 6300 A

Better 5040< = G<6300 B

Good 3780< = G < 5040 C

Normal G < 3780 D

2.1.1 Photovoltaic power generation model
Solar energy is a clean and abundant resource. Estimating

solar energy resources involves evaluating total solar radiation. This
parameter is comparedwith standard data to determine solar energy
levels, as shown in Table 1, Total solar radiation is the sum of direct
and scattered radiation.

After understanding the level of solar energy resources,
photovoltaic power generation equipment will be deployed. The
output power of photovoltaic power generation equipment is mainly
related to the light intensity, operating conditions, and ambient
temperature received by the photovoltaic array. The relationship
between radiation intensity and the output power of a PV module
is described by a linear function.

2.1.2 Wind turbine
To plan a new energy park, the wind energy potential of the

locationmust be assessed before design.The two-parameterWeibull
distribution is widely used for analyzing wind speed. Wind energy
potential is typically assessed using wind velocity and wind power
density data (Chauhan and Saini, 2014). V̄ is the mean wind speed;
W̄e is the average effective wind energy density.

After the data of W̄e and V̄ at a certain height have been known,
the level of the wind energy resources can be obtained by comparing
them with the standard data in Table 2. If the wind energy resources
are the first level, it is not suggested to connect the wind power to
the grid. The result of the comparison of the two kinds of data can
show whether it is suitable or not to connect wind power to the grid.

Thewind speedmainly determines the output power of the wind
turbine generator. Figure 1 shows the wind speed power function
of the wind turbine generator. When v < vin, the wind turbine has
no output. When v > vin, the turbine starts working, and its output
power increases nonlinearly with wind speed; vin is the cut-in wind
speed. When vN ≤ v ≤ vout, the turbine maintains a constant rated
output power, PWT,N, and vN is the rated wind speed. When v > vout,
the turbine shuts down for safety, which is the cutout wind speed.

2.1.3 CCHP turbine
Combined cooling, heating, and power (CCHP) systems

generate electricity, heat, and cooling from one source, such as
natural gas. A prime mover (e.g., gas turbine) produces electrical
power (1 MW–10 MW). Waste heat is recovered (600–800°C) for
heating or driving absorption chillers. This increases efficiency (up
to 80%), reduces fuel use, and lowers emissions, making CCHP
suitable for industrial parks and hospitals.

2.1.4 Waste heat recovery system
Awaste heat turbine is a waste heat collection device that collects

waste heat from the heat pump and CCHP and turns waste heat into
high-temperature gas, which can be used in steam turbines for power
generation. The physical model of the waste heat recovery system is
as follows: the main function of a waste heat boiler is to use waste
heat to generate steam. The power generation capacity of the waste
heat recovery system is calculated as follows Equation 1:

Pwr = Qwr,inηwr, (1)

where Qwr, in is the flue gas thermal power absorbed by the system,
kW; ηwr is the efficiency of the waste heat recovery system; and Pwr
is system power generation, kW. The process of flue gas recovery
is shown in Figure 2.The boiler burns gas or coal, producing flue gas.
Beforedischarge, thefluegasundergoestreatments likedesulfurization
and denitrification. Waste heat from the flue gas can be recovered by
passing it into a waste heat boiler, which generates steam without
additional fuel. This steam is then sent to a steam turbine.

2.1.5 Hydrogen production system
Hydrogen is produced using an electrolyzer system which

converts electrical energy into chemical energy using water
electrolysis technology.The amount of hydrogen produced from the
electrolyzer is directly proportional to the current supplied to the
electrolyzer system (Zeng et al., 2014).

The electrolyzer conversion efficiency behavior is crucial for
the economic and technical analysis of hydrogen production. By
improving the electrolyzer efficiency, the hydrogen production cost
can be minimized. The conversion efficiency of the electrolyzer
system represents the ratio of the output energy content of the
produced hydrogen at the electrolyzer stack to the input DC power
energy into the electrolyzer stack (Yodwong et al., 2020).

2.2 Energy storage equipment

Batteries are often used to store surplus PV power and grid
power during low grid electricity prices, to be used later when
demand exceeds PV power generation and during times of high
grid electricity prices.They are already a very mature energy storage
technology. The thermal storage tank can store excess heat in it.
When there is a heat load demand, the heat in the thermal storage
tank can be used for heating, maximizing the energy efficiency of
the entire system. For the electricity and heat storage equipment
of the integrated energy system, a general model can be used to
represent the process of energy accumulation and release, as shown
in following Equations 2−6:

Et+1x = Etx (1− δx) +(X
t
ch,xηch,x −

Xt
dis,x

ηdis,x
)Δt, (2)

0 ⩽ Xt
chp,x ⩽ u

t
x ⋅ ρ

max
ch,xE

P
x , (3)

0 ⩽ Xt
dis,x ⩽ (1− u

t
x) ⋅ ρ

max
dis,xE

P
x , (4)

SOCmin
x EPx ⩽ Etx ⩽ SOCmax

x EPx , (5)
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TABLE 2 Wind energy resource level.

Height 10 m 30 m 50 m -

Level W̄e (W/m
2) V(m/s) W̄e (W/m

2) V(m/s) W̄e (W/m
2) V(m/s) Application

level

1 <150 <5.6 <240 <6.5 <300 <7.0 Normal

2 150–200 5.6–6.0 240–320 6.5–7.0 300–400 7.0–7.5 Good

3 200–250 6.0–6.4 320–400 7.0–7.4 400–500 7.5–8.0 Better

4 >250 >6.4 >400 >7.4 >500 >8.0 Perfect

FIGURE 1
Wind speed–power diagram.

ET+1x = E
1
X. (6)

where X represents the type of energy, including both P for electricity
and H for heat; the subscript x is the energy storage equipment; Bat
and Tst are electricity and heat storage, respectively; Etx indicates the
energy stored by the energy storage device in period t; δx is the energy
self-loss rate of the energy storage equipment; ηch,x and ηdis,x are the
energy storage efficiency and energy discharge efficiency of the energy
storage equipment, respectively; Xt ch,x and Xt dis,x are the energy
charge anddischarge power, respectively; uxt is the energy storage and
discharge identifier of the energy storage equipment, which is a 0-1
variable; when it is 1, it means that the energy storageequipment is
storing energy in period t; ρmax ch,x and ρmax dis,x are the maximum
charging and discharging coefficients of the energy storage device,
which represent the proportion of the maximum energy storage and
discharging power of the energy storage device to the total capacity of
the device; SOCmin x and SOCmaxx are the minimum and maximum
energy storage ratios of the energy storage device, respectively; EPx is
the planned installation capacity of the energy storage device.

2.3 Energy-consuming equipment

In this section, we build detailed energy consumption models
for key equipment within the industrial park. The equipment
includes air compressors, coil factory ovens, and charging stations.

By simulating the energy usage patterns of these devices, we aim
to optimize energy management and improve efficiency, providing
a framework for effective energy-saving measures and sustainable
industrial operations.

2.3.1 Air compressor
Compressing air consumes electricity directly. To model the

energy consumption (EC) of an air compressor, key factors
include the type, number, operating efficiency, and start–stop
times of the compressors. The mathematical model for an air
compressor station with m types and ni compressors of each type
is as follows Equation 7:

Pac =
m

∑
n=1

n

∑
j=1

ni,jPiti,j
ηi
, (7)

wherem represents the number of types of air compressors in the air
compressor station; n represents the number of different types of air
compressors; ni is the number of equipment of type i; Pi is the rated
power (kW) of type i air compressor; ηi is the energy efficiency of
the ith type air compressor; and ti,j is the operating time h) of the ith
type air compressor.

2.3.2 Coil branch factory oven
To establish a mathematical model of an oven, the main goal

is to describe and predict the temperature distribution, heating
time, and EC within the oven. This model can be used to optimize
oven operating conditions, improve energy efficiency, and ensure
product quality. For unsteady one-dimensional heat conduction, the
equation is, as shown in Equation 8:

POF =
n

∑
i=1

Piti +mcp (Tt −Ti) + ξS(Ti −Taim) t, (8)

where Pi is the rated power of the oven (kW); ti is the operating
time of the first oven h); m is the equivalent mass of the object to
be burned in the oven (kg); cp is the specific heat capacity of the
object to be burned (J/(kg ⋅ ◦C)); Tt is the target temperature; T1
is the initial temperature; Taim is the ambient temperature; ξ is the
overall heat transfer coefficient of the oven (W/(m2 ⋅ ◦C)); and S is
the surface area of the oven (m2). The model considers the effects of
electrical EC, operating time, temperature, and heat transfer on EC.
This model is used to evaluate an oven’s EC more fully and optimize
its operating conditions to increase energy efficiency.
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FIGURE 2
Waste heat recovery process.

2.3.3 Charging pile
The efficiency of charging piles is affected by many factors,

including charging current, voltage stability, impedance of charging
lines, and quality of charging equipment. Charging piles will
produce certain losses during the charging process, affecting their
energy efficiency, including losses during the power conversion
process and losses caused by line resistance. Based on the above
analysis, the charging pile model is built as follows Equation 9:

Pcp = Pcp,cap
1
ηcp

M, (9)

where Pcp,cap is the rated power of the charging pile (kW), ηcp is the
energy efficiency of the charging pile (percent, %), that is, the ratio
of actual output energy to input energy; andM is the charging mode
of the charging pile, such as fast charging and slow charging.

2.3.4 Construction of the sequential model for
large-scale energy-consuming equipment

To analyze the impact of random large-scale energy
consumption (EC) in heavy equipment manufacturing industrial
parks, the EC and time dependence of energy-consuming
equipment should be modeled accurately. This section proposes
a general ARIMA model structure to simulate the EC curve, where
y(1),y(2),y(N) is an observational time-series data modeled by
a stochastic process Y(t). The standard autoregressive integrated
moving average (ARIMA)model ofY(t), denoted asARIMA(p,d,q),
has the following expression as shown in Equation 10:

Pt = λ0 +
p

∑
i=1

ϕiYt−i +(εt −
q

∑
j=1

θjεt−j), (10)

where Yt and εt are the actual value and random error of
period t, respectively; p is the order and coefficient of the
autoregressive (AR) component of ARIMA; ϕi is the parameter of
the autoregressive model, indicating the weight of past observations
in the time series; and θj is the parameter of the moving
average model, which represents the weight of the error of past
observations. In addition, the unified model of the EC process
of large-scale energy-consuming equipment in heavy equipment
manufacturing industrial parks is as follows:

Yt = f (Xt) + εt, (11)

where Yt is the EC at time t and εt represents the error term, which
represents random situations, such as equipment failure.

To forecast seasonal and residual components using ARIMA,
it is important to ensure that the time series is stationary as
this is necessary for building a useful ARIMA model. Stationary
series have constant statistical properties over time. The augmented
Dickey–Fuller (ADF) test can be used to check for stationarity. If the
series is non-stationary, differencing operations should be applied.
The process is shown as following Equation 12.

∇dYt = ∇
d−1Yt −∇

d−1Yt−k, (12)

where d is the number of times the seasonal or residual components
differ and k is the time step of the difference operation. TCN is
a special one-dimensional CNN composed of causal convolution,
dilated convolution, and residual block. It processes input sequences
directly, learning local featureseffectively.Unlike traditionalRNNs like
LSTMandGRU,TCNuses causal and dilated convolutions alongwith
residual connections to learn sequence features recursively. Causal
convolution ensures that the value at time t only depends on values
at t and earlier times. For a one-dimensional input l ∈ RT and a filter
f: 0,…,k− 1, an ordinary one-dimensional causal convolution layer is
defined as follows Equations 13, 14:

F(lt) = (l ∗ f) (t) =
K

∑
j=0

fjlt−j, (13)

s̃eq = (F (l1) ,F (l2) ,…F (lT)) , (14)

where s̃eq is an output sequence,K is the convolution kernel size, and
F(⋅) is a convolution calculation.

After the TCN model is built, it can be applied to the EC
modeling of large-scale electrical equipment in a heavy equipment
manufacturing industrial park. The TCN model combines
traditional time-series analysis and deep learning for forecasting.
First, the ARIMAmodel captures the linear trend and periodicity in
the data to obtain the basic trend EC. Then, the residuals from the
ARIMA model are used as the input for the TCN model to capture
nonlinear patterns and long-term dependencies. At this time, the
residuals are calculated as ε̂t = TCN(εt−1,εt−2,…,εt−k).
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FIGURE 3
Flow chart of the hybrid timing model based on ARIMA and TCN.

The TCN model uses a self-attention mechanism to effectively
capture relevant information in sequence data, improving the
accuracy and robustness of EC modeling for large-scale equipment
in heavy equipment manufacturing industrial parks. The flowchart
of the hybrid ARIMA and TCN model is shown in Figure 3.

Based on the above energy usage patterns of large equipment
manufacturing industrial parks, an overall model is built for the
energy usage patterns of large equipment in heavy equipment
manufacturing industrial parks. Due to equipment wear and energy
loss in the production process, the total system EC at time t
(Pti,equ) is divided into four parts: transmission EC (Pttra), conversion
EC (Ptcon), standby EC (Ptsta) and peak load, and regulation EC
(Ptpar). This classification method is based on general criteria for
the production EC classification. Thus, the total EC in heavy
equipment manufacturing industrial parks can be obtained as
follows Equation 15:

Pti,equ = P
t
tra + P

t
con + P

t
sta + P

t
par + ε̂t, (15)

where Pttra includes losses on power lines and losses during the
transport of natural gas, oil, etc. The EC of the transmission and
distribution process can be expressed as follows Equation 16:

Pttra =
n

∑
i=1
(∫

titra

0
Ettradt)+

m

∑
i=1
(∫

tiG

0
Ettradt), (16)

where n is the total number of energy types. Ettra and titra are the
transmission power and time, respectively.

In the energy system, energy is lost when converting one form of
energy to another, for example, the conversion of fuel to electricity
(such as in combustion power plants) or the conversion of electricity
to mechanical energy (such as in electric motors). Thus, Ptcon is
expressed as follows Equation 17:

Ptcon =
n

∑
i=1
(∫

tigen

0
Etgendt)+

m

∑
i=1
(∫

timot

0
Etmotdt), (17)

where n is the total number of generators in MES. m is the total
number of motors in MES. Etcon and Etmot are the power during
fuel combustion and motor operation, respectively. tigen and timot are
combustion and operation time, respectively.

In the energy system, equipment consumes energy in the
standby mode or during low-efficiency operation, for example, the
energy consumption of power generation equipment at low load or
idle times or household appliances in the standby mode. Thus, the
standby EC is given as follows Equation 18:

Ptsta =
n

∑
i=1
(∫

tigrid

0
Etgriddt)+

m

∑
i=1
(∫

tiset

0
Etsetdt), (18)

where n is the total number of energy-generating infrastructures.m
is the total number of generator sets. Etgrid and Etset are the power
during a standby mode of energy-generating infrastructures and
generator set and motor operation, respectively. tigrid and tiset are
standby times of the grid and sets, respectively.

In the energy system, additional energy consumption occurs
when adjusting the power output to meet load fluctuations and peak
demand, for example, when the power grid starts, backup generators
or peaking power plants meet high-demand periods, leading to
increased energy consumptions. Thus, the EC of peak load and
regulation can be expressed as follows Equation 19:

Ptpar =
n

∑
i=1
(∫

tipeak

0
Etpeakdt)+

m

∑
i=1
(∫

tifrv

0
Etfrvdt), (19)

where n is the total number of peak load units.m is the total number
of frequency and voltage regulation units. Etpeak and Etfrv are the
power during the peak shaving frequency and voltage regulation,
respectively. tipeak and t

i
frv are the peak shaving frequency and voltage

regulation time, respectively.
The proposedmodel for heavy equipment combines ARIMA and

TCN to handle linear and non-linear energy consumption patterns.
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Regular updates to the TCN and dynamic adjustments to the ARIMA
ensure that the model remains accurate and responsive to changes.
This approachmaintains reliability without a complete overhaul when
conditions change, making it suitable for evolving operations.

3 TLSM-IPML clustering method

In the previous section, we developed an energy model for
the industrial park. This chapter uses TLSM-IPML clustering to
select typical days, capturing time-related and seasonal energy
consumption patterns. This helps in understanding usage and
applying ARIMA and TCN models accurately, improving energy
management and efficiency.

3.1 Basic definition and process of the
TLSM-IPML clustering method

In this section, the TLSM-IPML clustering method is
introduced. The core idea behind TLSM-IPML is to convert the
problem of density-based clustering into a problem of finding the
areas of high density in the dataset and then hierarchically clustering
these dense areas based on their density and separation. It operates
on the principle that clusters are areas of higher density than their
surroundings in the data space.

3.1.1 Basic ideas of the TLSM-IPML clustering
method

As noted in Zhang et al.’s (2023) study, DBSCAN struggles with
large-scale data due to its high complexity. Our analysis shows that
points p and q in thedataset shouldhave similar neighborhoods if they
are close, meaning a point tends to share its neighbors’ type. TLSM-
IPML improves on DBSCAN by automatically selecting suitable
neighborhood values for clustering. It introduces the interconnection
distance rlm(p) to form stable clusters and reduce noise interference.A
minimumspanningtree (MST) is thenusedforhierarchical clustering.
TLSM-IPML adapts to data’s characteristics, making it effective for
complex datasets with varying density distributions.

In this article, n represents the number of days in the year for the
heavy equipment manufacturing industrial park and m represents
the number of hours per day. Therefore, the dataset is the annual
electrical load data on the park. Let X = {X1,X2,X3,…,Xn} be a set
of n objects, where each object Xi is represented by xi,1,xi,2,…,xi,m.
Here, m represents the number of types of data. We use relative
density to divide the dataset into low and high-density parts. The
relative density of data points is defined as follows Equation 20:

rd (i) = k

∑k
n=1

dist(xi,j) ,xn,j
, (20)

where dist(xi,j,xn,j) represents the Euclidean distance between points
xi,j and xn,j and k is the number of nearest neighbors of xi,j.
To identify low-density data points, two parameters are defined:
k (number of nearest neighbors) and t (density threshold). k
determines the neighbors involved in the relative density calculation,
and t sets the threshold for low density. We calculate the relative
density rd(i) for each data point xi,j and compare it with t. If rd(i) <

FIGURE 4
TLSM-IPML clustering process.

t, the data points are merged into the low-density set L, which is
expressed as L = {xi,j|rd(i) < t}.

Using core distance and interconnection distance as
measurements is more appropriate.The core mathematical concepts
and formulas of the TLSM-IPML algorithm are given as follows:

Core distance: For a given minimum number of samples
m and distance metric d, the core distance of a point p is
defined as the distance to the m-th immediate neighbor point:
cdm(p) =min{r: |N(p, r)| ≥minPts}. Among them, N(p, r) represents
the neighborhood surrounding point p within radius r, and
|N(p, r)| represents the number of points in this neighborhood.
The calculation of core distance determines the potential of each
typical day as a cluster center, which is critical for the subsequent
construction of minimum-spanning trees and judging whether
connections between points should exist.

Interconnect distance: Interconnect distance is defined based
on the core distance and is used to evaluate the reachability
between two points. For two points p and q, their interconnection
distance is defined as idm(p) =max{clm(p),clm(q),D(p,q)}. The
interconnection distance from p to o is at least the core distance
and not less than D(p,o). Here, D(p,q) is the D-Euclidean distance
between points p and q, indicating that the interconnection distance
from p to q is at least p’s core distance and not less than D(p,q).
This helps the algorithm adapt to different density levels in the
dataset, allowing for more reasonable connections between points.
This directly impacts the construction of the hierarchical clustering
tree and the final cluster formation.

Minimum spanning tree (MST): Using core distance and
reachability distance, a minimum spanning tree on a point set is
constructed,where theweightof eachedge is the reachabilitydistance.

A single-chain hierarchical clustering process, based on MST
and using reachability distance, is applied. Cluster centers are
selected through a stability-based method to calculate the sum of
reachable distances for each potential cluster, identify clusters that
remain stable until distance increases (indicating decreased density),
and select clusters by cutting the longest edges to split the tree. Points
not meeting stability or size requirements are considered noise. The
steps of the TLSM-IPML algorithm are as follows Figure 4:

1) Initially, the dataset is transformed into a graph represented
as a minimum spanning tree (MST) and calculated based
on the mutual reachability distance between points. This
process ensures that the distances are normalized even in
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datasets with varying densities to reflect the density landscape
more accurately. dmreach−k(a,b) =max{cdk(a),cdk(b),dis(a,b)},
where cdk(a) and cdk(b), respectively, represent the core
distance defined by the parameters k of point and point, and
dis(a,b) is the original metric distance of point a and b.

2) Using the MST, TLSM-IPML constructs a hierarchy of clusters
by removing the longest edges first and separating the graph
into smaller, denser components. This process resembles
finding valleys in a topological landscape, where each valley
represents a potential cluster.

3) The algorithm then condenses the hierarchy to remove the less
significant branches. This step simplifies the cluster hierarchy,
making it easier to analyze and interpret.

4) Finally, TLSM-IPML extracts the clusters from the condensed
hierarchy based on their stability. A cluster’s stability is
a measure of its persistence over the range of distances
considered; more stable clusters are considered significant,
while less stable ones are treated as noise.

As shown in Algorithm 1, there are two significant parameters:
minimum cluster size (MCS) and minimum sample (MS). First,
MCS sets the minimum number of points required for a set to be
considered a cluster. For electrical load data inmanufacturing parks,
selecting an appropriate MCS is crucial, impacting the number
and size of identified clusters. Larger MCS values yield fewer but
larger, more stable clusters, while smaller values detect more smaller
clusters. MCS selection can be guided by initial data exploration
or domain expert advice, especially when daily load patterns are
similar. In addition, MS determines when a point is considered
a core point in the algorithm. Higher MS leads to denser core
areas, which is beneficial for identifying noisy data. Adjusting MS
is necessary based on dataset characteristics to distinguish major
trends from random fluctuations or outliers.

In short, the TLSM-IPML method is suitable for
typical daily cluster analysis of electrical load datasets in
manufacturing industrial parks because it can effectively
handle changes in data density, noisy data, and complex
data structures and does not require pre-specification. The
number of clusters and these properties make it ideal for
analyzing this data type.

3.2 Cluster validity analysis

When using TLSM-IPML or other clustering algorithms
for data analysis, determining the optimality of the clustering
effect relies on several mathematical evaluation indicators. To
evaluate the effectiveness of clustering, we analyze three key
parameters: the Silhouette coefficient, the Davies–Bouldin index,
and the Calinski–Harabasz index. These metrics provide a
comprehensive view of clustering quality. The following are
several commonly used mathematical models and evaluation
indicators that can help demonstrate and evaluate the quality of
clustering results.

3.2.1 Effectiveness analysis parameters
Evaluating the effectiveness of clustering methods ensures that

the clustering results are meaningful and valuable for practical

1: Input: dataset D, minimum cluster size min_pts

2: Output: cluster labels for each point in D

3: procedure TLSM-IPML(D,min_pts)

4:   compute core distances for all points

5:   compute mutual reachability distances

6:   construct MST from

mutual reachability distances

7:   EXTRACTCLUSTERS(MST)

8:   assign cluster labels based on stability

9: procedure

10: procedure EXTRACTCLUSTERS(MST)

11:   initialize cluster hierarchy H

12:   while MST is not empty do

13:    remove longest edge e from MST

14:    form two new clusters by splitting at e

15:    compute stability of new clusters

16:    update hierarchy H with new clusters

17:   while

18:   return H

19: procedure

20: return cluster labels

Algorithm 1. TLSM-IPML clustering algorithm.

applications. To comprehensively assess the quality of clustering,
several metrics are commonly used. The following three key
parameters measure the quality of clustering from different
perspectives.

• Silhouette coefficient: This metric measures the cohesion and
separation of clusters, with higher values indicating better-
defined clusters.

• Davies–Bouldin index: This index evaluates the average
similarity ratio of each cluster with its most similar cluster, with
lower values representing better clustering quality.

• Calinski–Harabasz index: This index assesses the ratio of
the sum of between-cluster dispersion and within-cluster
dispersion, with higher values indicating better clustering
performance.

3.2.2 Clustering effectiveness comparison
According to the effectiveness analysis method in Section 3.2.1,

the effectiveness of the K-means clustering method, the A-MKMC
(adaptive multi-kernel-means clustering) clustering method, and
the TLSM-IPML clustering method are evaluated. The parameter
values corresponding to the three clustering methods are shown in
Table 3. The results by comparing these metrics demonstrate the
advantages of TLSM-IPML in clustering quality, especially with
complex datasets such as the electrical load of heavy equipment
manufacturing industrial parks. As shown in Table 5, TLSM-
IPML achieves a higher Silhouette coefficient (0.630), a lower
Davies–Bouldin index (1.440), and a higher Calinski–Harabasz
index (785.310), indicating superior cluster quality and
performance. In contrast, K-means has a Silhouette coefficient of
0.561, a Davies–Bouldin index of 1.642, and a Calinski–Harabasz
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TABLE 3 Comparison of the effectiveness of different clustering methods.

Evaluation indicator Silhouette coefficient Davies–Bouldin index Calinski–Harabasz index

K-means 0.561 1.642 483.372

A-MKMC 0.274 2.937 183.482

TLSM-IPML 0.630 1.440 785.310

FIGURE 5
Comparison of clustering time of different clustering methods.

index of 483.372, while A-MKMC shows poorer performance
with values 0.274, 2.937, and 183.482, respectively. These results
highlight TLSM-IPML’s robustness and ability to handle complex
data structures, making it the most effective method for clustering
in this context.

3.3 Clustering efficiency comparison

The experimental data consists of real load data from a
manufacturing industrial park in Sichuan, China, covering an
entire year. This dataset, with its seasonal load variations, is
ideal for testing evolutionary clustering algorithms. Clustering
the 8,760 hourly load data points, traditional algorithms show
increasing running times as data volume grows. In contrast,
TLSM-IPML performs more stably and faster while maintaining
comparable or better clustering quality. This makes TLSM-
IPML superior for large-scale clustering tasks. Figures 5, 6
show that TLSM-IPML significantly outperforms traditional
algorithms in speed, highlighting its advantages for industrial load
data analysis.

The simulation experimental results show that the TLSM-
IPML algorithm has good clustering results for the real load
data used in the experiments and can maintain smooth changes
in the clustering results. The experimental results also show
that TLSM-IPML can well-portray the changing trend of users’
load profiles.

FIGURE 6
Comparison of clustering methods by time.

4 Planning model of MES

After completing the simulation of all types of equipment, bus-
wise load profiles are created over a period of 10 years. A new
objective function that motivates the seasonal hydrogen energy
storage is proposed in this work. The net costs of the hydrogen
system, PV system, ESS (energy storage system), and grid power
define the objective function of the optimization problems to be
minimized.

4.1 Objective function

In the multi-objective optimization of the integrated
energy system, the objective functions for minimizing total
cost Fall and carbon emission Fc are combined using a
weighted sum: F = ω1Fall +ω2Fc. Selecting appropriate initial
weights ω1 and ω2 involves expert knowledge, sensitivity
analysis, iterative adjustment, and normalization. Dynamic
weight adjustment ensures the model’s adaptability to complex
planning scenarios.

To validate the impact of different weight values (ω1 and
ω2) on the optimization results, we conduct experiments
using the integrated energy system model of the heavy
equipment manufacturing industrial park. The objective
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functions considered are total costs (Fall) and carbon
emissions (Fc).

4.1.1 Lowest total costs
A new objective function that motivates the seasonal hydrogen

energy storage is proposed in this work. The net costs of the
hydrogen system, PV system, ESS, and grid power are considered
to define the objective function of the optimization problem that is
to be minimized.

minFall =min{Finv + Fope + Fdeg + Fbe − Fpe} . (21)

The objective function in Equation 21 represents five system cost
components which describe the system net cost of the industrial
integrated energy system, which is given as follows: 1) total capital
expenditure, as shown in Equation 22; 2) total operating expenses,
including maintenance and environmental costs, as shown in
Equation 23; 3) degradation costs of the ESS and electrolyzer system,
as shown in Equation 27; 4) energy purchasing costs, as shown in
Equation 28); and 5) benefits from energy production, as shown
in Equation 29. In this work, the electricity price (JtE,m) considers
the variable and fixed charges. The grid cost in Equation 28 is
multiplied by the Z-score of the historical set of electricity prices,
TH = {1,2,…, th,…, t}, that serves as a reward or penalty for seasonal
storage application purposes.The value of the Z-score shows how far
the current electricity price at time t is.

Finv =
I

∑
i=1

αPi C
P
i , (22)

where i is the number of equipment types; I is the number of
equipment; CP

i is the capacity of equipment i; and αPi is the
installation cost per unit capacity.

Fope = FMain + FEnv, (23)

FMain =
S

∑
s=1

Ds

T

∑
t=1

I

∑
i=1

βiϕ
t
iΔt+

n

∑
i=1

zitC
i
t0i ,t
Pti,equ, (24)

where s is typical days; S is the number of typical days; Ds is
the number of days for typical days; T is the scheduling cycle,
which is taken as 24 h; βi is the operation and maintenance
costs per unit output of equipment i; ϕti is the output of
equipment i in period t; Ci,ope is the operation and maintenance
costs of large energy-consuming equipment in the heavy
equipment manufacturing industry; and Pi,equ is the EC of
large energy-consuming equipment, kW, which is proposed
in Eq.(15).

The last term of Equation 24, the maintenance cost of
the energy consumption types of equipment, corresponds to
the dynamic maintenance cost associated with equipment
maintenance. Notably, the dynamic maintenance costs Ci

toi ,t
are computed from the remaining life distributions of
operating energy-consuming equipment, which are updated
based on sensor observations. The dynamic maintenance cost
function quantifies the tradeoff between the cost of preventive
action and the risk of unexpected failures by defining their
corresponding probabilities through the sensor-updated remaining

life estimates. The dynamic maintenance cost is represented
as follows Equation 25:

Ci
toi ,t
=
cpi P(R

i
toi
> t) + c fiP(Rt0i

≤ t)

∫
t

0
P(Rtoi
> z)dz+ toi

, (25)

where Ci
toi ,t

represents the cost rate associated with conducting
energy-consuming equipment maintenance t periods after the
time of observation t0i ; cpi and c fi are the costs of planned
maintenance and failure replacement, respectively. The dynamic
maintenance cost (24) uses renewal reward to characterize the
long-run expected maintenance cost. The numerator evaluates the
expected cost of maintenance, where the terms cpi P(R

i
toi
> t) and

c fiP(Rt0i
≤ t) represent the expected cost of preventive and corrective

actions, respectively.Thedenominator, on the other hand, represents
the expected length of the cycle. The first term, ∫t0P(Rtoi

> z)dz,
finds the expected remaining lifetime of the component, given
that preventive maintenance is planned at time t, and toi is the
deterministic time of observation that is already a part of the
current cycle.

FEnv =
S

∑
s=1

Ds

T

∑
t=1

γ(εEP
t
Grid + εGV

t
GasPip)Δt, (26)

In Equation 26, where γ is the carbon tax, which is taken as
0.02 (Yuan/kg) in this paper; ϵE and ϵG are the carbon emission
coefficients of the park’s purchased electricity and natural gas,
respectively; PtGrdi is the electric power purchased by the system
during period t; and Vt

GasPip is the amount of natural gas purchased
by the system from the gas grid during period t,m3.

Fdeg =
S

∑
s=1

Ds

T

∑
t=1

Dt
BS ⋅ (P

t
BS,Chg + P

t
BS,Dhg) +D

t
Elz ⋅ P

t
Elz, (27)

whereDBS
t is the ESS degradation cost (Yuan/MW); pBS,Chgt is the ESS

charging power (MW); pBS,Dhgt is the ESS discharging power (MW);
DElz is the electrolyzer stack replacement cost (Yuan/MWh); and pElzt
is the electrolyzer input power (MW).

Fbe =
S

∑
s=1

Ds

T

∑
t=1
(JtE,mP

t
Grid ⋅Z

e
t + J

t
G,mV

t
GasPip

+ JtH,mQ
t
Heat + JHy,mV

t
Hy,m)Δt, (28)

Fpe =
S

∑
s=1

Ds

T

∑
t=1
(PtgJ

t
E,m + JH,mQ

t
g + JG,mV

t
g + JHy,mV

t
Hy,m)Δt. (29)

The objective function is subjected to the operational and capacity
constraints, as discussed herein.

4.1.2 Lowest carbon emissions
The objective function for the lowest carbon emission is as

shown in following Equation 30:

Fc = y
n

∑
i=1

xiNi, (30)

where Fc is the total carbon emissions during the entire life cycle; y
is the entire system life cycle; n is the optimal number of planned
devices; and Ni is the carbon emissions of the ith device in a
unit period.
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FIGURE 7
K-means clustering result.

4.2 Constraints

1) ESS constraints: Similar to the HS, the ESS has operational
constraints that ensure a safe operation of the ESS. The ESS
operation is subjected to maximum and minimum limits, as
shown to avoid excessive charging and discharging that can
damage the ESS as following Equations 31, 32:

PES,Chgmin ⩽ P
ES,Chg
t ⩽ PES,Chgmax , (31)

PES,Dhgmin ⩽ P
ES,Dhg
t ⩽ PES,Dhgmax . (32)

In order to minimize power lost during charging and
discharging due to process efficiencies, constraints in Equation
33 are included to prevent simultaneous charging and
discharging as

PES,Chgt ⋅ PES,Dhgt = 0. (33)

2) System power balance:The amount of power purchased from
the power grid is limited by the maximum and minimum grid
operational capabilities as follows:

PGridmin ⩽ p
Grid
t ⩽ P

Grid
min . (34)

5 Case study

In this section, the sources of data, including equipment
parameters andpark scale, are introduced in Section 5.1. In addition,
this section conducts a data clustering experiment (Section 5.2) to
analyze typical day energy consumption in the heavy equipment
manufacturing park using TLSM-IPML. Section 5.3 analyzes the
impact of different equipment inputs on energy system planning
through five scenarios and examines how varying fuzzymembership
weights affect the planning results.

5.1 Data source and park scale

Simulations validated the MES model for cost minimization in
a large industrial park. The 2-sq km park with 50+ facilities has a
200-MW capacity, 150 MW peak demand, and consumes 1.2 TWh
electricity and 0.8 TWh thermal energy annually. It features
substations, on-site generation, backup generators, and a natural
gas system. Cooling is done by 50,000 RT chillers, and heating
is done by 100-MW gas boilers and heat exchangers. Renewables
include 30-MW solar PV, 20-MW wind, 50-MWh battery, and
thermal storage.

The MES model integrates hydrogen production, PV,
wind turbines, CCHP, heat turbines, waste heat recovery,
and ESS, optimizing with real-time electricity prices from
Sichuan Province ESO. Electrolyzer size is tailored for
70% annual operation to maximize economic benefits
(El-Taweel et al., 2019).

Wind resources are favorable with an annual average speed
of 7.3 m/s and power density of 382 W/m2. Photovoltaic data
indicate moderate potential for investment, with scattered radiation
and stable conditions, albeit lower economic returns compared to
wind power.

5.2 Comparing TlSM-IPML with other
methods

In this section, we compare our algorithm with the K-
means algorithm. The performance of the proposed algorithm is
verified through experiments on real-world benchmark datasets.We
conducted a comparative study with existing clustering methods
including K-means and A-MKMC, as shown in Figures 7, 8. The
results of the A-MKMC clustering method applied to the 8,760
electric load data points are presented in Figure 8, representing
Level 1 and Level 2 of hierarchical clustering. Although the
data points remain identical, the hierarchical clustering approach
differentiates the figures by their levels of granularity. Level 1
clustering identifies broader clusters that capture general load
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FIGURE 8
A-MKMC clustering result.

FIGURE 9
Electric load curves of two selected typical days.

patterns, while Level 2 clustering refines these into more specific
subgroups. This hierarchical method allows for a detailed analysis
of load profiles, offering a comprehensive understanding which is
essential for accurate energy planning andmanagement in industrial
parks. The comprehensive analysis of the results of K-means and
A-MKMC clustering methods shows that the load situation in the
park is roughly divided into four cluster centers, which can be
understood as the four load situations corresponding to the four
working conditions in the park. However, based on this clustering

result, it is impossible to analyze the load relationship between
different typical days, which is not conducive to analyzing the load
situation of the park in different months and seasons.

In Figure 9, TLSM-IPML shows a significant shift in
electricity consumption behavior on different days, which
traditional clustering methods do not capture. Figure 10
analyzes two seasons of consumption data, highlighting TLSM-
IPML’s ability to track evolving patterns over time. Our
TLSM-IPML method achieves higher clustering accuracy and
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FIGURE 10
Comparison of load data for two typical days in spring and summer.

FIGURE 11
Electrical load curve of two typical days for the second industrial park.

better captures the load variation patterns specific to heavy
equipment manufacturing. When the behavior is stable, TLSM-
IPML maintains historical data for consistent clusters. Yet,
significant changes prompt adaptive clustering, potentially
yielding new outcomes.

To further validate our proposed method, we have included an
additional dataset from one different industrial park. The dataset
covers a range of operational conditions and energy consumption

patterns. Figure 11 illustrates the application of the clustering
method on the new datasets, demonstrating its robustness and
versatility.

The peaks and valleys in the load diagram offer insights
into the daily variations in electricity usage. To enhance the
understanding of energy consumption behavior, additional
information can be extracted from these load diagrams through
further analysis.
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TABLE 4 Test cases.

Case #1 #2 #3 #4 #5

PV × √ √ √ √

WT × √ √ √ √

CCHP × √ √ √ √

HT × √ √ √ √

WR × × × × √

HS × × × √ √

ESS × × √ √ √

TABLE 5 Economic optimization results of the IES under each case.

Case #1 #2 #3 #4 #5

Cap. costs
(M ¥)

PV N/A 67.559 65.783 70.834 68.730

WT N/A 79.561 80.567 81.324 81.941

CCHP N/A 1.976 2.876 3.273 2.692

HT N/A 14.923 15.794 14.535 15.660

WR N/A N/A N/A N/A 5.615

HS N/A N/A N/A 0.069 0.175

ESS N/A N/A 2.531 2.875 3.194

Ope. costs/year
(M ¥)

Main 0 1.871 2.683 2.924 3.276

Env 1.03 0.792 0.835 0.579 0.493

Deg. cost
(M ¥)

- - 1.564 3.523 3.523

Be. cost
(M ¥)

42.906 23.639 22.927 17.975 8.69

Total annual cost
(M ¥)

64.975 58.874 47.874 39.902 33.618

Pe. revenue
(M ¥)

N/A 37.125 38.597 45.896 52.807

• Identifying peak load hours is vital for operational planning
and load shifting. For instance, in one dataset, demand rises
from 8 a.m., peaks at 1 p.m., declines until 8 p.m., and stays low
until 5 a.m. the next day. Pinpointing low-energy periods aids
in scheduling maintenance and optimizing energy use.

• Categorizing days by load profiles (weekdays vs weekends and
production vs non-production) reveals operational impacts on
energy use. Weekdays peak around 2 p.m. and weekends at 11
a.m. Seasonal analysis shows summer peaks from 11 a.m. to 5
p.m. andwinter from 3 p.m. to 7 p.m., guiding energy strategies.

TABLE 6 Capacity optimization results of the IES under each case.

Case #1 #2 #3 #4 #5

Capacity (MW)

PV N/A 16.25 17.25 20.36 19.64

WT N/A 12.27 12.91 13.24 13.48

CCHP N/A 0.63 0.69 0.75 0.81

HT N/A 2.57 2.72 2.15 2.61

WR N/A N/A N/A N/A 2.07

HS N/A N/A N/A 1.68 3.04

ESS N/A N/A 7.13 6.86 7.39

TABLE 7 Selection of weight values.

Condition ω1 ω2

Cost-prioritized 0.7 0.3

Emission-prioritized 0.3 0.7

TABLE 8 Optimization results for each set of weight values.

Condition Total cost(Fall)
(M ¥)

Carbon
emissions(Fc)(m3)

Cost-prioritized 437.097 468.034

Emission-prioritized 561.273 153.345

• Calculating energy intensity highlights industrial efficiency.
High production days may reach 1.5 kWh per unit, and low
production days may reach up to 2.0 kWh per unit, indicating
inefficiencies. The average load factor is 0.75 and stable with
potential for improvement on 0.6 factor days.

• Analyzing load diagrams predicts future trends. For example,
summers typically see a 5%-peak load increase, aiding proactive
energy management. Anomaly detection, like 10 p.m. spikes,
prompts timely maintenance to prevent disruptions.

Load diagrams from TLSM-IPML clustering reveal that
peaks and valleys pinpoint high-demand times and load-shifting
opportunities while classifying load profiles, seasonal variations, and
metrics like energy intensity and load factor optimize usage insights.

5.3 Performance analysis of the planning
model

Five cases (Table 4) compare different configurations,
highlighting base cases (case 1 and case 5) for analysis.

Tables 5, 6 reveal that annual total costs significantly decrease
after equipment planning. For instance, comparing case 1 with

Frontiers in Energy Research 14 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1448362
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Chen et al. 10.3389/fenrg.2024.1448362

case 5, costs drop by 48.26%, a reduction of 31.357 million CNY
annually. Savings stem from photovoltaic planning, enabling the
park to generate electricity using clean energy, replacing higher-
cost purchases. Battery planning allows peak shifting, reducing
electricity costs during peak hours. Ground source heat pump
planning reduces electricity-to-heat conversion costs.

The proposed MES involves key parameters influencing
optimization results. Further analysis examines the impact of
PV generation share on energy conversion efficiency. Setting
the Z-score of historical electricity prices to 1 in cases 3 and 4
reduces annual costs by 7.97 million CNY, a 16.65% decrease
compared to non-use scenarios. This underscores the necessity of
seasonal hydrogen storage equipment in industrial energy system
planning, demonstrating economic benefits and system flexibility
through electrolytic hydrogen and hydrogen storage technologies.
The conclusions from the case study analysis are as follows: 1)
comprehensive energy planning significantly reduces park operating
costs and annual fees; 2) ground-source heat pumps are valuable for
adapting to fluctuating natural gas and electricity prices; 3) electric
energy storage is beneficial despite price fluctuations, effectively
lowering park operational costs.

We selected two sets of weight values to explore their effects
on the optimization outcome. The weight values are shown in
Table 7. In addition, the optimization results for each set of weight
values are summarized in Table 8. Optimization with a higher
cost weight minimizes total costs to 437.097 M CNY but increases
emissions to 468.034 m3. Prioritizing emission minimization
raises costs to 561.273 M CNY while achieving lower emissions
at 153.345 m3, illustrating the trade-off between the cost and
environmental impact.

The study shows that weight values significantly influence
optimization outcomes. Decision-makers should select weights
based on priorities; higher ω1 values prioritize emission reduction,
which is crucial for regulatory compliance or sustainability goals,
while higher ω2 values focus on cost reduction.

6 Conclusion

This study proposes an integrated planning approach for
the energy systems of heavy equipment manufacturing industrial
parks. By combining ARIMA and temporal convolutional networks
(TCNs), we developed an advanced model that accurately predicts
the energy consumption of heavy equipment, capturing both
temporal dependencies and non-linear characteristics. Utilizing
the TLSM-IPML method, we identified representative load days
that reflect the diverse energy consumption patterns in the
industrial park, improving the accuracy and effectiveness of energy
system planning. Integrating the predictive energy consumption
model and typical load days, we designed a comprehensive

planning model that optimizes energy usage and minimizes
operational costs by considering the unique characteristics of
heavy equipment operations. Overall, our integrated approach
enhances the efficiency and cost-effectiveness of energy system
planning in heavy equipment manufacturing industrial parks.
Future work will focus on refining these models and exploring their
application in different industrial contexts to further validate their
robustness.
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