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The increasing number of electric Vehicles (EVs) and their influence on the power
grid present difficulties that this article addresses by suggesting optimal planning
methods for EV charging and discharging. EV charging and discharging
operations are effectively managed by creating both locally and globally
optimal planning schemes. Future transportation could be changed by the
widespread adoption of dynamic wireless power transfer systems in
conjunction with EVs, as they would enable speedier travel and continuous EV
battery recharging. Dynamic wireless power transfer is a practical answer to
problems with electric vehicles. The electrification of automobiles will have a
significant influence on the power infrastructure due to the increase in demand
for electricity. In this study, we provide an optimal planning method worldwide
and a locally optimal strategy for EV charging and discharging. To minimize the
total cost of all EVs that charge and discharge during the day, we propose an
optimization problem for global planning in which the charging powers are
optimized. The simulation results demonstrate that the proposed planning
schemes can effectively reduce the total electricity cost for EV owners while
also minimizing the impact on the power grid. The globally optimal planning
scheme achieves the lowest electricity cost, while the locally optimal scheme
provides a good balance between cost reduction and computational complexity.
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1 Introduction

With almost one-third of the world’s electricity use going to the transportation industry,
it is one of the biggest users of energy in the world (Manzolli et al., 2022). Furthermore, the
internal combustion engine (ICE) based current transportation system is the main
contributor to air pollution and greenhouse gas emissions. There has been a noticeable
surge in interest in electrifying the transportation system in recent years to lessen these
negative effects and lessen reliance on fossil fuels. According to a study, electric vehicles
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have a special niche as a safe alternative (Zhang L. et al., 2023). One
claim is that the development of EVs has been hampered by the high
cost and dearth of charging stations. As a result, most countries have
implemented laws and policies to lower these obstacles and
encourage the widespread utilization of electric vehicles.

About this subject, energy transmission by induction has been
adapted to this system. Indeed, considering the geopolitical and
environmental background, this recharge mechanism has emerged
as a very attractive field of study. The charging tool’s best and most
effective solutions may produce several profitable outcomes for
electric vehicles. This method could reduce the price, weight, and
volume of electrochemical batteries used in automobiles if it proves
to be productive and energy efficient (Mohamed A. A. S. et al., 2022;
Mohamed N. et al., 2022).

This type of dynamic charging is one of the ways that EVs’
autonomy is expected to be increased without significantly raising
battery capacity (Laporte et al., 2019; Mohamed et al., 2021). This
view pertains to one of these methods, namely to the transfer of
energy through induction. Fuel efficiency, traffic restrictions
brought on by the requirement for integration in the car and on
the road, and adherence to electromagnetic emission regulations are
the key issues with this mode of energy transfer. The connection of
the two coils affects the transfer’s energy efficiency (Mou
et al., 2019).

Essentially, this charging system consists of a transmitter coil
that is mounted on the road or in the parking lot and is coupled to an
alternating current (AC) or direct current (DC) power supply
(Zhang J. et al., 2023; Ju et al., 2022). The lack of these energy
sources on a highway restricts the usefulness of this charging option.
For this reason, one practical way to solve the problem of charging
this device is to use alternate power sources (Manousakis
et al., 2023).

Considerable advances in the field of EV management are
presented in this article. It offers the best planning strategies for
charging and discharging electric vehicles on a local and worldwide
scale. The two planning approaches it proposes are focused on local
optimization, while the other seeks a worldwide optimal. By using
two separate approaches, one can respond to various operational
restrictions and situations with flexibility in application. About the
complexities of organizing the charging and discharging of electric
vehicles, it develops an extensive optimization model. To efficiently
control energy in EV systems, this model considers several variables,
including demand response, energy costs, and operational limits.
The proposed planning strategy aims to improve the efficiency of the
electric vehicle charging infrastructure, which has the potential to
reduce operating costs and improve grid stability. This is particularly
important as the adoption of electric vehicles continues to increase
and requires more sophisticated management techniques. The
simulation results included in this document confirm the
effectiveness of the proposed scheduling scheme. These results
demonstrate the potential advantages in terms of cost savings
and efficiency improvements compared to traditional
planning methods.

The goal of this work is to find solutions for the problems
brought about by the growing use of EVs in the electrical grid. The
stability and security of the smart grid are significantly impacted by
the growing number of electric vehicles and their charging
requirements. To address these issues, this paper emphasizes the

necessity of efficient management techniques for charging and
unplugging electric vehicles.

Numerous advantages are highlighted in this paper, including:

• Electric vehicles are a global industry center point due to their
clean and environmentally favorable attributes.

• The rising demand for EV charging creates uncertainty in
terms of charge durations and energy needs, which can
interfere with the smart grid’s regular operation.

• EVs can function as mobile energy storage units, offering the
system a supplemental energy source when needed. A
deliberate approach to their charging and discharging
characteristics is necessary for this dual functionality.

The scope of the document establishes a planning model that
integrates the grid, charging infrastructure, and EVs. The goal is to
optimize charging and discharging operations based on real-time
information and user preferences.

This model consists of three primary components:

• Real-time information on electricity supply and costs is
provided by the electrical grid.

• Charging Equipment controls the delivery and purchasing of
electricity for EVs. Considering that the framework in which
EVs function permits them to charge or discharge by market
rates and demand.

• There are three phases in the planning process: - Gathering
data on vehicle conditions and electricity pricing. - Making
decisions in real-time and utilizing gathered data to identify
the best charge and discharge plans. - Order execution by
sending the electricity required to finish the schedule.

The novelties in this article can be shown in Table 1 that
compares them to earlier research:

Vehicle-to-grid (V2G) technology allows an EV to supply
electricity to the grid by draining its battery (Khalid et al., 2021).
The EV charging patterns can be optimally planned by an
intelligent planning method to flatten the electric system’s
demand profile efficiently. Both possible capital costs and
operating expenses will be decreased as a result.
Implementing a smart grid now requires intelligent EV
charging and discharging planning (Aghajan-Eshkevari et al.,
2022). The basic idea behind intelligent planning is to reshape
the load profile by charging the EV battery from the grid if
demands are low and discharging it to the grid when demands
are high (Wang S. et al., 2023). Planning EV charging and
discharging patterns optimally is difficult, though. First off,
particularly when there is a big EV population, it can be
challenging to identify the globally ideal planning strategy
that can lower the overall cost of charging. The planning
strategy must be able to manage random EV arrivals
efficiently (Khalid and Peng, 2020; Feng et al., 2024a).

Recent research has offered several planning strategies for EV
charging and discharging (Kraiem et al., 2024). However, the
planning plans in (Zhang and Fan, 2020) only addressed battery
charging in the absence of V2G functionality. While previous studies
on V2G planning (Hadian et al., 2020; Ke et al., 2020) attempted to
optimize the charging and discharging powers to minimize prices,
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their approaches which are essentially centralized algorithms may
not be appropriate for EV charging and discharging systems that
have a high population density and fluctuating arrivals (Lei
et al., 2023).

Because of the use of several energy sources in this work, it is
necessary to manage energy. Planning is necessary for the times
when electric vehicles are charged and discharged (Amir et al., 2023;
Ouyang et al., 2024). This paper presents a locally and globally
optimal planning for EV charging and discharging. It summarizes
the following contributions:

• The paper’s goal is to reduce the overall cost of charging every
EV each day by formulating a problem of optimization for
global planning. The kind of optimization issue that is
amenable to an effective solution is convex optimization.
By resolving a single global planning optimization issue, the
globally optimal planning strategy finds the globally least total
cost and, consequently, the ideal charging powers for all EVs
for all intervals.

• This article suggests a local planning optimization challenge
for the EV in the local group. It creates a locally optimal
planning technique based on the local planning optimization
issue, and it is carried out in a distributed and independent
manner. For EV charging and discharging systems with a high
population density and fluctuating arrivals, the locally
optimum planning technique is highly suitable. The
globally optimal planning scheme performs better than the
locally optimal planning system, but it is extremely close to it.

The strategy with the lowest total cost is the globally optimal
planning approach. However, the globally optimal planning strategy
is not practicable as it necessitates the data on the base loads in the
future, along with the EVs that will arrive later in the day, their
arrival times, and their charging duration. The locally optimal
scheduling scheme is an acceptable strategy that can effectively
manage a large EV population and dynamic EV arrivals, even if
it performs slightly worse than the globally optimal planning
strategy. As a result, the paper’s final recommendation is the
locally optimal scheduling method. Using the lowest overall total
cost that the globally optimal planning approach provides, it is
possible to calculate the optimality gap between the two strategies.

The rest of the article is structured as follows: in the second
section, the battery charging techniques will be presented, in the
third section the control structures of the EV charging and
discharging system will be presented, in section four the charging
system and its components will be described, in section five there is a
problem description of the global planning optimization and its
solution, and in the sixth section there is a detailed description of the
problem of local planning optimization and its solution, then there is
a discussion of the simulation to seventh section, finally, in the last
section there is the conclusion.

2 Techniques and different methods for
EV battery charging

Grid charging is necessary for two types of electric vehicles:
plug-in hybrids (PHEV) and batteries electric vehicles (BEVs)

(Zheng et al., 2019; Zhang et al., 2022a). BEVs solely use the
electrical energy stored in the battery for propulsion, whereas
PHEVs have the option of using fossil fuels. Batteries for electric
vehicles can be charged using three different methods: conductive,
inductive, and battery swap. This section outlines the three loading
techniques. However, since conductive charging is the most popular
way to charge batteries for electric vehicles, this article looks at the
features and effects of this kind of charging from several angles.

2.1 Conductive charging

“Conductive charging” is the method of physically attaching an
EV to the electrical grid to charge it. The two types of chargers that
can be utilized for conductive charging of EVs are off-board and on-
board chargers. An EV may be charged anywhere it is connected to
an electrical outlet because it has an on-board charger installed,
which eliminates the need for additional equipment to connect to
the grid. However, because of the charger’s limited power transfer
capability, charging an EV using this method takes longer. Off-board
chargers, on the other hand, are usually located in fast-charging
stations, commercial parking lots, and highways and are not part of
the design of electric vehicles (Khalid et al., 2019). EVs receive more
power from off-board chargers, which results in a quicker
charging time.

A standard for varying EV charging levels has been established
by the Society for Automatic Engineers (SAE) (Kongjeen and
Bhumkittipich, 2018). Three charge levels are specified for each
AC and DC charge in this standard. Table 2 provides a summary of
these charge levels.

2.2 Inductive charging

The inductive charging technique, sometimes referred to as
wireless charging, transfers electricity between an EV and the
power grid via an electromagnetic field rather than a physical
connection. Due to the power transmission through the air gap,
one benefit of inductive charging is a decreased risk of electric
shocks and related damages; however, the charging efficiency
decreases in this scenario due to the relatively large air gap and
non-compliance of the windings (Khalid et al., 2023). There are
two methods to apply inductive charging: static and dynamic.
Figures 1A shows the static wireless charging of the EV, this type
of charging takes place when the electric vehicle is in position
parked and the engine is turned off to fully charge. It is the usual
charging method in public parking lots or homes. Some function
Complex chargers can be integrated into these chargers to
minimize misalignment coils. Figure 1B shows the dynamic
wireless charging of the EV that allows an electric vehicle to
charge wirelessly while driving on the road. In this case, some
sections of the road are equipped with wireless power
transmitters (WPT) and electronic equipment power to
activate WPT for electric vehicles. This type of charging favors
road-powered electric vehicles. Although the cost of
infrastructure is high, the benefits of this infrastructure should
be notable due to the limited number of charging stations offered
on highways (Wang T. et al., 2023).
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TABLE 1 Comparison between our work and the previous works.

Previous articles Our article

This survey article provides a thorough overview of several techniques to control EV
charging and discharging. It divides existing techniques into several areas, including
fundamental and sophisticated optimization schemes. This evaluation provides a more
thorough framework for understanding EV management solutions by analyzing the
benefits and drawbacks of each approach. Additionally, it covers the prospects for
vehicle-to-grid (V2G) technology and how EVs might be integrated into smart grids,

emphasizing the importance of flexibility and adaptation in charging schemes
(El-Bayeh et al., 2021)

This paper proposes dynamic wireless charging of electric vehicles using multiple
energy sources such as grid, photovoltaic energy, wind energy and piezoelectric energy,
and proposes a comprehensive framework for optimizing electric vehicle charging and
discharging planning. He emphasizes the importance of considering various factors
such as energy cost, battery charge level and grid demand. The algorithm proposed in
this paper can dynamically adjust the charging and discharging schedule based on real-
time data, thereby improving energy efficiency and reducing operating costs. The focus

is on a system approach that integrates the charging and discharging process,
providing a general overview of electric vehicle energy management

This research investigates EV charging and discharging scheduling in a photovoltaic
(PV)-enhanced power distribution system. This study focuses on the integration of
renewable energy sources, particularly solar electricity, into the infrastructure for

electric vehicle charging. The authors offer a scheduling technique that optimizes the
use of solar energy for EV charging while considering the unpredictable nature of solar
power supply. Maximizing the benefits of renewable energy is the aim to reduce reliance
on traditional energy sources and promote environmental objectives (Das and Kayal,

2024)

An overview of the infrastructure and technologies for EV charging is given in this
review article. It covers topics including battery charger topologies, charging power
levels, and infrastructure for charging stations. No scheduling strategies or optimization

algorithms are suggested in this study (Yilmaz and Krein, 2012)

This article describes a charging and discharging system that combines user incentives
with complementary energy sources. The authors’ major objective is to increase the
sustainability and profitability of charging by incentivizing users who wish to recharge
off-peak or feed energy back into the grid. By maximizing the use of renewable energy
sources and balancing the load on the grid, this method aims to increase the overall
efficiency of the energy system. The article discusses whether EVs may be used as

distributed energy sources and how user behavior impacts charging schedules (Ozkan
and Erol-Kantarci, 2022)

This article addresses a decentralized method for EV charging station power dispatch.
Decentralized approaches can enhance the energy distribution reliability and efficiency
among several EVs, as per the authors’ findings. The proposed approach allows for
more localized decision-making since it can swiftly adjust to changing conditions in
real-time, such as fluctuations in energy availability and demand. The paper discusses

how decentralization could improve grid resilience and operational efficiency,
particularly in circumstances where centralized control could be less helpful (Yin et al.,

2021)

This article investigates various charging-dispatch strategies and the use of vehicle-to-
grid (V2G) technologies in distribution networks. The authors investigate the possibility
that EVs could contribute electricity to the grid during periods of high demand because
V2G can increase grid stability and efficiency. The article discusses the implications of
these technologies for energy management, including how load balancing and the

incorporation of renewable energy sources can be achieved. Practical applications and
the operational challenges of implementing V2G systems in real-world scenarios are

highlighted (Mohith et al., 2023)

TABLE 2 EV charging in a power grid using the SAE standard.

Power level Grid connection Voltage (V) Current (A) Type of charge

AC level 1 1 phase 120 12–16 Slow

AC level 2 1 phase 240 <80 Slow

AC level 3 1.3 phase 240 >80 Slow

DC level 1 — 200–450 80 Slow

DC level 2 — 200–450 200 Medium

DC level 3 — 200–600 400 Fast
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2.3 Change of battery

The battery of EVs is crucial to ensure its proper functioning and
autonomy. According to manufacturers’ recommendations, the
battery of EVs generally needs to be replaced every 5 years.
Electric vehicle batteries, mainly composed of lithium-ion, store
charged energy and power the electric motor while traveling. In the

case of battery discharge, it can use the method of swapping your EV’s
battery is a quick way to have it fully charged. The owner of an electric
vehicle uses a battery-switching facility to replace the empty battery
with a fully charged one (Ahmad et al., 2020). This technology helps
the battery swapping station by managing the charging, draining, and
battery switching, and it significantly reduces the time it takes for the
owner of the EV to charge (Liu et al., 2023).

TABLE 3 Comparison of the various EV charging techniques.

Charging method Charging method Disadvantages

Inductive Charging • Convenient, no need to physically plug in
• Safer, reduces the risk of electrical shock

• Lower efficiency compared to conductive charging
• Requires precise alignment between pad and receiver coil
• Limited power transfer distance

Capacitive Charging • Potentially faster charging than inductive
• Works over slightly larger distances

• Less mature technology not widely deployed
• Potential safety concerns due to high-voltage electric fields
• Requires conductive plates on the vehicle

Battery Swapping • Fastest method for “refueling” an EV.
• Extends driving range quickly
• Lessens dependence on battery degradation

• Requires a network of swapping stations with standardized batteries
• May not be suitable for all vehicle types
• Initial investment for stations and batteries can be high

FIGURE 1
EV charging with wireless inductive technology: a-static charging, b-dynamic charging.
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Table 3 presents a comparison of inductive charging, capacitive
charging, and battery swapping for EVs.

Practically, the best method depends on the current state of
development. Inductive charging is the most common option today.
This method offers a charging system that does not require any
mechanical contact, but capacitive charging is catching up, and the
battery swapping requires specific stations.

3 The power system’s various EV charge
and discharge control structures

As seen in Figure 2, aggregators are typically used to interchange
electricity between EVs and the grid because each EV has a limited
capacity. In contrast, EV charging and discharging processes can be
directly or indirectly regulated by aggregators.

The control structure specifies three general approaches
(centralized, decentralized, and hierarchical) that can be utilized
to implement electric vehicle charging and discharging management
in the power grid. A comparison of these three categories of
approaches is presented below, looking at them from various angles.

3.1 Centralized control structure

EV owners lose control over the charging and discharging
processes of their vehicles under a centralized control system,
with aggregators managing and controlling EV behavior directly.
Aggregators initially compile each EV data and charging

specifications using this technique. Every time, The EV charge or
discharge rate is determined by the aggregator based on
predetermined variables and network conditions (Sobrinho
et al., 2023).

3.2 Decentralized control structure

Owners of electric vehicles (EVs) can choose whether to charge
or drain the battery according to their own needs, which are
usually to save on charging expenses, as opposed to
centralized control.

Therefore, the system operator or aggregator can move the
charging load of EVs from peak to off-peak hours by employing
pricing mechanisms and providing appropriate price incentives, so
indirectly regulating the charging and discharging behavior of EVs
(Shirkhani et al., 2023). The structure of decentralized control is
presented in Figure 3.

3.3 Hierarchical control structure

In comparison, the hierarchical control structure has advantages
over centralized and decentralized control systems concerning
computing load and communication network requirements. Two
levels usually make up hierarchical control. At the higher layer, all of
the EV aggregators are scheduled by a central controller, like a
Distribution System Operator (DSO). On the lowest layer, each
aggregator is responsible for overseeing several EVs and scheduling

FIGURE 2
The power exchange between EVs and the smart grid concept.
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when each EV needs to be charged and released. This control
structure is hierarchical, as seen in Figure 4 (Nimalsiri et al., 2019).

A comparison of the centralized, decentralized, and hierarchical
control systems is shown in Table 4.

The complexity of infrastructure necessitates the selection of a
central control structure that ensures network stability, eliminates
power fluctuations, and optimizes energy usage while enabling quick
response to changes in network conditions.

4 Specification of the wireless
charging system

4.1 General point of view

This work focuses on the dynamic wireless charging system
using exhaustible energies such as (electricity grid, solar energy,
wind energy, and piezoelectric energy). This charging system is
made up of two coils; the first one is installed on the ground of the
road which is called the transmitter coil, and the second one is
installed under the vehicle which is called the receiver coil. Power
converters are used to connect the many energy sources that this
system can use to power the transmitter coil. The 50 KW of power
generated by this coil powers the reception coil by producing a
magnetic field that transforms magnetic energy into electrical
energy. A power converter connects this coil to the battery of the
electric car. A description of the charging system is shown
in Figure 5:

This study emphasizes on a multi-lane highway, but one-way,
with wireless charging in the rightmost lane. This road is divided
into several sections, each measuring length L. Along this length, the
highway is equipped with a power station that can generate energy,
each power station being placed in a section to recharge electric

vehicles. It is also equipped with charging coils that have a length of
1.2 m and a space between them equal to 0.8 m. Each 50 m section
generates a maximum power transfer rate of 100 KW that can power
two electric vehicles (Kong and Devetsikiotis, 2016). Figure 6 shows
the infrastructure model of wireless charging in highways.

4.2 Mathematical model

After the last presentation of the dimensioning of the highway,
and that of the spacing between the charging coils as well as the
spacing between the electric vehicle to allow it to recharge properly.

The current problem is solved by the proposed mathematical
model. This content includes an explanation of the data, a list of
assumptions made before running the mathematical model,
definitions of the notations, and finally the formulation.

4.2.1 Hypotheses
Several hypotheses were made to solve the problem of this study,

the following hypotheses can be mentioned:

• All drivers must use the same speed.
• Electric vehicle ranges are continuous.
• The system for charging electricity is unlimited and
uninterrupted.

• No queues form in front of the charging areas.
• Don’t stop at charging coils.

4.2.2 Parameters
Sections S of highways S = {1, 2, 3, . . ., n},
Nc: maximum number of recharge coils that can be placed on

highway section S,
DS: charging demand on highway section S,

FIGURE 3
Decentralized control structure.
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XS = {1, if the highway section S is selected to implement the
charging coils for electric vehicles; 0, else},

NVES: Number of EVs on highway section S,
UDS: Number of unsatisfied charging demands on

highway section S,
NDS: Number of updated demands on highway section S.

4.2.3 Formulation
➢ Constraints

Nc ≥Xs,∀s (1)
The constraint Equation 1 stops the model from choosing a site

as a charging area devoid of charging power. This constraint

FIGURE 4
Hierarchical control structure.

TABLE 4 Comparison between the centralized, decentralized, and hierarchical control structures.

Feature Centralized Decentralized Hierarchical

Required communication infrastructure Low High Low

User charging authority Low High Low

Scalability Low High High

Computational complexity High Low Low

FIGURE 5
The wireless charging system’s presentation.
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guarantees that this choice variable XS if the charges are present, it
accepts the value 1. However, it also catalogs and archives the
selected sites.

Ds −Nc ≤UDs,∀s (2)
NDs −Nc ≤UDs,∀s (3)

NDs ≥Ds+UDs−1,∀s s ≠ 1( ) (4)

Constraints Equations 2, 3 deal with updated procedures and
demand limits. These constraints specify unsatisfied charge
demands and the values that these constraints provide as outputs
are stored as findings in a database. When the entire demand for the
last segment of the highway is not satisfied, constraint Equation 4
modifies the demand.

The objective of these constraints is to manage energy to ensure
reliable and optimal production, thus minimizing the cost of
recharging. A charging plan must be created in this situation so
that the battery can be charged if it is discharged and discharged to
the grid if it is charged (Zhang X. et al., 2023), (Duan et al., 2023).

5 Global planning optimization:
principle and flowchart description

Based on a real-time pricing model, we develop a global
planning optimization for EV charging and discharging in this
part. The optimization problem’s solution offers a globally
optimal planning plan that lowers the total cost (Feng et al., 2024b).

5.1 Global planning optimization model

This paper examines the equal division of daily EV battery
charging and discharging into a series of intervals. O indicates the
interval set. The length of an interval is given by δ. It is predicated on
the idea that power usage for charging and discharging can be
adjusted over time.

This article divides the day into 24 equal-length segments, each
lasting 1 h. Every electric vehicle, that charges and discharges during
the day (Li et al., 2021), are noted by N. The EV N set consists of two
sets; set NCH: charging only the EV, which can charge EV batteries
but does not feed energy from the batteries into the grid and sets

NV2G: the set of charging vehicles to grid, which includes EV that can
charge their battery, and both can discharge the battery (Zhang et al.,
2022b). We have N = NCH + NV2G.

ynj (∀n ∈ N,∀j ∈ O) denotes the charging or discharging power
of EV n during interval j. To simplify the notation, we simply refer to
ynj as the EV n charging power in interval j. If ynj >0, then EV n is
irregularly charging its battery. If ynj <0, it means that EV n
regularly runs out of battery life.

Since the EVs in the charging-only set NCH never drain their
batteries, they constantly meet ynj ≥ 0 requirements.

Conversely, the EVs in the V2G set NV2G may have a positive,
zero, or negative charging power ynj in interval j (∀j ∈ O). Due to the
bidirectional energy flows between the battery and the power grid.
At the precise instant when EV n is attached to the charging coils, its
arrival time is indicated by tarrn . When an EV n is linked to a charging
location, its start time is indicated by tdepn . The charging time of an
electric vehicle is displayed, along with when it charges and
discharges.

Since the time is divided into several intervals, as Figure 7
illustrates, we define the Tn load period of EV n as the collection
of intervals between arrival time tarrn , and departure time tdepn of the
EV n. Eini

n denotes the energy of the arrival time late, defines the
initial energy of EV n.

The battery capacity of EV n is noted Ecap
n . The final energy of

EV n is indicated by Efin
n , this energy presents the battery energy at

the late departure time. The Ecap
n battery’s capacity is not exceeded

by the final energy Efin
n . An EV n energy ratio is defined as εn � Efin

n

Ecap
n

where 0< εn < 1.
In this scenario, the controller locally can automatically

determine the beginning energy, battery capacity, and EV arrival
time when the vehicle is attached to the charging coil.

The final energy report and departure time of the EV n are given
by the EV n user before the load starts. From the tarrn and tdepn

parameters, the controller locally can ascertain how long the EV
battery will require to charge (Liang et al., 2023). EV n performs
charging and discharging processes during the charging time Tn. To
represent the relationship between the charging/discharging actions
and the intervals, we construct a charging interval matrix
M ⊂ 0, 1{ }|O|×|N|, where |O| and |N| indicate the number of
elements in the sets O and N, respectively. The definition of M’s
elements is as follows: mnj � 1, if interval j falls under EV n’s
charging time Tn, mnj � 0 otherwise.

FIGURE 6
The infrastructure model of wireless charging in highways.
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The planning of EV charging and discharging in a limited
geographic area is the subject of this research. Our real-time
pricing methodology operates under two suppositions: Two
things are true: 1- there is no transmission congestion, and 2-
the losses between nodes are tiny and hence insignificant. For these
two reasons, it is vital to overlook the regional variations in
electricity prices. Regardless of where the charging is taking
place, the cost of electricity is constant in real-time. The EV
charging optimizations found in (Ma et al., 2011) are solely
dependent on the price’s temporal volatility, not its spatial
variation. According to (Ma et al., 2011), the instant load is the
basis for modeling the price of electricity and is represented as
follows Equation 5:

K zt( ) � k0 + k1zt (5)

When zt is the total load at time t, k0 and k1, two non-negative
real numbers, represent the intercept and slope, respectively.

The two elements that together comprise the overall load in
interval j: are the charging load wj , which represents the load of EV
charging in interval j, and the base load Lbj , which represents the load
of all power consumptions in interval j other than EV charging. We
assume that during interval j, the base load Lbj stays constant. wj �∑n∈Nynjmnj is the charging load during period j.

The charging load wj is positive if the load on the EV batteries
from the grid is larger than the load on the EV batteries from the grid
over time. Otherwise, it’s negative zj � Lbj + wj � Lbj + ∑n∈Nynjmnj

denotes the total load during interval j.
Total load zj is constant in interval j since the base load Lbj and

the charging power ynj (∀n ∈ N,∀j ∈ O) both stay constant.
This study defines Cj, the charging cost, as the total amount of

money customers spend charging and discharging their electric
vehicles at a given interval of j. The pricing model provides
j(∀j ∈ O). As the charge cost to be considered in interval j
Equation 6.

Cj � ∫zj

Lbj

k0 + k1zt( )dzt � k0zj + k1
2
z2j( ) − k0L

b
j +

k1
2

Lb
j( )2( ) (6)

The charging cost Cj can be positive or negative, as Equation 7
illustrates. The charging cost Cj is positive if the charging load,
denoted by wj � zj − Lbj in interval j is positive. If not, it is negative.

5.2 Problem formulation and solution

The following assumptions determine a globally optimal
planning strategy for EVs that are used for daytime charging and

discharging: The EV set N comprises of the following: known arrival
and departure times for each EV, known battery initial and final
energies, known base load for each day’s interval, and scheduling
optimization carried out by a central controller that compiles and
analyzes all the data.

The total cost is the sum of charging expenses across O intervals.
The total cost is then determined by:

CT � ∑
j∈O

Cj � ∑
j∈O

k0zj + k1
2
z2j( ) − k0L

b
j +

k1
2

Lb
j( )2( )( ) (7)

To reduce the total cost of the EVs that execute charging and
discharging during the day, the global planning optimization
problem might be defined as total load zj in interval j (∀j ∈ O)
and the charging power ynj (∀n ∈ N,∀j ∈ O), subject to the
relationship between the charging power of a particular EV
and the total load in an interval, the instantaneous and final
energy limits, and the charging power’s lower and higher bounds.
The optimization problem can be expressed mathematically
as follows:

∑Minimize
y, z

j ∈ O k0zj + k1
2
z2j( ) − k0L

b
j +

k1
2

Lb
j( )2( )( ) (8a)

The (Equation 8a) is a function that minimizes the total cost of
charging and discharging EVs during the day. The link between the
charging power of a single EV and the charging load in an interval is
shown by (Equation 8b):

zj � Lb
j +∑

n∈N
ynjmnj ,∀j ∈ O (8b)

Equation 8c presents the instant energy constraints and the final
energy constraints, respectively:

0≤Ei
n + ∑

u∈R i( )
δynumnu ≤Ecap

n ,∀n ∈ N,∀j ∈ O

Ei
n + ∑

j∈O
δynjmnj ≥ εnEcap

n ,∀n ∈ N

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (8c)

Where
Eini
n � E

i
n +∑u∈R(i)δynumnu: The instant energy.

Efin
n � Ei

n + ∑j∈Oδynjmnj: The final energy.
(Equation 8d) defines load power constraints, where the first

equation has the lower limit 0 and the upper limit PMAX of the load
power of EV only and the second equation has the lower limit
(-PMAX) and the upper limit PMAX EV load power to grid:

0≤ynj ≤PMAX,∀n ∈ NCH,∀j ∈ O

−PMAX ≤ynj ≤PMAX,∀n ∈ NV2G,∀j ∈ O
{ (8d)

FIGURE 7
EV charging time interval.
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For EV charging and discharging during the day, the globally
optimal planning strategy is provided by the solution to the
optimization issue (Equation 8).

5.3 Related flowchart

The exposed flowchart is related to the global planning
optimization protocol. Seven steps resume the function of the
process. In the first step, it is important to know the necessary
information on EVs, as the state of charge, the desired recharge time
and the vehicle number then it is important to know the integrated
constraints, such as the charging demand; if it is satisfied
( NDs ≥Ds+UDs−1) then the EVs can be charged otherwise they
cannot. In the second step, EVs must be classified according to their
battery capacity into two sets; NCH set and NV2G set. Then, vehicles
have the possibility of entering the charging area to allow charging or

discharging. So, it is necessary to know the initial energy inside the
EV battery before moving on to the charging phase, if it has excess
energy, it must discharge to the Grid otherwise it will be charged. In
parallel the SOC will be supervised and when the battery will be full
charged, the vehicle will be disconnected, and the total recharge time
will be stored. Figure 8 shows the flowchart of the global planning
optimization as follow:

6 Local planning optimization: principle
and flowchart description

6.1 Local planning optimization model

The planning strategy that is globally optimal has the lowest
total cost. But the globally optimal planning approach is not
practical for the reasons listed below: it is not scalable for a
centralized planning strategy where a high number of EVs may
overload the central controller, it is currently uncertain how many
EVs will come at a future time of day, the base load at a future time of
day is also unknown. In this section, we propose a local planning
optimization problem, which relaxes the assumptions from the
global planning optimization problem (Equation 8).

This part develops a local planning optimization problem, which
loosens the assumptions of the global planning optimization
problem (Equation 8). A locally optimal planning strategy that
can perform comparably to the globally optimal planning
strategy is a solution to the local planning optimization
challenge. Compared to the globally optimal planning method,
the locally optimal planning system is more practical and scalable.

6.2 Problem formulation and solution

The globally optimal planning strategy assumes that we have a
global awareness of the data regarding EVs and the base load during
the day, thus the ideal charging powers at each interval can be found
by solving the global planning optimization problem (Equation 8)
only once. In the locally optimal planning technique, there is no
information about the future demand for electric vehicles. We
present a locally optimal planning technique to find the optimal
charging powers for the local EVs in the next period using a sliding
window mechanism. We optimize based on groups in the locally
optimal planning technique. An EV group consists of all the EVs in
one or more adjacent locations. For example, there are distinct
categories of electric vehicles based on whether they are charged and
discharged in a private garage or a parking lot. There is a local
controller for each group. Communication links connect the utility
company’s central controller and the charging coils to the local
controller. The local controller receives the anticipated loads for the
day from the central controller. EV data is collected through real-
time communication between the local controller and every
charging zone. Using this information, the local controller then
optimizes planning and provides each local EV with instructions on
the most efficient way to charge or discharge the battery.

The group set is denoted as D. Since planning is done
independently by each local controller, we will only be examining
group u (∀u ∈ D) planning optimization. The future arrivals of the

FIGURE 8
Flowchart of the global planning optimization.
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EVs in the group are unknown to the local controller (Xu et al.,
2022). Consequently, we suggest utilizing a sliding window to update
the charging powers at the start of each interval. We must first
identify the sliding window W(j)

u and the current ongoing EV set
G(j)
u at the start of interval j (∀j ∈ O). Let the start of interval

j (∀j ∈ O) be the current time tcurr. There is a charging time for each
EV. tC−sn and tC−en represent the start and end times of an EV charging
period. Should EV n satisfy tC−sn ≤ tcurr and tC−en > tcurr. EV n is a
member of the ongoing EV set G(j)

u . The collection of consecutive
intervals between the sliding window’s start time tW−s

j and end time
tW−e
j is defined as the current sliding window W(j)

u at the start of
interval j. The sliding window’s start time is consistently provided by
tW−s
j � tcurr, and its end time is specified by
tW−e
j � max tC−en | n ∈G(j)

u{ }. The sliding window at the start of
interval 2 and the continuing EV set are shown in Figure 9.
Figure 10 illustrates that EV 1 has finished charging since the
tC−s1 ≤ tcurr and tC−e1 > tcurr. tC−sn ≤ tcurr and tC−en > tcurr are satisfied
by EVs 2, 3, and 4. Consequently, G(2)

u � EVs 2, 3, 4{ } indicates the
current ongoing EV set, and W(2)

u � intervals 2, 3, 4, 5, 6{ } indicates
the current sliding window. During its charging time, EV n (∀n ∈ G(j)

u )
conducts charging and discharging operations. We define a load

interval matrix M(j) ⊂ 0, 1{ }|G(j)
u |×|W(j)

u | at the start of interval
j (∀j ∈ O), with entries provided by; m(j)

ni � 1, if interval i is both
inside W(j)

u and the charging time of the EV n, otherwise m(j)
ni � 0.

We can forecast the base loads in the sliding window W(j)
u ,

which is necessary to determine the charging powers in the current
sliding window, utilizing similar-day technique, time-series
techniques, or regression techniques (Chow et al., 2005). In this
work, we use the similar-day approach (Chow et al., 2005), which
estimates the base load in each sliding window interval by averaging
the base loads of the corresponding interval of the most recent days
with comparable weather. For i ∈ W(j)

u , the predicted base load is
represented by LbMi .

We design the local planning optimization problem for the
current instant in group u based on the current ongoing EV set G(j)

u

and the current sliding windowW(j)
u . The enhancement the problem

is to minimize the total cost of the electric vehicles in the current EV
set G(j)

u within the present sliding period. W(j)
u , subject to the

relationship between the total load in an interval and the
charging power of a single EV, the instantaneous energy

FIGURE 9
An example of the sliding window and the ongoing EV set in the locally optimal planning strategy.

FIGURE 10
Flowchart of local planning optimization.
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constraints, the final energy constraints, and the lower and upper
bounds of the charging power, optimizes the total load zi in
interval i(∀j ∈ W(j)

u ) and the charging power
yni(∀n ∈ G(j)

u ,∀i ∈ W(j)
u ). The optimization problem can be

expressed mathematically as follow:

∑Minimize
y,z

j ∈ W
j( )

u

k0zi + k1
2
z2i( ) − k0L

bM
i + k1

2
LbM
i( )2( )( ) (9a)

The Equation 9a minimizes the total cost of EVs in the current
ongoing EV group G(j)

u during the current sliding window W(j)
u .

And Equation 9b that shows the connection between the individual
EV’s total load and load power over the course of the current sliding
window W(j)

u can be expressed as follows:

zi � LbM
i +∑

n∈G j( )
u
ynim

j( )
ni ,∀i ∈ W

j( )
u (9b)

Equation 9c presents the formulas of the energies needed to load
the EVs, such that the first equation shows the initial energy in the
interval j, and the other equation shows the final energy:

0≤E
j( )i

n +∑e∈R i( )δynem
j( )

ne ≤Ecap
n ,∀n ∈ G

j( )
u ,∀i ∈ W

j( )
u

E
j( )i

n + ∑
i∈W j( )

u
δynim

j( )
ni ≥ εnEcap

n ,∀n ∈ G
j( )

u

⎧⎪⎨⎪⎩ (9c)

Where:

E
j( )ini

n � E
j( )i

n +∑
e∈R i( )δynem

j( )
ne : The instant energy.

E
j( )fin

n � E
j( )i

n + ∑
i∈W j( )

u

δynim
j( )

ni : The final energy.

Equation 9d defines load power constraints, where the first
equation has the lower limit 0 and the upper limit PMAX of the
load power of EV only and the second equation has the lower limit
(-PMAX) and the upper limit PMAX EV load power to grid:

0≤yni ≤PMAX,∀n ∈ G
j( )CH

u ,∀i ∈ W
j( )

u

−PMAX ≤yni ≤PMAX,∀n ∈ G
j( )V2G

u ,∀i ∈ W
j( )

u

⎧⎨⎩ (9d)

The local planning optimization problem (Equation 9) at the
start of interval j is convex and can be easily solved using interior
point methods (Simonetto et al., 2020). The optimal charging
powers yni

*(∀n ∈ G(j)
u ,∀i ∈ W(j)

u ) are obtained by solving
optimization problem (Equation 9). Of these, we only accept and
execute the optimal charging powers ynj

*(∀n ∈ G(j)
u ) for interval j,

discarding the other charging powers yni
*(∀n ∈ G(j)

u ,∀i ∈ W(j)
u , i> j)

which will be updated at the start of interval i(i > 1).

6.3 Related flowchart

The exposed flowchart is related to the local planning
optimization protocol. Eight steps resume the function of the
process. In the first step, it is important to know the necessary
information on EVs, as the state of charge, the desired recharge time,
and the vehicle number then it is important to know the integrated
constraints, such as the charging demand; if it is satisfied
(NDs ≥Ds+UDs−1) then the EVs can be charged otherwise they
cannot. In the second step, EVs must be classified according to their
battery capacity into two sets; GCH set and GV2G set. In the third step,
it is necessary to initialize the sliding window that adjusts the energy
distribution in real-time, based on local conditions and updated
data. This strategy is essential to respond effectively to fluctuations
in demand on different road segments. Then, vehicles have the
possibility of entering the charging area to allow charging or
discharging. So, it is necessary to know the initial energy inside
the EV battery before moving on to the charging phase, if it has
excess energy, it must discharge to the Grid otherwise it will be
charged. In parallel the SOC will be supervised and when the battery
will be full charged, the vehicle will be disconnected, and the total
recharge time will be stored. The following Figure can present the
flowchart of local planning optimization:

7 Simulation and results

We studied the charging and discharging of electric vehicles for a
day. Considering that a day is divided into 24 intervals, and each
interval represents 1 h. The base load at each interval is simulated
using actual load data in Stuttgart in December 2023, and the
electricity cost is defined in €/KWh. The battery settings of the
electric vehicle are based on the characteristics of the BMW i3. The
battery capacity is 37.9 kWh with an electric range of up to 308 km.

TABLE 5 The simulation conditions.

Feature Value

Period interval 24 h

Battery capacity 37.9 KWh

Maximum load power 50 KW

Total number of EVs 100

Group of EVs 50

State of charge [20%, 80%]

Charging period [6 h, 18 h]

FIGURE 11
A comparison between the real and the forecasted base load.

Frontiers in Energy Research frontiersin.org13

Boukhchana et al. 10.3389/fenrg.2024.1453711

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1453711


We assume the same characteristics for each electric vehicle. The
battery energymust reach at least 90% of its capacity at the end of the
charging period. The maximum charging power for all-electric
vehicles is 50 KW. Considering the total number of electric
vehicles is set by default to 100. The arrival times of electric
vehicles are distributed evenly throughout the day and the
percentage of vehicles arriving at a given time is less than 20%.
Charging periods for electric vehicles are evenly distributed between
6 and 18 h. The initial energy levels of electric vehicles are evenly
distributed between 20% and 80% of the battery capacity.

The simulation conditions are summarized in Table 5.
In Figure 11, the charging and discharging of VE all over a day

are examined by contrasting the actual base load with the forecasted
base load. In this case, the real base load is determined by scaling
charge in Stuttgart in December 2023. The average charge for the
8 days in Stuttgart for the week of December 7–15 is the
forecast base load.

We are contrasting three planning strategies: equal allocation,
locally optimal, and globally optimal, which distribute an electric
vehicle’s charging power over a given time interval according to the
following standards: 2) The absolute value of the charging power
remains constant during each interval, and 1) the charging or
discharging of EVs within a period is depending on the price of
electricity for the previous day. Here are the simulation parameters
that are used for the comparison: There are 100 EVs in total, and
they are all capable of charging and discharging. There are two
groups of 50 EVs each, based on the overall number of EVs. The
overall expenses for each of the three options are determined using
actual baseline prices to ensure a fair comparison. Figure 12 shows
the change in charging and total load for each of the three techniques
in each interval. As demonstrated in Figure 12A, to achieve lower
overall costs, both the locally and globally optimal planning
strategies charge the battery from the grid during times of lower
demand and discharge it to the grid during times of higher demand.

FIGURE 12
Variation of charging load and total load in each interval: (A) Charging load, (B) Total load.

FIGURE 13
Variation of charging power and energy of EV 5 in each interval: (A) Charging power, (B) Energy.
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To minimize the overall cost, the globally optimal planning
technique flattens the whole load profile in intervals 1-7, 8-9, 10,
11, and 12-24, as shown in Figure 12B. The globally optimal
planning approach solves a single global planning optimization
issue to find the best charging powers for every EV in every
interval, resulting in the lowest possible total cost on a global
scale. The locally optimal planning approach solves the local
planning optimization problem to find the best charging powers
for a set of EVs inside the interval.

The power variation of five electric vehicles within each interval
is shown in Figure 13A. We may analyze the charging power
planning of an EV (EV 20, for example) at random using this
graphic. For the EV 20, the charging time spans from interval 15 to
interval 24. The allocation technique uses intervals 16 to 24 to charge
the EV 20 battery after it has been discharged in period 15. The
variation of five EVs during each period is shown in Figure 13B.
From this figure, it is observed that all three strategies enable EV
20 to reach the same final energy level.

Before charging, every EV has the option to discharge its battery
to the grid. As such, each EV is classified as either the charging-only
set NCH or the V2G set NV2G. The charging-only ratio is the ratio of
EVs in the charging-only set NCH to total EVs. Figure 14 shows how
the charging-only ratio affects the total cost. Figure 14 illustrates
how a higher charging-only ratio leads to more EVs in the charging-
only set NCH and fewer EVs in the V2G set NV2G. This increases the
three strategies’ total cost.

The locally optimal planning technique is employed by the local
controller to distribute and plan the EVs in the local group in an
autonomous method. We specify the group size as the total number
of EVs. Figure 15 shows the average group sizes for the
group. Evaluate each member’s performance. A fixed 100 EVs
are present altogether. When the average group size is bigger,
there are consequently fewer groups. To determine the ideal
charging powers for a set of EVs for interval j (∀j ∈ O), the
locally optimum planning technique is applied. A larger group
size leads to more local knowledge at the local controller and, as
Figure 15a shows, a lower total cost. When the cost of installing the
local controllers is considered, a larger number of groups will be
associated with a greater installation cost. Less groups mean that
each local controller must oversee more EVs over a larger area,
which raises the cost of data transfers between the local controller
and the group’s EVs. Figure 15b illustrates how the total load profile
in the locally optimal planning strategy changes closer to that in the
globally optimal planning strategy as the average group size
increases from 1 to 100 EVs.

8 Conclusion

In this work, we presented the EV battery charging techniques in
the electrical system, and the different control structures for
charging and discharging of electric vehicles in the electrical
system. Then we presented the wireless charging system using
inexhaustible energies, the use of several energy sources lead us

FIGURE 14
Total cost varies in function of the charging-only ratio.

FIGURE 15
Performance evaluation under different group size: (A) Total cost, (B) Total Load.
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to look for a solution to manage energy and minimize the total cost
of charging. Next, we examine the planning optimization problem
for EV charging and discharging. Initially, we propose an optimization
problem for global planning where the charging powers are adjusted to
reduce the total cost of all EVs that are used during charging and
discharging. The globallyminimum total cost is provided by the globally
optimal solution. However, because it relies on the assumption that all
EV arrivals and base load arrivals during the day are known in advance,
the globally optimal planning strategy is not feasible.We propose a local
planning optimization problem, which attempts to reduce the overall
cost of the EVs in the present continuing EV set in the local group, to
develop a practical planning strategy. The locally optimal planning
system is robust to dynamic EV arrivals and operates in a large EV
population. So, this study introduces optimization algorithms that
enhance the efficiency of charging and discharging operations. These
algorithms are designed to minimize costs and maximize the utility of
EVs as mobile energy storage devices, thus contributing to grid stability.
And it highlights the significant role of EVs in supporting grid
management. By optimizing their charging and discharging
schedules, EVs can help alleviate peak demand periods, and stabilize
the grid. The results of the simulation showed that, in comparison to the
globally optimal planning strategy, the locally optimal planning strategy
can attain a close performance. Finally, this study concludes with
recommendations for future research, including the exploration of
advanced machine learning techniques to further enhance the
predictive capabilities of the scheduling model and the integration of
more complex grid dynamics.

9 Future endeavors for this work

As an extension of this work, it can bementioned that it is possible
to Incorporatemore realistic constraints: The current models could be
extended to consider additional real-world constraints, such as battery
degradation, user preferences, and grid-level impacts.

Also, it is possible to Explore more advanced optimization
techniques, and more sophisticated optimization methods, such
as deep reinforcement learning, to handle the complexity of EV
scheduling problems.

Extending to large-scale, multi-agent scenarios is also possible.
The proposed schemes could be scaled up to handle scenarios with
many EVs and charging stations, potentially involving multiple
stakeholders and grid operators.

Validating of the models through real-world demonstrations
can be also an interesting future work. Implementing and testing the
proposed scheduling schemes in real-world pilot projects would help
validate the practical applicability and benefits of the approaches.

By addressing these future endeavors, the research on optimal
EV scheduling can continue to evolve and provide more

comprehensive solutions to the challenges faced in the
integration of electric vehicles into the power grid.
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Nomenclature

S Sections S of highways

Nc Maximum number of recharge coils

DS Charging demand

NVES Number of EVs

UDS Number of unsatisfied charging demands

NDS Number of updated demands

O The interval set

δ The length of an interval

NCH The set of charging only the EV

NV2G The set of charging vehicles to the grid

ynj The charging or discharging power of EV n in interval j

tarrn The time of arrival of EV n

tdepn The time of departure of EV n

Tn The charging period of EV n

Eini
n The initial energy of EV n

Ecap
n The battery capacity of EV n

Ef in
n

The final energy of EV n

εn The energy ratio of EV n

M The charging interval matrix

k0 , k1 non-negative real numbers

zj The total load

wj The charging load

Lbj The base load

Cj The charging cost

−P MAX The lower limit of the load power of EV

P MAX The upper limit of the load power of EV

D The group set

W(j)
u

The sliding window

tC−sn The start time of an EV charging period

tC−en The end time of an EV charging period

tcurr The current time

tW−s
j The sliding window’s start time

tW−e
j The sliding window’s end time

LbMi The predicted base load

G(j)
u

The current ongoing EV set
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