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The present paper introduces a novel method for identifying voltage sags in
time-variant power distribution networks, effectively addressing the challenges
arising from the temporal variability of network topology and data. The proposed
method is founded on the concept of inheritance, which is bifurcated into
breadth and depth inheritance strategies. The breadth inheritance strategy
employs transfer learning to manage topological temporality, utilizing the
Euclidean distance between samples to ascertain the sequence of sample
migration, and implements multitask learning to share feature representations
across different tasks. The depth inheritance strategy, on the other hand, utilizes
incremental learning to handle data temporality, building upon the initial model
parameters to learn new sample features, which in turn reduces the time
required for model updates and enhances the accuracy of target tasks. Case
study findings validate the suitability of the proposedmethods for reconstructing
fault identification models in scenarios characterized by topological temporal
variability and for rapidly updating fault identification models in scenarios
with data temporal variability. The approach presented herein holds significant
implications for the enhancement of power supply reliability and the adaptability
of electrical grids.

KEYWORDS

time-variant power distribution network, deep inheritance, breadth inheritance, multi-
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1 Introduction

Power quality is a paramount concern within the electrical power industry, defining
the conformity of voltage and current to the standards required for the reliable operation
of electrical equipment and the execution of industrial processes. It encompasses critical
aspects such as voltage magnitude, frequency, waveform integrity, and the presence of
harmonic distortions. Voltage sags, also known as dips or momentary interruptions, are
a prevalent power quality disturbance, characterized by a transient reduction in voltage
between 10% and 90% of the nominal value for a brief interval, typically lasting from
a few power cycles to several seconds. These sags can lead to significant operational
disruptions, equipment failures, and economic losses in industrial and commercial
sectors, emphasizing the importance of their detection and mitigation to ensure a
stable and reliable power supply. For readers who may be less familiar with voltage
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sags, this introduction will provide a foundational understanding of
their impact on power quality.

Based on actual operational statistical data of power distribution
networks, voltage sag sources include faults, the start-up of
large induction motors, and the operation of large capacity
transformers (Bastos et al., 2019; Waqar et al., 2024). The latter
two types of transient sources primarily affect a limited number
of loads and are considerably less harmful in terms of both the
frequency of occurrence and the severity of impact compared
to faults (Zhang et al., 2024a). Therefore, this paper focuses on the
identification of fault-type transient sources, conducting research
from two aspects: fault discrimination and transition resistance
estimation.

With the increasing integration of new energy sources
into power distribution networks year by year, the operational
data of power distribution networks evolve dynamically under
the new paradigm of the power system (Shareef et al., 2013;
Zhang et al., 2024b). To ensure the power quality of the distribution
network and meet the energy needs of some sensitive users, the
topological structure of the power distribution network must be
adjusted in a timely manner, and the characteristics of voltage
sags change accordingly, exhibiting strong topological temporal
characteristics (Turizo et al., 2022). With the advancement of
advanced measurement and communication technologies, the
proliferation of Distribution Automation Systems (DAS) in power
distribution networks is increasing, and monitoring equipment
represented by DAS terminals and Power Quality Monitors
(PQM) has gradually achieved comprehensive monitoring and
data collection of voltage sag data in power distribution networks.
The distribution network, with its wide distribution and numerous
nodes, accumulates voltage sag data over time, forming a massive
data pool that demonstrates significant data temporal characteristics
(Liao et al., 2015).Machine learning methods have proven superior
in many fields, with classification and regression being the twomost
widely applied tasks (Sun et al., 2024). The fault type discrimination
and transition resistance estimation of transient sources studied
in this paper belong to the classification and regression tasks
within the field of machine learning, respectively (Alipoor et al.,
2014). The performance of machine learning models is highly
dependent on the quantity and stable distribution of samples; the
more samples a model has, the better its predictive performance.
However, an excessive amount of samples can affect the timeliness
of model training (Liu J. et al., 2023; Chen et al., 2023).The dynamic
changes in power distribution networks intensify the evolution of
sample data, making it difficult to build high-performance models.
Moreover, as data accumulates, the updating and optimization of
models may take longer, affecting real-time performance (Liu et al.,
2022). The concept of inheritance is a method of establishing cross-
task, cross-dataset external associations betweenmultiple models or
datasets, aiming to achieve efficient use of existing models and
datasets (Tang et al., 2017). The concept of inheritance can be
divided into twomethods: deep inheritance and breadth inheritance
(Liu M. et al., 2023). The former focuses on how to deeply transfer
the knowledge of existing models into the incremental sample
training process to continuously optimize the model; the latter
aims to reduce the model’s demand for a large number of samples
by establishing associations between different tasks or datasets,
providing more sample resources (Caicedo et al., 2023; Balouji

and McKelvey, 2022). The concept of inheritance can make more
efficient use of existing computing resources and can also improve
the model’s generalization ability on specific data and tasks. When
facing scenarios with strong temporal variability, large amounts of
data, and frequent updates, the concept of inheritance enables the
model to quickly adapt andmake accurate predictions through deep
and breadth dimensions of inheritance.

In response to the data evolution scenario of power distribution
networks, this paper proposes a voltage sag source identification
method based on the concept of inheritance. The concept of
inheritance includes two dimensions:breadth inheritance and depth
inheritance (Yalman et al., 2022; Yikun et al., 2022; Khetarpal et al.,
2023). The former uses transfer learning (TL) to overcome the
topological temporality of power distribution networks, and the
latter adapts to the data temporality of power distribution networks
through incremental learning (IL). Transfer learning establishes
a migration channel between the target and source topological
structures, inheriting their sample sets, and constructing models
for identifying and predicting the type and transition resistance of
voltage sag sources in power distribution networks under scenarios
with a small number of samples (Sha et al., 2019). Incremental
learning enables continuous optimization of the model in the face
of constantly changing data and tasks, reducing model update
time and improving the real-time performance of transient source
identification tasks.

2 Inheritance concept based on
transfer and incremental learning

In addressing the challenges in training predictive models for
time-variant power distribution networks, such as the scarcity of
sample data in the target system due to topological variability and
the lengthy model update times due to data variability, this section
proposes an inheritance learning approach based on incremental
learning and transfer learning. To illustrate the practical application
of these concepts, we introduce the voltage sag data that serves as the
foundation for our model training and validation.

Voltage sag data is crucial for identifying and predicting the type
and transition resistance of voltage sag sources in power distribution
networks. These data are collected from advanced measurement
and communication technologies, such as Distribution Automation
Systems (DAS) and Power Quality Monitors (PQM), which provide
comprehensive monitoring and data collection of voltage sag
events. The characteristics of this data, including its temporal and
topological variability, are integral to understanding the proposed
breadth and depth inheritance methods.

2.1 Framework for fault identification
based on inheritance concept

As shown in Figure 1, the illustration of the inheritance
concept, through deep model inheritance and broad sample
inheritance, the approach adapts to the temporal variability of power
distribution networks.

In Figure 1, the horizontal axis represents a strategic approach
to improve the predictive precision of the model through the
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FIGURE 1
Framework for voltage sag source identification based on inheritance concept.

acquisition of new knowledge from incremental samples and the
deep inheritance of old knowledge from existing samples. Along this
axis, the topological structure and the subject of the study remain
constant, with incremental data continuously introduced over time
to update the predictive model, resulting in a model with improved
predictive accuracy.

The vertical axis captures the changes in the topological
structure of the power distribution network, where the target
system’s topology engages in breadth inheritance from the source
system’s topology. This process involves migrating multiple sample
sets from the source system, including incremental ones, to the target
system, constructing a predictive model for voltage sag sources
within the power distribution network under conditions of small
sample sizes. This approach is crucial for initializing a robust
predictive model, even when sample availability is limited.

Depth inheritance plays a critical role in the continuous
optimization of the predictive model by integrating existing model
parameters and knowledge into the incremental sample update
process. This strategy achieves full-life-cycle knowledge depth
inheritance within the predictive model, equipping it to adapt to the
temporal variability inherent in power distribution network data.

Breadth inheritance, on the other hand, addresses the challenge
of initial model construction by migrating a subset of samples from
various source systems to the initial training phase of the target
system’s model. This lateral knowledge transfer strategy enables
the new system to leverage the accumulated insights from the old
systems, promoting a synergistic exchange of knowledge that is
essential for laying a solid foundation for the predictive model. This
approach is crucial for adapting to the topological variability of
the power distribution network, ensuring the model’s relevance and
efficacy amidst structural transformations.

In summary, the framework depicted in Figure 1 adeptly
employs a combination of breadth and depth inheritance to navigate
the complexities and dynamics of power distribution networks.This
method not only bolsters the model’s predictive accuracy but also
ensures its durability and adaptability in response to evolving data
and topological configurations.

2.2 Breadth inheritance

The concept of “breadth inheritance” within the framework of
transfer learning emphasizes establishing connections from a source
system to a target system, creating a channel for the inheritance of
samples and features. This is particularly relevant in the domain
of power distribution networks, where the strong variability of
topological structures often results in a lack of sufficient steady-state
operating samples for training identification models. Meanwhile, a
wealth of voltage sag data has been accumulated in the source system
through online monitoring and software simulation. This section
utilizes a sample migration method to appropriately process the
aforementioned voltage sag data, transforming it into data applicable
for voltage sag source identification in the target system. Through
this method, the dependence of the predictive model on the sample
size of voltage sags in the target system is reduced, enabling the
construction of a voltage sag identification model under conditions
of limited samples.

Target systems are typically those with a short operation time
and a small sample size. In contrast, source systems have the
advantage of a long operation time and a large accumulation of
sample data. By migrating samples, the rich sample data from the
source system can be applied to the target system, thereby enhancing
the identification accuracy of the target system to a certain extent.
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FIGURE 2
Schematic diagram of the sample migration process.

This process can be expressed as an optimization problem of sample
distance in physical terms as follows:

{ST|min (DE (x,y,S)) < θ, (x,y) ∈ ST} (1)

In Equation 1, S represents the sample set of the source system,
ST represents the set of migratable samples, x and y are the input
features and labels of ST, respectively, and θ is the threshold value
for sample migration based on the Euclidean distance.

The figure (Figure 2) illustrates the process of sample migration,
which can be summarized as follows: 1) According to the
classification objectives of the identification model, samples
corresponding to different labels in the source and target systems are
classified by label; 2) All sample data are standardized to transform
all data into the range of 0–1, using the Euclidean distance to
measure the differences between samples of each class in the systems;
3) The Euclidean distance between systems is compared with the
preset threshold θ, and samples from the source system that are less
than the preset threshold are migrated to the target system.

The target task is generally set for a new requirement and
requires the joint action of data features, sample sets, and models.
With the data features and samples determined, a sourcemodel with
some similarity to the target task is selected. By transferring the
model, the parameters of the source model that have been trained
in other fields are transferred to the target model, which can greatly
improve training efficiency. When the source task and the target
task have similarity in the form of sample representation, the target
model can inherit the parameters of the source model and continue
training based on these model parameters and target samples.

2.3 Depth inheritance

Depth inheritance primarily addresses the issue of new data
in time-variant power distribution networks and the update of
predictive models. Therefore, this section replaces the existing full-
scale training with incremental model training. Based on the pre-
trained model, the predictive model is updated using incremental
samples, inheriting the depth of the original model’s data, and
enhancing the predictivemodel’s adaptability to temporal variability
in data. Through the aforementioned method, the training time for
updating the identification model is reduced, saving a significant
amount of computational resources.

The more voltage sag data samples available, the higher the
reliability of the output results of the voltage sag source predictive
model. Most existing studies generate some time-domain data
through simulation software to compensate for the shortcomings
in the sample distribution of DAS monitoring data. During the
dynamic growth of samples, new samples generated in later stages
will gradually cover the sample space. As shown in Figure 3, the
incremental learning process for voltage sag type identification
starts with few samples at stage t1, resulting in a larger confidence
interval for the constructed voltage sag source classifier. At stage t2,
with the addition of incremental samples, the confidence interval
of the classifier is gradually compressed to a smaller range. By
stage t3, when the full set of samples is used for training, the
model has essentially achieved an ideal classification effect, with
the confidence interval being extremely narrowed. In the above
process, incremental learning corrects the classifier of the existing
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FIGURE 3
Schematic diagram of the incremental learning process.

identification model with each new round of samples, which can be
understood as the following parameter optimization problem:

β = arg min ∑
t∈{A,I}

nt
∑
i=1

L(yti , f (β,xti)) (2)

In Equation 2, A and I represent the existing and incremental
samples, respectively, nt is the total number of samples in the
set {A,I}. f is the classification model, xti and yti are the input
features and output labels of a single sample, respectively, L is the
loss function of the model f, and β is the output matrix of the
identification model f.

The incremental learning process, as shown in Equation 3,
updates the output matrix β of the model with new samples I to
improve the recognition accuracy of the identification model f.

βi+1 = βi +Pi+1HT
i+1 (y

T
i+1 −Hi+1βi) (3)

In the equation, βi+1 is the output matrix of the classification
model after incremental learning (IL), Hi+1 is the hidden layer
output vector during model training using both existing A and
incremental samples I, yi+1 is the sample label vector used for
IL. Pi+1 is the transition matrix, the calculation process of which
is shown in Equation 4.

{
{
{

Pi+1 = P−PH
T
i (I+H

T
i PH

T
i )
−1HT

i P

P1 = (HT
1H1)
−1 (4)

In the equations,H1 is the first column of the output matrix βi+1.

2.4 Multi-task learning

Multi-task Learning (MTL) is often considered a special case of
transfer learning. Compared to Single-task Learning (STL), MTL

has the following advantages: The MTL model learns and solves
multiple related tasks simultaneously, improving performance by
sharing knowledge and features; The shared module of MTL needs
to balance different tasks to obtain a superior feature representation,
equivalent to implicit data augmentation, which to some extent
avoids the overfitting problem of a single task; Each task inMTL can
selectively benefit from the hidden features learned in other tasks,
thereby enhancing the performance of its own task. The voltage sag
source identification task includes fault type classification and fault
transition resistance prediction, the former being a classification
problem and the latter a regression problem. There is a certain
correlation between the two, making them suitable for processing
with a multi-task learning model.

2.4.1 Multi-task learning framework
DeepNeural Networks (DNNs) are widely used for classification

and regression problems, capable of handling complex nonlinear
relationships, automatically learning sample features, and capturing
the complexity of data at multiple levels with high robustness on
large-scale datasets. Compared to other deep learning frameworks,
TensorFlow has a broader application field, more powerful
distributed computing capabilities, and richer support for advanced
APIs, offering extremely high modeling efficiency. Based on this,
this section constructs a multi-task learning model for voltage sag
source identification as shown in Figure 4 using the TensorFlow
deep learning framework. The voltage sag source identification
task leverages the efficient data processing and feature extraction
capabilities of DNNs. The DNN model adopts a multi-layer
architecture, including an input layer, several hidden layers,
and an output layer. The input layer is responsible for receiving
multi-dimensional data related to voltage sags, and the hidden
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FIGURE 4
Schematic diagram of the voltage sag source identification multi-task
learning model.

layers process the raw data through multiple levels of nonlinear
transformation, achieving deep feature extraction. These hidden
layers form a complex network of data abstractions, enabling the
DNN to recognize subtle patterns and key features in the input
data, laying the foundation for subsequent fault classification and
transition resistance prediction tasks.

The multi-task learning strategy of this model allows for
the simultaneous processing of fault classification and transition
resistance prediction tasks. For fault classification, the output
layer of the model is designed with multiple neurons, each
representing a specific type of fault, enabling the network to
effectively map the features extracted from the hidden layers
to each fault category. For transition resistance prediction, the
network uses a separate output neuron to estimate the resistance
value associated with a specific sag event. The input features
and shared hidden layers constitute the shared space of multi-
task learning, where the model shares knowledge and features to
improve the expressive performance of each task. This parallel
task processing structure allows the model to learn and optimize
specifically for different output requirements while sharing feature
extraction layers, thereby improving overall analysis efficiency and
predictive accuracy.

2.4.2 Sample feature settings
The sequence component method, a common method for

analyzing power system faults, decomposes three-phase AC voltage
or current signals into positive, negative, and zero sequences, often
used for short-circuit analysis and imbalance detection. The values
of sequence components can characterize the degree of imbalance
in a three-phase system. The most common unbalanced states
in power distribution networks, such as single-phase grounding
and inter-phase short circuits, are characterized by significant
fluctuations in sequence components. In the case of symmetrical
faults, the positive sequence component fluctuates much more
than the other sequence components. Therefore, this paper
extracts the sequence components before and after the fault as

the sample feature quantities for the aforementioned multi-task
learning model.

The positive sequence component before the fault reflects the
operating conditions of the system. During the fault, the positive,
negative, and zero sequence components collectively characterize
the type and transition resistance value features of the fault. Since
the electrical characteristics closer to the location of the voltage
sag source are more effective for voltage sag source identification.
Therefore, this paper selects the sequence components of the bus
voltage in the sag segment, the upstream and downstream current
to construct the sample feature vector as follows:

{{{{{{{{{{{{
{{{{{{{{{{{{
{

F = [S,F0,F1,F2]

S = [U1
s ,ϕ

1
Us
, I1su,ϕ

1
Isu
, I1sd,ϕ

1
Isd
]

F0 = [U0
f ,ϕ

0
Uf
, I0fu,ϕ

0
Ifu
, I0fd,ϕ

0
Ifd
]

F1 = [U1
f ,ϕ

1
Uf
, I1fu,ϕ

1
Ifu
, I1fd,ϕ

1
Ifd
]

F2 = [U2
f ,ϕ

2
Uf
, I2fu,ϕ

2
Ifu
, I2fd,ϕ

2
Ifd
]

(5)

In the equation, F is the sample feature vector, S represents the
pre-fault characteristics, Fx (x = 0, 1, 2) represents the zero-
sequence, positive-sequence, and negative-sequence characteristics,
respectively. U and I represent voltage and current, ϕ represents the
corresponding phase angle. The subscripts s and f represent pre-
fault and during-fault, respectively, and u and d represent the relative
upstream and downstream directions of the voltage with respect to
the fault segment.

Under normal operating conditions of the power distribution
network, the content of negative and zero sequence components
is very low. Therefore, the pre-fault characteristics in Equation 5
only use the positive sequence component. To unify the sample
phase angle features, the fundamental frequency phase at±0.5 cycles
before the sag initiation moment is used as the phase before and
after the fault. When a voltage sag event is detected, the wavelet
decomposition is used to obtain the fault start time t0, the pre-fault
phase is taken at t0 − 0.5T, and the phase during the fault process is
taken at t0 + 0.5T.

3 Case study

3.1 Setup

The case study employs the CIGRE 14-bus medium voltage
distribution systempre-set in the RSCAD software, with its topology
structure shown in Figure 5. A set of DAS remote measurements,
including bus voltage and line current connected to the bus, is used.
To simulate the temporal variability of the distribution network, the
following settings are made based on the pre-set model: three tie
switches are randomly switched on and off to simulate line topology
changes, with a maximum of one tie switch being closed at a time;
the load model’s load shedding ratio is adjusted to simulate load
fluctuations, with a randomvalue between−0.2 and 0.2; photovoltaic
and wind turbines with a rated capacity of 1500 kW are installed
on buses 3 and 10, respectively, with temperature, illumination,
and wind speed fluctuating randomly within the preset range of
the model. The tests are conducted on the deep learning open-
source framework TensorFlow developed by Google, using the
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FIGURE 5
Topology structure of the CIGRE 14-bus medium voltage distribution system.

Python-based open-source machine learning toolkit Scikit-Learn.
The computer platform used in the experiments is equipped with an
Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50 GHz processor, 16.0 GB
of RAM, and an NVIDIA Quadro P620 graphics card.

P (x) =

{{{{{{{
{{{{{{{
{

0.65, x = LG

0.09, x = LL

0.2, x = LLG

0.06, x = LLL

(6)

Voltage sag events are simulated by combining phase-
to-ground and interphase faults using a setting module. The
probability distribution of the fault types follows Equation 6.
The resistances of phase-to-ground and inter-phase faults both
follow a Gaussian distribution, with the same mean μ and
standard deviation σ, taken as 10 and 3.5, respectively. When
the effective value of the voltage sag source is between 0.1 and
0.9, it is considered a valid simulation, and the DAS remote
measurements are saved.

In our study, the sampling process was designed to accurately
capture the voltage quality during and after the switching of
circuit breakers, which is a critical factor in assessing the
impact on the power distribution network. The switching
time of the circuit breaker, defined as the interval from the
initiation of the switching action to the completion of the circuit
interruption, was set to 50 milliseconds. This value is based
on industry standards and typical operational parameters of
modern circuit breakers, ensuring a realistic simulation of the
switching process.

To simulate the effect of this switching time on voltage quality,
we employed a high-resolution simulation with a time step of
1 millisecond. This allowed us to capture the transient voltage
changes with precision, providing a detailed analysis of the voltage
sag characteristics. The simulation was conducted over a period
of 10 cycles (20 milliseconds) of the power frequency to ensure
that we captured the complete response of the network to the
switching event.

During the sampling process, we collected voltage and current
data at each bus and line of the distribution network. The data were
recorded at 100 Hz, providing a comprehensive dataset for analyzing
the voltage quality and the performance of our proposed voltage sag
identification method. The sampling interval was chosen to balance
the need for detailed data with the computational efficiency of the
simulation.

Using the aforementioned case study setup, 3,209 sets of
valid voltage sag samples are generated, and the statistics of each
sample generation condition are shown in Table 1. Among them,
LG represents single-phase grounding (L = A,B,C), LL represents
inter-phase short circuits, LLG represents inter-phase short circuits
grounded, and LLL represents three-phase symmetrical faults,
resulting in a total of 11 classification labels. When marking the
transition resistance labels of the samples, the fault sample labels of
type LLG take the smaller of the inter-phase and phase-to-ground
values. Open Loop 0 represents the topology formed when all three
tie switches are open, and Ring Network i(i = 1,2,3) represents the
ring topology formed when tie switch i is closed. A multi-task
learningmodel is constructed and the hyperparameters of themodel
are given in Table 2.
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TABLE 1 RTDS-generated valid sample condition statistics list.

Sample condition Without new energy integration With new energy integration Ratio

LG LL LLG LLL LG LL LLG LLL

Open Loop 0 969 16 536 17 375 17 14 15 0.6105

Ring Network 1 343 16 14 14 14 14 13 15 0.1381

Ring Network 2 16 184 16 16 73 15 17 53 0.1215

Ring Network 3 13 15 17 16 310 16 14 16 0.1299

Ratio 0.4179 0.072 0.1817 0.0196 0.2406 0.0193 0.0181 0.0309 1

TABLE 2 Hyperparameter list for the multi-task learning model.

Hyperparameter Physical quantity Value Hyperparameter Physical quantity Value

D1 Number of Neurons in Layer 1 64 Nprop Learning Rate 0.001

D2 Number of Neurons in Layer 2 32 Nepoch Number of Training Epochs 1500

D3 Number of Neurons in Layer 3 32 Nbatch Batch Size 64

Ddrop Dropout Rate 0.1 Nsplit Validation Split Ratio 0.2

Nlabel Number of Classification Labels 11 Nstop Early Stopping Tolerance 20

3.2 Adaptability to topological temporality

3.2.1 Changes in power grid topology
From the sample generation conditions, it can be known that

the three tie switches can construct one open-loop network and
three ring networks. The above four networks are considered as
different research systems, andwhen the topological state transitions
from one system to another, the former is called the source system,
and the latter is called the target system. The four networks
can switch with each other, serving as source and target systems
for each other.

For each target system, all samples in Table 1 are used to
construct the model. For ease of statistics, the samples of the source
system are migrated to the target system in steps of 200 according
to the Euclidean distance from small to large. If the number of
samples in the source system is insufficient, all samples of the
source system are migrated. As shown in Table 3 is the sample
migration process between each system and the type classification
accuracy and transition resistance prediction loss before and
after migration.

The results in Table 3 can be observed as follows:
1) The sample size of Open Loop 0 significantly exceeds

other systems. The model prediction effect before and after sample
migration is better than other target systems, confirming the positive
impact of sample size on model performance;

2) As the number of migratable samples increases, the model
prediction effect of the target system gradually optimizes, indicating
that sample migration is crucial for enhancing model performance,
especially in the early stages of the target system’s operation;

3) When the same number of samples is migrated to the same
target system, the contribution of samples from Ring Network 1 to
the prediction model is lower than that of other source systems.
Considering that Ring Network 1 is connected to two transformers,
forming a larger ring network, this indicates that the quality of
samples is closely related to the topological structure between the
source and target systems;

4) The performance improvement of the Ring Network models
is attributed to new features in the migrated samples, which may
not have appeared or appeared less frequently in the target system
samples, emphasizing the importance of sample migration when the
target system has an insufficient number of samples;

5) With the increase in the number of migrated samples from
the source system, the performance of the target system’s model
gradually stabilizes, and the rate of improvement in prediction
accuracy gradually slows down. Compared with other source
systems, the contribution of samples from Ring Network 1 to the
target system model performance is smaller. This phenomenon is
closely related to the Euclidean distance between the source system
and target system samples, and the impact of sample Euclidean
distance will be introduced in detail in the following text.

As the number of migrated samples from the source system
increases, the performance of the target system’s model gradually
stabilizes, and the rate of improvement in prediction accuracy
gradually slows down. Compared with other source systems, the
contribution of samples from Ring Network 1 to the target system
model performance is smaller. This phenomenon is closely related
to the Euclidean distance between the source system and target
system samples, and the impact of sample Euclidean distance will
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TABLE 3 Statistics of inheritance results caused by topological temporality due to tie switch position change.

Before Migration Migrated samples After migration

Target System Sample Size Accuracy Loss Source System Quantity Distance Accuracy Loss

Open Loop 0 1959 0.979 0.107

Ring Network 1
200 8.105 0.981 0.102

400 10.276 0.982 0.099

Ring Network 2
200 6.303 0.984 0.095

390 7.712 0.986 0.093

Ring Network 3
200 6.528 0.983 0.099

400 9.001 0.988 0.09

Ring Network 1 443 0.782 0.917

Open Loop 0

200 8.227 0.888 0.393

400 9.971 0.914 0.277

600 11.017 0.941 0.219

800 13.774 0.946 0.184

Ring Network 2
200 11.113 0.791 0.802

390 12.739 0.835 0.771

Ring Network 3
200 12.663 0.79 0.819

400 13.017 0.869 0.748

Ring Network 2 390 0.779 1.014

Open Loop 0

200 4.172 0.837 0.692

400 4.795 0.899 0.334

600 5.939 0.957 0.156

800 8.111 0.959 0.152

Ring Network 1
200 9.762 0.781 0.948

400 11.011 0.839 0.761

Ring Network 3
200 4.062 0.841 0.804

400 4.712 0.899 0.629

Ring Network 3 417 0.793 0.995

Open Loop 0

200 4.612 0.861 0.792

400 5.018 0.917 0.334

600 7.039 0.941 0.172

800 7.901 0.959 0.169

Ring Network 1
200 8.892 0.857 0.9

400 11.609 0.916 0.672

Ring Network 2
200 3.797 0.899 0.782

390 5.021 0.938 0.515
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FIGURE 6
Euclidean distance distribution of source system samples.

be introduced in detail in the following text.

3.2.2 Variation of migrated sample distance
Considering the actual operating conditions, the topologies

before and after the integration of new energy in the case study
are defined as the source system and the target system, respectively.
Given that the previous analysis has detailed the significant effect
of sample size on breadth inheritance, this section briefly analyzes
the impact of excessive migration of a large number of samples
and focuses on an in-depth discussion from the perspective of the
Euclidean distance of the migrated samples.

The source system and target system samples generated in the
case study are 2,218 and 991, respectively. The Euclidean distance
between the samples of the source system and the target system
is calculated. The samples of the source system are divided into
22 groups according to the Euclidean distance from small to large,
with a minimum migration unit of 100. The statistical Euclidean
distance between each group of samples and the target system
samples is shown in Figure 6. A single group of samples i refers to
the 100 samples in the i-th group of the source system, and the
cumulative samples i are the sample set composed of the first i groups
of samples, with a quantity of i× 100.

The single group of samples and cumulative samples from
the source system are merged with the samples of the target
system to form a new training set. The target system samples are
used for training, and the obtained prediction results serve as the
control group. Figure 7 shows the fault type and transition resistance
prediction results of the target system for non-migrated samples,
single group samples, and cumulative samples.

Comparing Figures 6, 7, it can be observed that the smaller the
Euclidean distance between the single group of samples and the
target system samples, the better the prediction effect. The model
performance of the cumulative samples is better than that of the
single group of samples, proving the positive impact of sample
quantity on model performance. The samples from the 18th group
and beyond have a larger Euclidean distance with the target system
samples, resulting in a situation where the migration effect of the
single group of samples is lower than that of non-migrated samples.

FIGURE 7
Prediction results of fault types and transition resistances in the target
system for non-migrated samples, single group samples, and
cumulative samples. (A) Classification accuracy across diverse samples
(B) Regression loss acroass diverse samples.

The performance improvement of migration starting from the
18th group of cumulative samples also gradually stops. Considering
that themodel training time is positively correlated with the number
of samples, it is timely to stop migrating samples with too large
Euclidean distance. Overall, the model performance is negatively
correlated with the Euclidean distance between samples: the smaller
the Euclidean distance between the migrated samples and the target
system samples, the better the migration effect.

With the increase in the number of migrated samples
from the source system, the performance of the target system’s
model gradually stabilizes, and the rate of improvement in
prediction accuracy gradually slows down. Compared with other
source systems, the contribution of Ring Network 1 samples
to the performance of the target system model is smaller. This
phenomenon is closely related to the Euclidean distance between the
source system and target system samples, and the impact of sample
Euclidean distance will be introduced in detail in the following text.

3.3 Adaptability to data temporality

As the system’s operational time progresses, the target system’s
samples gradually accumulate, and the time cost of model training
also increases. Incremental learning updates the model parameters
based on the original model using incremental samples, which
can significantly improve the timeliness of model updates while
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ensuring model performance. To verify the response of the depth
inheritance method based on incremental learning in dealing
with data variability, 1538 samples of Open Loop 0 without new
energy access from Table 1 were data-augmented by adding random
perturbations, as shown in Equations 7–9.

F̄ =
F−min (F)

max (F) −min (F)
(7)

Noise = np.random.normal(μ,σ, (n,24)) (8)

F̃ = np.random.choice(F̄,n) +Noise (9)

In the equations, F represents the original sample features, and
min (⋅) and max (⋅) are the operations of taking the minimum and
maximum values, respectively. The function np.random.normal(⋅)
generates random numbers following a normal distribution with
n rows and 24 columns, where μ and σ are the mean and
standard deviation of the normal distribution, taken as 0 and 0.035,
respectively. The function np.random.choice(⋅) randomly selects n
samples from the given samples, where n is taken as 1,624. F̃ and F̄
together form a new set of samples, with the former having the same
labels as the extracted samples.

The above 3,000 samples were randomly divided into 15 groups,
each containing 200 samples. Classification and regression models
based on STL were constructed using the parameters in Table 2, and
model training was performed using both full-scale and incremental
learning. The classification task simultaneously monitored its
accuracy and loss function values, while the regression task only
monitored its loss function values.

It can be observed from the figures that after each update with
new samples, the performance of the classification and regression
task models has improved based on the original model. After four
incremental training sessions, the loss value of the classification
model decreased from 1.86 to 0.04, and the classification accuracy
increased from below 0.2 to 0.9975. After the fourth update, the
classification accuracy is basicallymaintained at 1, while the training
and validation loss values continue to decrease, indicating that
the performance of the classification model is still improving. The
loss value of the regression model decreased from 20 to 0.05 after
three updates. From the fourth update, the model’s performance has
basically stabilized, with training and validation loss values changing
within a very small range.

The above samples were divided into five groups, each
containing 600 samples, and incremental and full-scale learning
were restarted. Figure 8 shows the performance and training time
of the transition resistance value prediction model for voltage sag
sources under the two grouping methods, with the loss function
value as the evaluation index. During the first group of model
training, the performance and time consumption of full-scale
learning and incremental learning models were quite close. As
incremental samples continued to be added, the training time for
full-scale learning increased dramatically, while the training time
for incremental learning remained essentially unchanged. After each
model update, the performance of the two learning methods was
basically equivalent. For the application of voltage sag source type
and transition resistance identification, the above models fully meet
the prediction accuracy requirements.

FIGURE 8
The impact of data update cycles on depth inheritance learning. (A)
Incremental samples divided into 5 groups (B) Incremental samples
divided into 15 groups.

The time difference between the end of the currentmodel update
and the end of the previous model update is called the model update
latency, and the difference in loss values after two updates is called
performance improvement. By comparing Figures 8A, B, it can be
seen that the higher the sample update frequency, the more obvious
the advantage of incremental learning in model update latency, and
the better the timeliness of performance improvement. Therefore,
incremental learning is more suitable for quasi-online prediction
scenarios with higher real-time requirements.

3.4 Discussion

3.4.1 Implications of the study
This study presents a novel approach to identifying voltage sag

sources in power distribution networks by leveraging the concept
of inheritance, which includes breadth and depth inheritance
strategies. The integration of transfer learning and incremental
learning within this framework allows for adaptability to the
dynamic nature of power distribution networks, which are subject
to both topological and data temporal variability.

3.4.2 Comparison with existing method
The proposed method offers several advantages over traditional

voltage sag identification techniques. Unlike methods that require
a significant amount of data for model training, our breadth
inheritance strategy enables the model to be constructed with a
limited sample size, which is particularly beneficial during the
initial stages of network operation or after significant topological
changes. Furthermore, our depth inheritance strategy ensures that
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the model remains up-to-date with the latest data, reducing the time
required for model updates and maintaining high accuracy in fault
identification tasks.

3.4.3 Performance and accuracy
The case study results demonstrate the effectiveness of our

proposedmethods in scenarios with topological temporal variability
and the rapid update of fault identification models in scenarios
with data temporal variability. The multi-task learning model,
which simultaneously handles fault type classification and transition
resistance prediction, shows improved performance compared to
single-task models. This improvement is attributed to the shared
feature extraction layers, which enhance the model’s ability to
capture complex patterns in the data.

3.4.4 Practical applications
The practical application of our method is significant,

particularly in modern power distribution networks that are
increasingly integrating renewable energy sources and facing
frequent topological changes. Our method provides a tool
for grid operators to quickly and accurately identify the
sources of voltage sags, allowing for timely maintenance and
mitigation strategies to be implemented, thereby improving power
supply reliability.

3.4.5 Limitations and future work
While our study has shown promising results, there are

limitations that should be acknowledged. The proposed method
is tailored to the specific characteristics of the power distribution
network studied and may require adjustments for different network
configurations or operational conditions. Future work will focus
on testing the method across a variety of network topologies and
exploring the integration of additional data sources, such as weather
data and real-time monitoring feeds, to further enhance the model’s
robustness and accuracy.

4 Conclusion

This paper proposes a voltage-sag source identification
method for power distribution networks based on the concept
of inheritance, aiming at the rapid evolution characteristics of
the distribution system. The proposed method is applicable
to the reconstruction of voltage sag source identification
models in topologically variant scenarios and the rapid update
of voltage sag source identification models in data variant
scenarios.

Firstly, sources of topological and data variability in power
distribution networks were introduced, and the impact of
temporal characteristics was analyzed in conjunction with the
voltage sag source identification task. Based on the concept of
inheritance learning, breadth inheritance methods for topological
variability and depth inheritance methods for data variability
were proposed.

Then, combined with the fault type discrimination and
transition resistance estimation tasks of voltage sag source
identification, breadth inheritance paths based on transfer learning
and depth inheritance paths based on incremental learning were

proposed. According to the special scenarios of power distribution
network faults, sequence components were used as sample features
to construct a multitask learning model.

Finally, case study analysis verified the effectiveness of the
inheritance concept in dealing with the topological and data
variability of power distribution networks. Transfer learning focuses
on using existing knowledge to adapt to new tasks or datasets,
overcoming the topological variability of power distribution
networks. Incremental learning enhances the model’s adaptability
to data variability, enabling the model to continuously and quickly
update in the face of changing data.
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