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In this study, we propose a CNN-GAN-based real-time processing technique for
filtering images of underwater cables used in power systems. This addresses the
excessive interference impurities that are frequently observed in images captured
by remotely operated vehicles (ROVs). The process begins with the input of the
original image into the convolutional neural network (CNN). Subsequently, the
training outcomes, which serve as input parameters for the generative adversarial
network (GAN), facilitate the filtering process. The system also calculates both the
structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR),
performing model updates via backward propagation. This technique utilizes
deep learning technologies to achieve rapid, real-time filtering of underwater
cable images. The experimental results reveal that the loss function of the CNN
reaches 0.16 with an accuracy of 97.5%, while the loss function of the adversarial
GAN network approaches 0.05. Compared with traditional methods such as
DDN, JORDOR, RESCAN, and PRENet, the proposed CNN-GAN algorithm
exhibits superior performance, as evidenced by the higher PSNR and SSIM
values. Specifically, for clear water images, the PSNR reaches 29.86 dB and
the SSIM is 0.9045. For severely polluted images, the PSNR is 28.67 dB and the
SSIM is 0.8965, while for unevenly illuminated images, the PSNR and SSIM values
are 24.37 dB and 0.88, respectively. These enhancements significantly benefit the
monitoring and maintenance of power systems.
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1 Introduction

Electrical cables are critical power system components that ensure safe and stable
operation. The laying of underwater cables serves as a primary channel within the power
system infrastructure. During urban cable routing design and construction, it is customary
to integrate the developmental needs of the power grid by installing multiple pipelines in a
single construction phase. This strategy reserves channels for future expansion of the urban
power grid. Over time, the loss of some data due to incomplete cable well information
necessitates preliminary exploration and verification when designing new cable routes. This
paper considers the deployment of unmanned remotely operated vehicles (ROVs) equipped
with cameras, which perform underwater inspections. These inspections are crucial for
identifying uncharted cable duct openings and also for detecting malfunctioning cables that
may compromise power system stability. Additionally, these surveys aim to preemptively
identify potential threats before system malfunctions occur. However, images captured by
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ROVs often contain significant interference from impurities, which
can impede subsequent processes such as edge detection. Therefore,
filtering these images is an essential first step for enhancing the
accuracy of subsequent analyses.

Traditional filtering techniques such as Wiener filtering
(Xiaobin and Li, 2013), median filtering (Bo et al., 2024), and
semi−mean filtering (Hanwen et al., 2023) often struggle to
address challenges associated with data dimensionality, quality,
and complexity. Furthermore, achieving a balance between real-
time processing, spatial complexity, and denoising capability
remains a significant hurdle. Conventional methods typically
require manual tuning of algorithm parameters. This can be
time-consuming as adjustments must be made for each image to
optimize results. Among these, Buades et al. (2008) developed a non-
local mean (NLM) filtering denoising algorithm by enhancing the
mean filtering approach. This method leverages the structural
similarities across domain graphs, thereby preserving the
structural integrity of the original image and enhancing the
denoising process.

Machine learning methodologies are broadly categorized into
three types: supervised learning, semi-supervised learning, and
unsupervised learning. Supervised learning, as described by Xiao
et al. (2019), utilizes predefined labels to guide the network in
learning features that closely align with the target, facilitating the
training of denoising models. The semi-supervised learning
approach, highlighted by Mingqiang et al. (2020), exploits
learning from paired sinusoidal graphs to supervise the network
in understanding feature distributions. In contrast, unsupervised
learning methods, outlined by Donghoon et al. (2018), focus on
learning data features directly from training samples without relying
on matched labels. An example of this is the cyclic generative
adversarial network (CinCGAN) proposed by Yuan et al. (2018),
which estimates high-resolution images to serve as labels. These
labels, alongside specific loss functions, are then utilized to train
the model.

With advancements in deep learning technology, numerous
generative models such as deep belief networks and variational
autoencoders have been studied extensively. Particularly notable
are generative adversarial networks (GANs), which have
demonstrated excellent capabilities in image restoration by
recovering images that have been damaged for various reasons.
An early example of influential unsupervised deep neural networks
is the stacked self-encoder (SAR) proposed by Hinton and
Salakhutdinov (2006), which uses a series of stacked encoders to
effectively train models. However, these networks often require
repetitive manual tuning of the parameters, prompting a shift
towards end-to-end networks such as convolutional neural
networks (CNNs), as proposed by Yingjie et al. (2018).
Innovative applications of GANs include Divakar and Venkatesh
(2017) approach to image denoising, and Wolterink et al. (2017)
method for reducing noise in low-dose CT scans by training
generators to produce outputs that mimic regular-dose CT
images. Yang et al. (2018) enhanced denoising performance by
utilizing joint perceptual and adversarial loss, focusing on feature
distinctions of pre-trained geometric groups and improving the
retention of subjective information. Zhong et al. (2020) integrated a
residual structure into their GANs, controlling training by
minimizing perceptual loss. Chuan et al. (2018) designed GANs

that were fully convolutional networks, employing local features and
gradient similarity bias for training control. Addressing the
challenge of acquiring paired samples, Jingwen et al. (2018)
utilized GANs to generate noisy samples, which were then
denoised using CNNs.

Tao et al. (2022) proposed a low-quality image enhancement
algorithm based on DDR-GAN, which compared the ESR-GAN and
DeBlur GAN-V2 algorithms. This algorithm has higher clarity and
richer image details, which is reflected in its improved SSIM and
PSNR values. Quanbo et al. (2023) used GAN to improve the
resolution of cone-beam computed tomography (CBCT) dental
images. The super-resolution network was trained with weak
supervision using microtomography images as a reference
(Ziyuan, 2020). Conducted research on image denoising and
image super-resolution methods based on the GAN network.
Eight residual layers were added to the ordinary convolutional
network structure so that the main features of the image were
not lost during the convolution process. This helped to retain the
detail features more effectively during the image super-resolution
application. Yuanming et al. (2023) used GAN to enhance
underwater images, de-partitioned the original images using an
improved white balance algorithm, and completed image feature
fusion using a convolutional neural network. Tao et al. (2022)
designed a Re-GAN model for the image contamination problem
using SAR. They added residual blocks to enhance the ability of
noise reduction on the SAR images. Subsequently, the combined loss
function in the model preserved the image details more effectively
during noise reduction.

While the denoising methods discussed above possess distinct
advantages, they also present inherent limitations:

(1) Traditional filtering methods effectively reduce noise, but
they process each pixel individually with a filter, which
compromises real-time applications. Moreover, these
methods primarily focus on pixels within the scope of the
filter and often neglect the overall structure of the image.
Variations in filter window size may also result in the loss of
useful information during the convolution process.

(2) Machine learning-based denoising methods typically require
manual tuning of hyperparameters, which introduces
uncertainty into the denoising process. Additionally, the
reliance on sparse priors and non-local self-similarity
priors for natural images may not adequately capture the
texture and structure of more complex graphics.

In this paper, we introduce a deep learning-based adaptive
system that automates the filtering of underwater cable images.
It uses a two-layer nested neural network that combines CNN
and GAN, termed CNN-GAN. This system eliminates the need
for manual parameter setting, enabling fully automatic
optimization of the filtering process. The outer neural
network is an unbiased CNN that first receives the original
image and passes the derived parameters to the inner GAN
network, which then performs the filtering. The filtered image
output is evaluated using SSIM and PSNR metrics to facilitate
inverse model updating. In practical applications, the system
requires only the input of newly captured images to generate
optimally filtered results.
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2 Convolutional neural network

2.1 Fundamentals of unbiased CNN
convolution

The convolutional neural network, as described by Krizhevsky et al.
(2014), integrates convolutional computation with a deep structure. A
typical CNN comprises three main components: an input layer, a
feature learning and representation layer, and a classifier. In this context,
the input layer preprocesses multidimensional data, such as the two-
dimensional data discussed in this paper. The feature learning and
representation layer generally consists of multiple convolutional,
activation, and pooling sub-layers. This layer maps input signals to
the hidden layer feature space of the CNN, extracting features from the
input data. The classifier is often formed by one ormore fully connected
layers or multilayer perceptron classifiers and is responsible for feature
fusion and classification. The convolutional layer includes several sub-
layers and forms the core of the CNN. Each convolutional kernel is
equivalent to a neuron in a feed-forward neural network and has an
associated weight matrix and bias vector. This kernel sweeps through
the input features at a set step size, capturing a map of the activated
features within its receptive field.

2.1.1 Convolutional layer
The formula for the convolutional layer is (Equation 1):

Xi
k( ) � ∑c

c�1Wi
c,k( )*Xi−1 c( ) + Bi

k( ) (1)

In this equation, “i” represents the i-th layer of the convolutional
network, “k” denotes the index of the feature map in the i-th layer,
and “c” signifies the number of convolution kernels in layer i. The
symbol “*” represents the convolution operation, “Xi-1

(c)” refers to
the input feature map of layer i, and “Xi

(k)” is the output feature
map. The terms “Wi

(c,k)” and “Bi
(k)” denote the weights and biases of

the convolution kernels, respectively.

The inclusion of nonlinear activation functions significantly
enhances the feature characterization capability of the CNN
model. Notably, the rectified linear unit (ReLU) function exhibits
substantial gradient descent capability, effectively solving issues such
as gradient explosion and vanishing during the training process.
Therefore, the ReLU function is selected as the activation function
for the model in this study (Equations 2–4).

sigmoid: f � 1
1 + e−y

(2)

tanh : f � ey − e−y

ey + e−y
(3)

ReLU: f � max 0, y( ) (4)

2.1.2 Pooling layer
After the convolution operation, the resultant feature map is

down-sampled in the pooling layer. The maximum pooling layer
segments the feature map into a series of non-overlapping blocks.
It selects the maximum value from each block to represent the
feature value of that segment, while discarding the other values
within the block. Popular pooling methods are depicted
in Figure 1.

The maximum pooling process is (Equation 5):

Xi+1 k( ) � max max
i−1( )l+1<�t< il

Xi
k( ) t( ) (5)

Here, “Xi
(k) (t)” represents the feature map resulting from the

convolution operation on the k-th neuron at the i-th layer. The
variable “l” denotes the width of the maximum pooled local area,
while “Xi+1

(k) (i)” is the output feature map following the maximum
pooling operation.

2.1.3 Fully connected layer
The fully connected layer constitutes the core component of

traditional neural network architectures. In these networks, the fully

FIGURE 1
Schematic diagram of the pooling operation.
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FIGURE 2
Feature extraction model.

FIGURE 3
GAN schematic diagram.

FIGURE 4
GAN training process.
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connected layer maps the input data directly to the output data.
However, in convolutional neural networks, the fully connected
layer typically follows the convolutional and pooling layers, serving a
critical role in classifying the processed features.

The Softmax function is employed in the output layer and is
described by the following mathematical expression (Equation 6):

Hθ x i( )( ) �
p y i( )� 1 |x i( ); θ( )
p y i( )� 2 |x i( ); θ( )

...
p y i( ) � m

∣∣∣∣x i( ); θ( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 1

∑k
j�1 exp θj

Tx i( )( )
exp θ1

Tx i( )( )
exp θ2

Tx i( )( )
...

exp θk
Tx i( )( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

2.1.4 Feature extraction model
The feature extraction model is based on the basic model of

ResNet-34, with the addition of the CBAM attentionmodule in front
of the average pooling layer, which can weight the features of the
convolutional layer and help to retain more information in order to
enhance the perception of important information. The added
CBAM attention module also optimises the spatial feature
learning capability of the ResNet34 model, which in turn
improves the accuracy of image classification. The model
structure is shown in Figure 2 below.

2.2 Parameter selection and principles
behind CNN

The learning rate in deep learning is a crucial hyperparameter
that determines how fast and in which direction the model updates
the weight parameters during training. During each iteration, the
model computes the gradient of the loss function with respect to
each parameter. The gradient indicates the direction in which the

parameters should be adjusted to minimize the loss. The numerical
expression is usually (Equation 7):

ωt+1 � ωt − η*∇ωJ ωt( ) (7)
If the learning rate is set too high, the model parameters may

cross the optimal solution in each iteration step, leading to
oscillations or divergence. Conversely, if the learning rate is too
small, the model will converge to the optimal solution very slowly
and may fall into the local minima instead of the global optimal
solution. Therefore, in this paper, the Adaptive Moment Estimation
(ADAM) optimizer is used to adaptively select the learning rate,
thereby accelerating convergence and improving the capability to
find the global optimal solution.

The number of iterations per epoch determines the number of
times the model needs to be trained. Too many iterations lead to a
long program running time, while a smaller number of iterations
stops the program too early, before the loss function converges.
In the running process of the algorithm in this paper, from the
loss function convergence curve to see when epoch reaches a
certain value, the loss function convergence. Therefore, in this
paper, the number of iterations in the CNN is set to a number that
is slightly larger than this epoch value. This ensures that the loss
function converges and prevents the program from
running too long.

The principle of learning rate and iteration number mentioned
here is also applicable to the generative adversarial network
described in Section 3.

2.3 CNN training

The outer CNN network is designed to predict two parameters:
the learning rate and the number of iterations. These predictions are
then utilized to train the inner GAN network. In this study, we
employ ADAM, a stochastic optimization algorithm that enhances
traditional approaches by adaptively estimating low-order

FIGURE 5
Retraining generator.
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moments. The ADAM optimizer was originally introduced by
Kingma and Ba (2014) and it differs from conventional
stochastic gradient descent (SGD) or AdaGrad methods. The
SGD algorithm maintains a constant learning rate for updating
the weights across all parameters, while the AdaGrad algorithm
adjusts the learning rate individually for each parameter, which is
particularly effective for dealing with sparse gradients. Conversely,
the ADAM algorithm dynamically modifies the learning rate based
on both first-order and second-order moment estimations of the
gradients. This facilitates optimized network structures, accelerated
convergence, and enhanced global optimization capabilities. The
parameter updating process using the ADAM optimization
algorithm is described below (Equations 8–14).

(1) Set the initialization parameters
(2) Calculate the gradient at iteration step t

gt ←∇θft θt−1( ) (8)

(3) Update the first-order moment estimate gradient mt

mt ← β1mt−1 + 1 − β1( )gt (9)

Update the second-order moments to estimate the gradient vt

vt ← β2vt−1 + 1 − β2( )gt
2 (10)

(4) Update the gradient of the modified first-order
moment estimate

m̂t ← mt/ 1 − βt1( ) (11)

FIGURE 6
Overall program framework.
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Update the gradient of the modified second-order
moment estimate.

v̂t ← vt/ 1 − βt2( ) (12)

(5) Update the parameters:

∇θ ← − αm̂t/ �����
v̂t + ε

√
(13)

θ ← θt−1 + ∇θ (14)

(6) If t>tmax then return the updated parameters, if otherwise
return the first step.

In the above equations, “m” and “v” denote the first and second-
order moments of the gradient, respectively, while “α” represents the

learning rate. The learning rate determines how quickly the model
updates its parameters during training, directly influencing the
convergence speed and quality. The learning rate is typically set
to 0.0001. The parameters “β₁” and “β₂” are the decay rates for the
first and second-order moments, respectively, with default values of
0.9 and 0.999 during model training.

2.4 CNN cross-entropy loss function

In the CNN, the loss function quantifies the deviation of the
network output from the labeled result, serving as a crucial
component in the backpropagation process for updating
gradients. The goal of continuous training and

FIGURE 7
CNN loss function after ADAM optimization.

FIGURE 8
Accuracy of the corresponding test set after ADAM optimization.

FIGURE 9
Learning rate decay fitting curve.

FIGURE 10
GAN iteration count epoch curve.
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parameterization in the CNN is to minimize the loss function and

learn the optimal model. The cross-entropy loss function is

commonly employed to minimize the difference between the

predicted probability distribution and the true probability

distribution, thereby making the predictions as accurate as

possible. For image classification tasks, a combination of the

Softmax function and cross-entropy is often utilized as the loss

function. The Softmax function is particularly effective in multi-

category classification tasks, as it maps the output of multiple

neurons, y = f(x), to the interval [0, 1], resulting in a predicted

probability distribution. This distribution indicates the

likelihood of the input belonging to each category, facilitating

multi-class classification.
Given a probability distribution where “i” denotes the i-th

element, the Softmax value of the element is calculated as follows
(Equation 15):

Softmax i � ei∑je
j

(15)
FIGURE 11
GAN loss function.

FIGURE 12
Good water quality.
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The cross-entropy loss function, frequently used in classification
tasks, is defined by the following formula (Equation 16):

CrossEntropy � −∑n
i�1
p xi( ) ln q xi( )( ) (16)

where p(x) denotes the real probability distribution and q(x) represents the
predicted probability distribution. For a known outcome, p(x) typically
takes the form of a one-hot encoded vector, such as [0,0,0,0,0.1,0,0,0,0],
indicating a unique classification. Conversely, q(x) indicates the predicted
probability of belonging to each classification category.

TABLE 1 Good water quality.

Assessment indicator DDN JORDER RESCAN PRENet Proposed model

PSNR (dB) 22.56 24.22 25.67 26.94 29.86

SSIM 0.7831 0.8784 0.8803 0.8619 0.9045

FIGURE 13
Heavily polluted water.

TABLE 2 Heavily polluted water.

Assessment indicator DDN JORDER RESCAN PRENet Proposed model

PSNR (dB) 17.34 22.23 25.67 26.94 28.67

SSIM 0.6874 0.8634 0.8793 0.8619 0.8965
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3 Generative adversarial networks

Generative adversarial networks are a powerful class of neural
networks that are used for unsupervised learning. GANs consist of
two competing models: the generator (G) and the discriminator (D).
The generator creates fake data samples (e.g., images, audio) and
attempts to deceive the discriminator, while the task of the
discriminator is to distinguish between real and fake samples.
Both the generator and discriminator compete against each other
during the training phase, and this iterative process enables both
models to improve their performance over time. The structure of the
GAN network is depicted in Figure 3.

3.1 GAN training process

The GAN training process involves the following steps:

1. Randomly generate a set of latent vectors z and use the
generator to produce a set of fake data.

2. Train the discriminator using a set of real data and the
generated fake data as inputs.

3. Generate a new set of fake data using the generator and
continue training the discriminator.

4. Repeat Steps 2 and 3 until the generator produces fake data that
has a similar distribution to the real data.

FIGURE 14
Uneven illumination.

TABLE 3 Uneven illumination.

Assessment indicator DDN JORDER RESCAN PRENet Proposed model

PSNR (dB) 17.23 19.97 22.76 23.65 24.37

SSIM 0.65 0.73 0.81 0.86 0.88
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The images produced by the generator in the previous round are
combined with the real images to form a dataset x. Labels are
assigned such that fake images correspond to 0 and real images to 1.
The discriminator then processes the dataset x to produce a score
between 0 and 1, representing the probability that an image is real.
The loss function, based on the score and the true label y, is used for
gradient backpropagation to update the network parameters. The
GAN training process is shown in Figure 4.

At this stage, the generator G and the discriminator D are
considered a unified system. In this paper, it is referred to as the DG
system, and the output of this system is still the score. By inputting a
set of random vectors, G generates an image, which D then
evaluates. This constitutes the forward process of the DG system.
The ultimate optimization goal of the DG system is to maximize the
score, ideally reaching a value of 1, which indicates that the
generated image is indistinguishable from a real image. The
Retraining generator is shown in Figure 5.

3.2 Parameter selection and principles
behind GAN

In addition to the learning rate and the number of iterations,
there are several other parameters in the GAN, including batch size
(batch_size), number of CPUs used for data loading (n_cpu),
dimensionality of the random vectors (latent_dim), and so on.
However, the main parameters that have a decisive impact on
the training results of the GAN remain the learning rate and the
number of iterations. Therefore, in the algorithm design process of
this paper, only two CNN output parameters are used to maximize
the efficiency of the procedure.

3.3 Objective function

In discriminative networks, there are two types of input data:
one from real samples and one from generative networks. Their
binary cross-entropy loss is (Equation 17):

L D( ) � −1
2

Ex~Pdata[ logD x( ) + Ez~Pz[ log 1 −D G z( )( )( )]( ) (17)

In the above equation, x is drawn from the true distribution
Pdata, while D(x) reflects the possibility that the discriminative
network assigns x to Pdata. The variable z denotes the input
random data for the generator network and PZ represents the
probability distribution of the random data. The term G(z) refers
to the generated data, and D (G(z)) is the probability that the
discriminative network assigns the generated sample to Pdata. Based
on the aggregate of the cross-entropy losses for real and generated
data, the optimization objective function can be expressed as
(Equation 18):

min
G

max
D

V G,D( ) � min
G

max
D

Ex~Pdata
logD x( )[ ]

+Ez~Pz log 1 −D G z( )( )( )[ ] (18)

In the training optimization phase of the GAN, the
discriminative network aims to maximize the objective function.
This ensures that the prediction probability D(x) for the real sample

x converges to the true value, while the prediction probability D
(G(z)) for the generated sample G(z) converges to the false value.
Simultaneously, the purpose of the generative network is to
minimize the objective function. Since log D(x) is independent of
the generative network, the primary goal is to minimize log(1−D
(G(z))). This adjustment promotes the convergence of D (G(z)) to
the true value.

3.4 Overall program framework

The overall framework of the system in this study integrates
two algorithms as the outer and inner frameworks. The outer
layer utilizes a CNN algorithm that determines the optimal
parameters of the GAN, while the inner layer employs the
GAN to generate the final filtered image. The outer layer CNN
uses 5,000 submerged images of cable wells captured by ROVs as
the training dataset. The outputs of this CNN are the learning
rate and the number of iterations required for the two GAN
networks. The training procedure is implemented using Python,
where the dataset is randomly split into training and test sets
using the random_split method, allocating 80% for training and
20% for testing. The 5,000 images that serve as the training set are
used to ascertain the parameters applied to the GAN. These
images are entered into the CNN, which subsequently determines
the input parameters for the GAN during subsequent training.
Without the nesting of the outer CNN, the training GAN model
requires manually specified parameters. This paper focuses on
two fundamental parameters: the number of iterations and the
learning rate. The GAN incorporates a model that automates the
filtering of the input images based on these parameters. To
evaluate the filtering effect of the final image, we employ
frame-by-frame screenshots of videos to conduct both
subjective and objective assessments of underwater images
under various lighting conditions, scenes, and color shades.
Figure 6 illustrates the overall program framework.

3.5 Image evaluation indicators

Subjective evaluation of image denoising performance can be
quantitatively determined using the peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) metrics (Liu, 2023; Siyu,
2023; Lihua, 2023).

(1) PSNR is one of the most widely used evaluation metrics. A
higher PSNR value indicates superior processed image quality. The
formula for PSNR is (Equation 19):

PSNR � 10p log
max 2

MSE
( ) (19)

where max2 is the maximum possible pixel value of the original
image I, usually 255. MSE denotes the mean square error between
the original image I of size M*N and the processed image K,
calculated as (Equation 20):

MSE � 1
M*N

∑M−1

i�0
∑N−1

j�0
I i, j( ) −K i, j( )[ ]2 (20)
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(2) SSIM is a metric that measures the structural similarities
between two images, modeling image distortion as a combination of
three factors: correlation loss, luminance distortion, and contrast
distortion. SSIM is calculated as follows (Equation 21):

SSIM � 2μxμy + c1( ) 2δxy + c2( )
μx

2 + μy
2 + c1( ) δx

2 + δy
2 + c2( ) (21)

SSIM values lie between 0 and 1, with higher values indicating
greater similarity and better correlation between the denoised image
and the reference image.

4 Experiments

4.1 Outer CNN training results

The experimental study in this paper uses images of real cable
duct openings captured in situ using an unmanned ROV. The
samples include frames from multiple video recordings in clear
water, heavily polluted water, and uneven lighting conditions.
Python is used as the programming platform, with an NVIDIA
GeForce RTX4090 and an Intel(R) Core i7-13700 KF CPU. For the
Conv2d 2D convolutional layer, “batch_size” is set to 3, the
convolutional kernel size is 7*7, the step size is 2, and the
padding is set to 3. The proposed convolutional residual neural
network (CNN) model has five layers in total, and the number of
neurons in the residual module of Layer1, Layer2, Layer3, Layer4,
and the output layer is 64, 128, 256, and 512. A total of 1,000 epochs
of training are performed to obtain the loss function image. The step
sizes of Layer2, Layer3, and Layer4 are all set to 2. The size of the
sampling window under the maximum pooling layer is set to 3*3,
and the modified current unit ReLU is selected as the
activation function.

The sizes of the images used in this paper are 1920*1,080, which
are cropped to 180*180*64 size and input to the CNN for
convolution pooling work. After the first convolution, the output
channel changes from 64 to 128, and the image size becomes
180*180*128. Next, following the first pooling, the pooling step is
set to 2 and the image size becomes 90*90*128. In the second
convolution, the output channel changes from 128 to 256, and the
image size becomes 90*90*256. In the second pooling, with a step
size of 2, the image size becomes 45*45*256. On entering the third
convolution, the output channel changes from 256 to 512, and the
image size becomes 45*45*512. The step size of the third pooling is 2,
so the image size becomes 22*22*512. This output from the final
pooling becomes the input to the fully-connected layer. After the
fully-connected layer, the first layer contains 1,024 neurons, while
the second layer has 10 neurons. The neuron nodes pass through the
Softmax layer to generate the probability of each category
corresponding to its respective goal. Finally, the outparam model
is added at the end of the CNN procedure. Its function is to calculate
the probability by detecting the similarity between the feature image
of the test set and the feature image of the training set by CNN.
Ultimately, it generates the parameters of the GAN corresponding to
the feature image of the test set.

The dataset is divided in an 80:20 ratio into training and testing
sets. The CNN loss function optimized using the ADAM optimizer

appears in Figure 7, and its accuracy on the corresponding test set is
presented in Figure 8.

As Figures 7, 8 indicate, after applying the ADAM optimizer, the
loss function of the CNN converges to 0.16, while the corresponding
accuracy ultimately reaches 97.5%.

4.2 GAN parameters

The analyses in Section 4.1 confirm that the CNN training
achieves excellent results. Therefore, the input parameters
derived from the CNN for the GAN are considered optimal.
This paper focuses on two GAN parameters: the learning rate and
the number of epochs. The final results indicate that the optimal
learning rate is 0.0001 and the number of iterations (epochs) is
102. The fitted curves for these parameters are shown in Figures
9, 10, respectively.

The above graphs show that after training the CNN neural
network, the output values for the learning rate and the number of
iterations converge at 0.0001 and 102, respectively. These two values
are used as the input parameters for the inner GAN neural network.

4.3 GAN training

The input parameters for the GAN are derived from the CNN in
the previous section and are used by the inner GAN for filtering. The
GAN outputs two metrics for image quality assessment: SSIM and
PSNR. In this paper, we compare the proposed model with other
conventional methods: DNN (Lihua, 2023), JORDER (Yang et al.,
2017), RESCAN (Li et al., 2018), and PRENet (Dongwei et al., 2019).
The comparison is conducted under three different scenarios: clear
water, heavily polluted water, and uneven illumination.

The loss function convergence curve of the GAN during the
training process is shown in Figure 11. It reveals that the loss
function of the GAN ultimately converges to 0.05, indicating a
clear convergence trend.

The underwater images in good water quality conditions are
designated as Test1. Figures 12A–F presents the subjective filtering
effects of the Test1 dataset. The figure shows that the DDN
algorithm does not effectively remove impurities, resulting in
unclear images. The JORDER algorithm shows relatively good
impurity removal but still leaves some residual impurities.
Although the RESCAN algorithm successfully removes
impurities, it causes image smoothing and blurring in detail
processing. Besides, the PERNet algorithm exhibits slight
deficiencies in background color processing. In contrast, our
proposed method effectively removes sparse impurities while
preserving the background information.

For the Test1 dataset, we also employ the SSIM and PSNR
objective metrics to assess the filtering effects. The results are
presented in Table 1.

Figures 13A–F shows the subjective filtering effect of the
Test2 dataset, which comprises images in heavily polluted water.
According to the figure, the DNN presents more visible impurities,
while JORDER and PRENet exhibit some residual impurities and
somewhat blurred backgrounds. A comparison of the modified
images confirms that our proposed method handles images with
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dense impurities more effectively and also performs better in
detailed image processing.

The results of the SSIM and PSNR objective evaluation metrics
for the Test2 dataset are shown in Table 2.

The Test3 dataset represents images with uneven illumination,
and Figures 14A–F illustrates the subjective filtering effects for this
dataset. The experimental results demonstrate that the proposed
algorithm achieves 89% accuracy in the SSIM index, with a PSNR
value of 28.67 dB. This confirms that our algorithm effectively
removes impurities while preserving image details, enhancing
clarity, and maintaining the original colors to some extent.

For the Test3 dataset, the results of the objective evaluation
metrics SSIM and PSNR are shown in Table 3.

5 Conclusion

The underwater image filtering method based on CNN-GAN
proposed in this paper avoids traditional manually-tuned filtering
parameters in favor of deep learning adaptive filtering. This
approach allows for the automatic filtering of various images
without the need to set the parameters, thereby enabling direct
input of images into the dataset. This method addresses the issue of
unclear and poor-quality images in underwater cable pipeline
surveys, facilitating straightforward follow-up inspections and
more accurate results. The CNN neural network achieves a loss
function value of 0.16 and an accuracy rate of 97.5%, while the loss
function of the GAN adversarial network converges to
approximately 0.05. Compared to traditional methods such as
DDN, JORDER, RESCAN, and PRENet, the proposed CNN-
GAN neural network is more suitable for underwater cable
pipeline inspections. The CNN-GAN algorithm yields higher
evaluation indexes for both PSNR and SSIM. Specifically, for
images in clear water, the PSNR value increases to 29.86 dB and
the SSIM value is 0.9045. For images in severely polluted water, the
PSNR and SSIM values are 28.67 dB and 0.8965, respectively. In
uneven lighting, the PSNR value is 24.37 dB, while the SSIM value is
0.88. These improvements result in a better underwater image
filtering effect, contributing to the stability of the power system.

In future research, we will consider making improvements to the
study in the following three areas:

(1) The computing time of the proposed algorithm is long, with
an average training time of 15 min using an
RTX4090 graphics card. In future research, we will
consider reducing the number of epochs, using GAN
architectures with faster convergence speeds, and
enhancing the real-time nature of the algorithm.

(2) Currently, in addition to the traditional GAN architecture,
there are other types of GAN architectures, such as the deep
convolutional generative adversarial network (DCGAN),
CycleGAN, FUnIE-GAN, etc. We can further improve the
GAN architecture in this paper and compare it with existing
GAN architectures to obtain a better filtering effect of
underwater images.

(3) The dataset trained in this paper only utilizes images of
underwater cable vents captured by ROVs, but the

proposed algorithm can be applied to a wider range of
subjects in subsequent research. For instance, it can be
applied to submarine cable images captured on the seabed,
because the seabed contains a lot of debris, algae, and other
objects that can interfere with the target. Our image
filtering algorithm produces clearer and more complete
images, which helps relevant staff to perform regular
inspections and repairs of submarine cables and more
effectively maintain power system stability.
Additionally, the application range of this image-
filtering technique is very broad, so it can be applied in
non-electrical areas, such as submarine geological
exploration and other work. Most marine mineral
resources are located in the seabed, including oil,
natural gas, and metals, so the exploration and
development of seabed geology is very significant. Our
proposed algorithm can filter seabed images in real time,
thereby improving the efficiency of geological exploration.
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