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Traditionally, the ampacity of an overhead transmission line (OHTL) is a static
value obtained based on adverse weather conditions, which constrains the
transmission capacity. With the continuous growth of power system load, it is
increasingly necessary to dynamically adjust the ampacity based on weather
conditions. To this end, this paper models the heat balance relationship of the
OHTL based on a BP neural network using Bayesian optimization (BO-BP). On this
basis, an OHTL ampacity prediction method considering the model error is
proposed. First, a two-stage current-stepping ampacity prediction model is
established to obtain the initial ampacity prediction results. Then, the risk
control strategy of ampacity prediction considering the model error is
proposed to correct the ampacity based on the quartile of the model error to
reduce the risk of the conductor overheating caused by themodel error. Finally, a
simulation is carried out based on the operation data of a 220-kV transmission
line. The simulation results show that the accuracy of the BO-BP model is
improved by more than 20% compared with the traditional heat balance
equation. The proposed ampacity prediction method can improve the
transmission capacity by more than 150% compared with the original static
ampacity.
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1 Introduction

An overhead transmission line (OHTL) is a necessary link in the transmission of
electrical energy, and its capacity determines the transmission capacity of the grid. In recent
years, there has been a gradual increase in power loads, and grid congestion has intensified
(Ahmadi et al., 2023). High penetration of renewable energy places higher demands on the
transmission capacity of the grid (Lebedov et al., 2021; Lawal and Teh, 2023b). The
fundamental way to increase the transmission capacity of the grid is to build new OHTLs.
However, this method takes a long time and cannot meet the current power load demand
(Madadi et al., 2020). Therefore, there is a need to tap the transmission potential of the
OHTL in the short term. An important indicator for assessing the capacity of an OHTL is
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ampacity, which is the maximum wire current calculated based on
the weather conditions around the OHTL and the maximum
permissible conductor temperature (Bao et al., 2015). Current
OHTL design specifications typically use static ampacity
(Jabarnejad, 2015). The principle of static ampacity is to assume
extremely adverse cooling conditions and calculate a conservative
ampacity through standards such as IEEE-738 and CIGRE
(Morozovska and Hilber, 2017; Kanálik et al., 2019; Su et al.,
2022). Continuing to limit the capacity of the OHTL through
static ampacity will make it difficult to meet the transmission
needs of the grid (Chen et al., 2017).

Weather conditions determine the heat dissipation capacity of the
OHTL and, hence, ampacity. Therefore, ampacity can be dynamically
adjusted by obtaining real-time weather conditions around the OHTL.
Currently, there are three main methods to dynamically acquire
ampacity. The first method is to install a weather monitoring device
near the OHTL to collect weather information, then transmit the
weather data to a computer through wireless communication
technology, and then substitute them into the heat balance equation
to calculate the real-time ampacity (Douglass and Edris, 1996; Bhattarai
et al., 2018). The second method is to analyze the temporal and spatial
correlation of the weather data to indirectly obtain the weather data and
then obtain the ampacity based on the heat balance equation (Fan et al.,
2015; Fernandez et al., 2015; Sun et al., 2019; Alberdi et al., 2022; Karimi
et al., 2022; Zhang et al., 2024). The last method is to use machine
learning algorithms to establish the heat balance relationship of OHTLs
and, thus, calculate ampacity (Morrow et al., 2014; Jin et al., 2020;
Molinar et al., 2021; Sobhy et al., 2021).

Regarding the first method, in a project conducted by the
Electric Power Research Institute, weather data were collected
through weather stations, digital data loggers, and IBM-
compatible PCs to calculate the ampacity of multiple OHTLs
(Douglass and Edris, 1996). Furthermore, the ampacity
prediction system developed by the Idaho National Laboratory
considers the effect of the geographic location of weather stations
to determine the optimal number and location of weather stations
(Bhattarai et al., 2018). The above methods require the installation of
a large number of weather collection devices. The cost of the system
is high, and the reliability is low.

The second option aims at avoiding the installation of weather
collection devices. Fernandez et al. (2015) applied numerical
weather prediction to ampacity prediction. Alberdi et al. (2022);
Karimi et al. (2022); and Zhang et al. (2024) developed time series
prediction models for weather conditions. However, temporal
weather forecasts do not consider spatial differences in weather
conditions. Spatial interpolation methods such as Kriging and IDW
compensate for this deficiency (Fan et al., 2015; Sun et al., 2019). The
above methods still rely on the heat balance equation for calculating
ampacity. Due to certain engineering approximations in the heat
balance equation, it may be difficult to accurately reflect the heat
balance relationship of the OHTL.

Machine learning algorithms have good prospects in the field of
ampacity prediction due to their good modeling capabilities.
Morrow et al. (2014) used a partial least squares regression
algorithm for modeling, but this approach was limited to linear
models. Algorithms such as random forests and neural networks, on
the other hand, do not restrict the form of the objective function and
offer more flexibility (Jin et al., 2020; Sobhy et al., 2021). Incremental

learning based on real-time data allows the model to be updated in
real time, thus improving the model’s adaptivity and computational
efficiency (Molinar et al., 2021). However, machine learning
algorithms often have some hyperparameters that need to be set
manually. Research on hyperparameter optimization is rarely
mentioned. The optimization of hyperparameters is meaningful
to improve the training effect.

In order to solve the problemof the low accuracy of the heat balance
equation in ampacity calculation, we establish the heat balance
relationship model of the OHTL based on the BP neural network
using the Bayesian optimization (BO-BP) algorithm. On this basis, we
set a safety margin based on the lower α-quantile of the model error,
which improves the reliability of the results of the ampacity calculation.
The main contributions of this paper are as follows:

1) The heat balance relationship of the OHTL is established based
on the BO-BP. The BP neural network is used for regression
analysis between weather conditions, wire current, and
conductor temperature. Bayesian optimization is used to
optimize the hyperparameters of the BP neural network.

2) A two-stage current-stepping ampacity prediction model is
proposed. The model combines the BO-BP algorithm with the
heat balance equation. When weather conditions are known,
the conductor temperature is calculated in two stages based on
wire current values. The wire current is iteratively increased
until the conductor temperature exceeds a set value, and then
ampacity is obtained based on linear interpolation.

3) A risk control strategy for ampacity prediction is proposed
taking into account the model error. Based on the quartile of
the model error, the results of ampacity are corrected to reduce
the risk of conductor overheating caused by the model error.
The impact of different quartile values on the capacity
improvement effect is analyzed.

2 Heat balance relationship model of
the OHTL

2.1 Heat balance equation

The heat balance equation is the physical model reflecting the
heat balance relationship of the OHTL, and its steady state form is
as follows:

PJ + PS � PC + PR (1)
where PJ is the Joule heat power generated by the wire current; PS is
the heat absorption power of solar radiation; PC is the convective
heat dissipation power; and PR is the radiant heat dissipation power.
Their specific formulas are as follows:

PJ � I2R
PS � aSISD
PC � 9.92 T − TA( ) VD( )0.485
PR � πeSD T + 273( )4 − TA + 273( )4[ ]

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2)

where I is the wire current; R is the AC resistance per unit length of
the transmission line; aS is the heat absorption coefficient; IS is the
solar irradiance; D is the outer diameter of the conductor; T is the
conductor temperature; TA is the ambient temperature; V is the
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equivalent wind speed; e is the heat dissipation coefficient; and S is
the Stefan–Boltzmann constant. The expression for R is

R � IτζR20 1 + β T − 20( )[ ] (3)
where τ and ζ are related to the AC/DC resistance ratio, which is
determined according to the type of the transmission line. R20 is the
DC resistance per unit length at 20°C. β is the temperature
coefficient of resistance.

Considering the effect of wind direction, the equivalent wind
speed V is expressed as follows:

V � v 1.194 − cosφ + 0.194 cos 2φ + 0.368 sin 2φ( ) (4)
where v is the wind speed and φ is the angle made by the wind with
the transmission line.

According to Equations 1, 2, the formula for ampacity is
as follows:

I �












PC + PR − PS

R

√
(5)

2.2 BO-BP algorithm

2.2.1 BP neural networks
The BP neural network is used in this paper to establish the

relationship between weather conditions, wire current, and
conductor temperature. The input variables are wind speed v, wind
direction θ, solar irradiance IS, ambient temperature TA, and wire
current I. The output variable is conductor temperature T. The BP
neural network consists of three layers: an input layer, a hidden layer,

and an output layer. The input layer receives the data, the output layer
outputs the result, and the hidden layer is used to establish complex
relationships. The operation mechanism of the BP neural network
consists of two parts: forward propagation and backpropagation.

Forward propagation uses the output of the previous layer as the
input of the current layer, calculating the output for the current layer
through weighted summation and activation function
transformation until reaching the output layer. Assuming that
the output of the previous layer is yl-1, the output of the current
layer is shown in Equation 6:

yl � σ Wyl−1 + b( ) (6)

The hyperbolic tangent function is used for the activation
function σ. W is the weight matrix. b is the offset vector.

The principle of backpropagation is to first compute the loss
function based on the output layer results obtained from forward
propagation. Then, the gradient of the loss function with respect to
W and b is calculated. Finally, the optimalW and b are found based
on optimization algorithms, such as gradient descent. In this paper,
the loss function used is the mean square error (MSE) function, and
the optimization algorithm is the Levenberg–Marquardt
(Wilamowski and Hao Yu, 2010).

2.2.2 Bayesian optimization
In this study, the BP neural network uses a single-hidden layer

structure. There are two pre-set hyperparameters, namely, learning
rate and the number of neurons in the hidden layer, and they will be
obtained using the Bayesian optimization algorithm.

Bayesian optimization is a hyperparametric search method. The
Bayesian optimization algorithm establishes a Gaussian process

FIGURE 1
Principle of the BO-BP algorithm.
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regression model based on existing observations to estimate the
potential distribution of the objective function. The acquisition
function is used to select the hyperparameters for the next
iteration until the stopping condition is satisfied. Since Bayesian
optimization utilizes the previous search results, it has higher search
efficiency than grid search and random search. The principle is
shown in Figure 1.

2.3 Evaluation metrics for model accuracy

The root mean square error (RMSE) of the conductor
temperature is used to evaluate the accuracy of the BO-BP model
and the heat balance equation. The RMSE is calculated by
Equation 7:

RMSE �












∑n
i�1

Tri − Tci( )2

n

√√
(7)

whereTri is the true value of conductor temperature;Tci is the calculated
value of conductor temperature; and n is the number of samples.

In this study, the heat balance equation is the baseline model.
The RMSE reduction ratio ΔR12 is used to evaluate the accuracy

improvement effect of the BO-BP algorithm, which is defined as
Equation 8:

ΔR12 � R1 − R2

R1
× 100% (8)

where R1 is the RMSE of the heat balance equation and R2 is the
RMSE of the BO-BP algorithm.

3 OHTL ampacity prediction method
considering the model error

3.1 Two-stage current-stepping ampacity
prediction model

According to Chinese design regulations, the maximum
conductor temperature for long-term operation is 70°C (Song
et al., 2019). However, the conductor temperature rarely reaches
this value during actual operation. This is the main challenge in
calculating ampacity using the BO-BP algorithm. To solve this
problem, a two-stage current-stepping ampacity prediction model
is proposed, which combines the BO-BP algorithm with the heat
balance equation. The principle is as follows.

FIGURE 2
Flowchart of the two-stage current-stepping ampacity prediction model.
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When the weather conditions are known, the wire current I is
continuously increased, and the conductor temperature T is
calculated until T > 70°C; thus, an I-T curve is obtained, and
then, the ampacity at 70°C is obtained by linear interpolation. Let
the minimum value of the wire current of the training set be I1 and
the maximum value be Ik. The first stage is when I1 ≤ I ≤ Ik, and the
second stage is when I > Ik.

In the first stage, the initial value of the wire current is set to
I1. The conductor temperature T1 is calculated based on the BO-
BP algorithm, and the wire current is increased in a step size of
ΔI1 until I = Ik or the conductor temperature is higher than 70°C.
Thus, the iterative equation for the first stage is shown in
Equation 9:

Ii � Ii−1 + ΔI1
Ti � F v, θ, IS, TA, Ii( ){ (9)

where Ii-1 is the wire current from the previous iteration and F is the
trained BO-BP model. If the conductor temperature Ti > 70°C
during the iteration, ampacity is calculated according to the
linear interpolation method using the following expression:

IDA � Ii−1 + Ii − Ii−1
Ti − Ti−1

70 − Ti−1( ) (10)

where Ti-1 is the conductor temperature from the
previous iteration.

If the conductor temperature does not exceed 70°C in the first
stage, the second stage is entered. In the second stage, since the wire
current exceeds the range of values of the training set, the conductor
temperature is calculated according to the heat balance equation.
The heat balance equation is corrected according to the results of the
last iteration of the first stage so that the iterative equation of the
second stage is shown in Equation 11:

Ii � Ii−1 + ΔI2
Ti � g v, θ, IS, TA, Ii( ) + Tk − g v, θ, IS, TA, Ik( ){ (11)

where ΔI2 is the step size of the wire current in the second stage; Tk is
the conductor temperature obtained from the last iteration of the
first stage; and g is the heat balance equation. Ampacity is calculated
according to Equation 10 when Ti > 70°C. Figure 2 shows the
flowchart of the two-stage current-stepping ampacity
prediction model.

3.2 Risk control strategy for ampacity
prediction considering the model error

The BO-BP algorithm has some uncertainty. This poses a challenge
to the accuracy of dynamic ampacity prediction. The risk can be
predicted based on the statistical analysis of the historical model
error. The expression for the model error is shown in Equation 12:

TE � TR − TC (12)
where TR is the true value of the conductor temperature of the test
set and TC is the calculated value of the conductor temperature of the
test set. When the model error TE > 0, it is called a positive model
error, indicating that the true value of the conductor temperature is
higher than the calculated value, which will yield overly optimistic
ampacity prediction results. In order to reduce the probability of a
positive model error occurring, the initial I–T curve is shifted
upward by ΔTα unit lengths. ΔTα is the lower α-quantile of the
model error and is defined as Equation 13:

P TE <ΔTα( ) � α (13)

The calculation process is as follows:

1) The model errors of the test set are sorted from smallest to
largest, and let the ith element be Ti

E.
2) The element number pos corresponding to α is calculated. The

formula is shown in Equation 14:

pos � 1 + n − 1( )α (14)
where n is the number of samples in the test set.

3) Since pos is not necessarily an integer, ΔTα needs to be
obtained by linearly interpolating the two model error
elements adjacent to pos, calculated by Equation 15:

ΔTα � Tlow
E + Thigh

E − Tlow
E

high − low
pos − low( )

low � ⌊pos⌋
high � ⌈pos⌉

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (15)

where �pos� is the largest integer not exceeding pos and �pos� is the
smallest integer not less than pos.

Figure 3 shows the principle of the risk control strategy for
ampacity prediction considering the model error.

FIGURE 3
Risk control strategy for ampacity prediction considering the model error.
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3.3 Evaluation metrics for capacity
improvement

The average capacity improvement ratio is used to
evaluate the improvement effect of the ampacity calculated in

this paper compared to the static ampacity. It is defined as
Equation 16:

rDS � 1
n
∑n
i�1

IDAi − ISA
ISA

(16)

FIGURE 4
Distribution of each weather element for the four seasons. (A) Wind speed. (B) Wind direction. (C) Solar irradiance. (D) Ambient temperature.

FIGURE 5
Conductor temperature and wire current distribution for the four seasons. (A) Conductor temperature. (B) Wire current.
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where n is the number of samples; IDAi is the ampacity calculated by
the method described in this paper; ISA is the static ampacity of the
line, and its value is 581 A.

4 Case study

The study is based on operational data of a 220-kV OHTL.
First, the weather, wire current, and conductor temperature are
statistically analyzed based on the operational data from 2022.
Then, the BO-BP model is trained. The dataset is divided into a
training set, a validation set, and a test set in a ratio of 3:1:1. The

training set is used to train the BP neural network model, the
validation set is utilized for Bayesian optimization of
hyperparameters, and the test set is utilized to evaluate the
model’s accuracy as well as error analysis. Finally, the
improvement effect of ampacity is evaluated based on
2023 weather data, and the effect of different quantile values
on the ampacity results is analyzed.

4.1 Statistical analysis of historical data

4.1.1 Statistical analysis of weather conditions
The weather elements considered in this study are wind speed v,

wind direction θ, solar irradiance IS, and ambient temperature TA. θ is
transformed to the range of [0°,180°] due to the equivalent heat
dissipation effect on the conductor when the wind directions differ
by 180°. The north–south direction is 0°, and the clockwise direction is
positive. December, January, and February are classified as winter, while
March, April, andMay are classified as spring. Themonths of June, July,
and August are classified as summer. The months of September,
October, and November are classified as fall. Figure 4 illustrates the
distribution of each weather element for the four seasons.

As shown in Figure 4, wind speeds are generally lower in
winter and summer than in spring and fall. The difference in
wind direction between the four seasons is minimal. Solar
irradiance is generally higher in spring and summer than in

TABLE 1 Parameters of LGJ400/35.

Parameter Value

τ 0.0363

ζ 0.8042

R20 73.7 μΩ/m

β 0.004

aS 0.9

D 0.0266 m

e 0.9

FIGURE 6
Calculated and true values of conductor temperature for the heat balance equation for the four seasons. (A)Winter. (B) Spring. (C) Summer. (D) Fall.

Frontiers in Energy Research frontiersin.org07

Sun et al. 10.3389/fenrg.2024.1449586

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1449586


winter and fall. The four-season difference in ambient
temperature is most pronounced. Winter temperatures are
predominantly below 0°C. The temperature range in spring
and fall is more extensive, with lows in the vicinity of −15°C
and highs reaching 30°C. Temperatures in summer are mostly
above 15°C.

4.1.2 Statistical analysis of wire current and
conductor temperature

The distributions of conductor temperature and wire current in
four seasons are shown in Figure 5.

It can be observed that the distribution characteristics of the
conductor temperature are largely consistent with the ambient
temperature. The majority of wire currents in the four seasons
range from 100 A to 300 A. It can be noted that wire currents in
winter are generally higher than those in the other three seasons,
followed by summer and fall, and lowest in spring.

4.2 Heat balance equation results

The type of the OHTL used in this study is LGJ400/35. Its design
parameters are shown in Table 1.

The conductor temperature is calculated by substituting the
weather conditions and wire current of the test set into the heat
balance equation. The calculated values of conductor
temperature are obtained by solving the quartic equation for T
using Equations 1–4. The true value of the conductor
temperature is measured by a temperature sensor on the
OHTL. The comparison of the calculated values with the true
values is shown in Figure 6.

As shown in Figure 6, the RMSE of the heat balance equation is
considerably higher in winter and fall than in spring and summer.
With the exception of spring, a considerable number of samples
exhibit significant errors in all three seasons.

4.3 BO-BP algorithm results

The BO-BP model is trained based on the data of training and
validation sets. Subsequently, the weather conditions and wire
current of the test set are substituted into the BO-BP model to
obtain the calculated values of conductor temperature. A
comparison of the calculated and true values is shown in
Figure 7. The RMSE reduction ratio ΔR12 compared to the heat
balance equation is shown in Table 2:

FIGURE 7
Calculated and true values of conductor temperature for the BO-BP algorithm for the four seasons. (A) Winter. (B) Spring. (C) Summer. (D) Fall.

TABLE 2 RMSE reduction ratioΔR12 compared to the heat balance equation.

Season ΔR12 (%)

Winter 36.41

Spring 25.97

Summer 21.52

Fall 31.34
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As shown in Figure 7 and Table 2, the BO-BP algorithm
exhibits enhanced accuracy compared to the heat balance
equation across all seasons. The number of samples exhibiting
significant errors has decreased. This improvement is particularly
pronounced in winter and fall. Nevertheless, a small number of
samples still exhibit considerable model errors in winter
and summer.

4.4 Results of statistical analysis of the
model error

The model error of the BO-BP algorithm is statistically
analyzed. The frequency histograms for the four seasons are
shown in Figure 8.

As shown in Figure 8, the majority of the model errors for
the four seasons are concentrated near 0°C, with a small
number of samples exhibiting considerable errors. The
corresponding ΔTα values for different α values are shown
in Figure 9.

As shown in Figure 9, a larger α value corresponds to a larger
ΔTα value. When α ≤ 0.99, the trends of ΔTα for the four seasons are
comparable. When α ≥ 0.999, ΔTα of the four seasons exhibits a
significant discrepancy, i.e., higher in winter and summer and lower
in spring and fall. This discrepancy can be attributed to the presence
of a considerable degree of error in a small number of samples in the
winter and summer.

4.5 Results of the dynamic ampacity
prediction

The initial ampacity IDA is calculated based on the weather
data from 2023, and the reduction in ampacity ΔIα is analyzed
for different values of α. The results are shown in Figure 10.

FIGURE 8
Frequency histograms of model errors of the BO-BP algorithm for the four seasons. (A) Winter. (B) Spring. (C) Summer. (D) Fall.

FIGURE 9
ΔTα values corresponding to different α values.
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As shown in Figure 10A, the initial ampacity results are consistently
higher than the static ampacity results throughout 2023. The ampacity
results exhibit a seasonal distribution pattern, with the highest values
observed in winter, a gradual decrease in spring, the lowest values
observed in summer, and a gradual increase in fall. Figures 10B–F show
that ΔIα demonstrates a gradual increase as α increases. When α ≤ 0.99,
ΔIα exhibits a relatively consistent pattern throughout the year. When
α ≥ 0.999, ΔIα is significantly larger in winter and summer than in
spring and fall. These results indicate that the risk control strategy in this
paper sets the safety margin of ampacity based on the statistical analysis
of historical model errors. The average capacity improvement ratio
results are listed in Table 3.

As shown in Table 3, the larger α is, the smaller RDS is. When
α = 1, the RDS still reaches 154.79%. Consequently, by
incorporating the index of α, the risk of conductor
overheating due to the model error can be mitigated while
maintaining the capacity improvement effect.

5 Conclusion

Aiming at the problem that static ampacity is difficult to meet
the power supply demand, this study proposes a dynamic
ampacity prediction scheme. The heat balance relationship of
the OHTL is modeled based on the BO-BP algorithm. On this
basis, an OHTL ampacity prediction method considering the
model error is proposed. The method of this paper is validated
based on the operational data of a 220-kV OHTL, and the results
show that

1) The proposed BO-BP algorithm shows a significant
improvement in accuracy compared to the heat balance
equation, and the RMSE reduction ratio can reach
more than 20%.

2) The method in this paper dynamically adjusts the ampacity
according to weather conditions and takes into account the
risk associated with model errors. The OHTL capacity can be
improved by more than 150% compared to using
static ampacity.

In this study, an offline-trained BO-BP model is constructed
based on historical data from the OHTL. The offline-trained
model may become less adaptable as the running time passes.
Therefore, future research is directed toward online training of
ampacity prediction based on real-time data. Moreover, dynamic
adjustment of ampacity leads to an increase in conductor
temperature, and the resulting faster rate of aging and
increase in the rate of line failure are issues that need to be
investigated (Teh et al., 2017; Teh, 2018). In addition, the

FIGURE 10
Results of initial ampacity and ΔIα. (A) Initial ampacity. (B) ΔIα at α = 0.90. (C) ΔIα at α = 0.95. (D) ΔIα at α = 0.99. (E) ΔIα at α = 0.999. (F) ΔIα at α = 1.

TABLE 3 Average capacity improvement ratio for different scenarios.

Case RDS (%)

Default 167.42

α = 0.9 163.62

α = 0.95 162.37

α = 0.99 159.04

α = 0.999 155.25

α = 1 154.79
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interconnectivity of communication devices and data integrity
need to be considered during the actual system development
process, which will enhance the reliability, operation, and
deployability of the system (Jimada-Ojuolape and Teh, 2020;
Jimada-Ojuolape and Teh, 2022a; Jimada-Ojuolape and Teh,
2022b; Jimada-Ojuolape et al., 2023; Lawal and Teh, 2023a;
Jimada-Ojuolape et al., 2024; Lawal et al., 2024).
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