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This paper presents a unique optimization method based on the incomprehensible
but intelligible-in-time (IbI) logic algorithm (ILA) to optimally place dispersed
generators in small, medium, large, and very large (16-, 33-, 69-, and 118-bus)
radial distribution power networks to reduce power losses, the total operating
cost, and the voltage deviation and improve the voltage level. Two types of
multiple distributed generators (DGs) are employed in this study, one working at
unity power factor and the other at 0.866 p.f. The IbI logic algorithm works by
understanding concepts that are not currently recognized as logical but are expected
to become logical over time. The proposed approach was used to address a multi-
objective multi-DG placement problem. The results generated through this method
were compared with those generated by other methods and were observed to be
comparatively remarkable.
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1 Introduction

Addressing the growing demand for power systems is challenging for the existing power
line infrastructure. Distribution networks experience high I2R power losses because of low
voltage and high current ratings. In addition, a low X/R ratio of the distribution level leads to
more power loss and a decrease in voltage magnitude compared to the transmission level. It
has a direct impact on the financial aspect, the efficiency of utilities, and the system’s voltage
profile, particularly in heavy load conditions. This poses severe challenges to power utilities.
The problem can be solved by increasing the capacity of power systems or using distributed
generators (DGs) to address the regional consumer demand (Ackermann et al., 2001). DGs
can be described as small electric power-generating sources that are generally located near
centers of consumption, with sizes ranging from 1 kW to 50MW. According to El-Khattam
and Salama (2004), DGs are broadly classified into traditional and non-traditional
generators. Traditional generators use combustion engines such as micro-turbines and
natural gas turbines, which belong to the categories of simple cycle, recuperated cycle, and
combined-cycle gas turbines. Non-traditional generators can be divided into
electrochemical devices, storage types, and renewable devices. Fuel cells (FCs) are
primary electrochemical devices. Storage devices include batteries and flywheels.
Meanwhile, renewable technologies, including PV cells and wind turbines, are presently
more popular. DGs are more advantageous than conventional power-generating
approaches in numerous capacities. First, they are more cost-effective and efficient
because they reduce transmission losses and increase proximity to the energy
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consumption points. Additionally, DGs can provide power during
periods of high demand. This circumvents the need for expensive
peak-load power plants. Second, distributed electricity production is
decentralized and, thus, less susceptible to outages. It is more reliable
than conventional power plants. Third, because DGs use pollution-free
renewable energy sources such as wind, solar, and geothermal
resources, these are more ecologically advantageous than
conventional power plants. Large-scale power facilities can have
substantial adverse effects on the environment. However, DGs may
decrease the need for these facilities. Finally, auxiliary services, such as
frequency control and voltage support, which improve the resilience
and dependability of the grid, are additional advantages that distributed
generation can provide to power systems (Selim et al., 2023).

To maximize the advantages of DGs and minimize the
detrimental effects on power systems, optimizing their position
and size is imperative. To optimize DG allocation, a
mathematical optimization objective function is formulated and
solved. This improves the capacity, performance, reliability, and
longevity of the power system. Optimization techniques have been
effective in computing the appropriate sizing for the best position of
DGs. The advantages include a higher utilization of energy
resources, improved system performance, and lower expenses and
emissions. In addition to the advantages of DG technology, certain
connection issues exist. These include the voltage level, system
frequency variations in power flow, protection, reactive power,
and power conditioning (Peperman et al., 2005).

DGs are divided into four categories based on their real and imaginary
power delivery capabilities (as illustrated by Hung et al. (2010)):

Type-1 (T-I): It has the potential of delivering only ‘P’ at unity
p.f., such as microturbines, PV arrays, and fuel cells.
Type-2 (T-II): It can only inject ‘Q’ at zero p.f., such as
gas turbines.
Type-3 (T-III): It is designed to provide both ‘P’ and ‘Q’ at p.f.
from 0.8 to 0.99, such as wind, tidal, and geothermal plants.
Type-4 (T-IV): It may provide ‘P’ but absorb ‘Q,’ such as doubly
fed induction generators.

2 Literature review

To solve the optimal allocation problem of DGs, various objective
functions are considered. These include real power loss, reactive power
loss, voltage-profile improvement, voltage deviation, voltage stability
index, power loss index, operational cost, cost of the power from the
DG, and environmental and emission issues. Occasionally, these
functions are considered individually. Alternatively, many of these
are combined to form a multi-objective problem. Researchers have
implemented different techniques to address this problem with respect
to the objective function. These optimization methods were broadly
classified by Viral and Khatod (2012), Pesaran et al. (2016), and Jain
et al. (2017) into analytical methods, heuristic or meta-heuristic
methods, hybrid methods, and the artificial intelligence approach.

Analytical methodologies use mathematical formulations to
analyze the effect of DG-injected power on the power system’s
performance. This is exhibited by the improved analytical (IA)
method and exhaustive load flow (ELF) optimization method
(Hung and Mithulananthan, 2013). Several indices were developed

and calculated using an analytical method. Hung andMithulananthan
(2013) used the highly common but significant index called loss
sensitivity factor based on the exact loss formula given by Elgerd
(1971). Khatod et al. (2006) used analytical equations to compute
different sensitivity indices such as the active power-loss, reactive
power-loss, and voltage-magnitude sensitivities for a 69 bus system.
Acharya et al. (2006) developed a priority list for power loss reduction
using the LSF method with DGs in IEEE 30-, 33-, and 69-bus radial
distribution systems (RDSs). Another analytical approach, introduced
by Tah andDas (2016), used a ‘p’ bus to control the voltagemagnitude
of a ‘PQV’ bus for the 33- and 69-bus systems. Occasionally, the
results obtained from analytical approaches are ineffective because
these are dependent on network topological constraints.

Consequently, several investigators shifted to metaheuristic-
based optimization strategies. Metaheuristic approaches effectively
address optimization challenges without requiring a comprehensive
analysis. Numerous heuristic optimization methods have been used in
the power sector for DGs. These heuristic algorithms are categorized on
the basis of their inspiration and involve evolutionary actions (e.g.,
swarm actions and food searches), physical rules, and human-related
concepts. These algorithms use the exploration and exploitation phases
to identify the best local solution from global options. Certain
evolutionary phenomenon approaches have been employed to
identify the best site and size of DG units. These include the following:

• Genetic algorithm (GA) used by Singh et al. (2019); Kashyap
et al. (2017); Musa and Hashim (2019); Nezhadpashaki et al.
(2020); Gopu et al. (2021); Rosado and Agustin (1998); El-Ela
et al. (2010).

• Refined GA by Zhu (2002).
• Particle swarm optimization (PSO) proposed by El-Zonkolky
(2011); Kansal et al. (2011, 2013); Lalitha et al. (2005), SPSO by
Khalil et al. (2013), and multi-objective PSO by Ganguly
et al. (2013).

• Hybrid PSO used by Aman et al. (2014).
• BAT algorithm used by Xin-She et al. (2010); Behera et al.
(2015); Saxena et al. (2022).

• Whale optimization algorithm used by Prakash and
Lakshminarayana (2018).

• Shark optimization used by Ali et al. (2023).
• Ant lion optimization used by Ali et al. (2018a).
• Bacterial foraging used by Devi and Geethanjali (2014); Imran
et al. (2014).

• Krill herd optimization algorithm used by Sultana and
Roy (2015).

• Moth flame optimizer used by Das and Srivastava (2017).
• Swine influenza optimization used by Sharma et al. (2016).
• Invasive weed algorithm used by Prabha and
Jayabarathi (2016).

• Osprey and Walrus optimization algorithms used by TM
et al. (2024).

Heuristic procedures based on physical rules such as slime mold
optimization (Amigue et al., 2021), simulated annealing
(Dharageshwari and Nayanatara, 2015), arithmetic optimization
algorithm (Khan et al., 2023), and Thevenin-based impedance
stability index (Talha et al., 2023) were also employed to solve multi-
objective DG problem. Meanwhile, human-related concepts such as the
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modified teaching–learning-based optimization algorithm (García and
Mena, 2013) were used to solve single andmulti-objective DG allocation.
In these studies, single and multi-objective problems were addressed. In
single objective functions, power-loss mitigation or voltage-level
improvement are important features. Meanwhile, power loss
reduction, voltage improvement, and operating cost reduction are the
key factors for multi-objective functions.

The most popular evolutionary approaches amongst researchers
are genetic algorithm and particle swarm optimization. Hybrid
approaches primarily involve combining one of these two methods
with another effective technique. These approaches have been used to
obtain the best results with fast convergence. The multi-objective
problem of multiple DG allocation was solved in the past by
employing these techniques. The GA was combined with PSO by
Moradi and Abedini (2012) to achieve better voltage regulation,
reduced losses, and improved voltage profiles in 33- and 69-bus
systems by optimally placing multiple DGs. The GA combined
with the Tabu search algorithm was used by Gandomkar et al.
(2005) for placing DG on the demand side to mitigate power
losses. PSO combined with fuzzy control (Darvishi et al., 2011),

PSO integrated with the shuffled leap frog algorithm (Gitizadeh
et al., 2013), and derivative techniques of combination of PSO with
other algorithms, such as IPSO-Monte Carlo simulation (Abdi and
Afshar, 2013) and bare bone PSO with differential evolution (Arya
et al., 2012), are employed to solve themulti-DG placement problem in
various test systems. Similarly, the whale optimization algorithm
combined with the sine cosine algorithm was discussed by Ali et al.
(2018b). A hybrid approach combining symbiotic organism search and
a neural network algorithm (SOS–NNA) was proposed by Nguyen
et al. (2021) formulti-objective DG and capacitor placement in 33- and
69-bus test systems. A hybrid configuration of ant colony optimization
(ACO) and artificial bee colony optimization (ABO) with the point
estimate method (PEM) was proposed by Kefayat et al. (2015) for the
DG placement problem in 33- and 69-bus radial networks.

Other DG applications, such as PV arrays with storage facilities
and the charging of electric vehicles with optimal allocation
identification, were presented by Fokui et al. (2023) and Yu et al.
(2024). Furthermore, hybrid and metaheuristic techniques were
combined to optimally integrate PV modules with wind turbines
(Avar and Ehsan, 2024).

FIGURE 1
(A) Clustering and grouping of experts, (B) K0 calculation and class selection, (C) K1 calculation and class selection, and (D) final NL computation
on knowledge.
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This study proposes a unique optimization theory, the
incomprehensible but intelligible-in-time (IbI) logic algorithm
(ILA), to optimally place dispersed generators into small, medium,
large, and very large (16-, 33-, 69-, and 118-bus) radial distribution
power networks to reduce power losses, minimize total operating
costs, decrease voltage deviation, and improve voltage levels.

3 Problem formulation

The proposed approach aims to minimize the multi-objective
function of the DG location and size within a distribution network
while considering the unit and operating constraints.

3.1 Load flow in the radial network

A radial distribution network is a form of electrical power
distribution network in which power is distributed radially from
a single source (such as a substation) to numerous end users or
distributing substations. The network comprises feeders that radiate
away from the source. It is divided further into distribution networks
that provide power to individual consumers.

The load flow in a radial network can be solved repeatedly by
applying two distinct sets of iterative equations as follows. The first
set of equations calculates the power flow from the last branch to the

root node in a backward manner. The second set of equations
evaluates the voltage magnitude and angle of each node, beginning
with the first node and moving to the final node. The iterative
equations are evaluated as follows.

The net real power (Pi,i+1) that travels through the branch i from
node i to i + 1 can be computed in the backward direction starting
from the last node. It can be expressed as in Equation 1,

Pi,i+1 � Pi+1′ + Ri+1
Pi+1′( )2 + Qi+1′( )2

V2
i+1

⎛⎝ ⎞⎠, (1)

where (Pi+1′ ) � (Pi+1,net) + (Pi+1) (Pi+1) � active power load
connected at bus (i + 1).

The voltage magnitude and angle for each bus are evaluated in
the forward direction as follows:

Ii � Vi p∠δi-Vi+1 p∠δi+1
Ri,i+1 + jXi,i+1

( ). (2)

Furthermore,

Ii � Pi-jQi

Vi p∠-δi
( ). (3)

Comparing the equations of Ii given in Equations 2, 3, we obtain

Vi+1 �























































V2

i -2 Pi,i+1Ri,i+1 + Qi,i+1Xi,i+1( ) + R2
i,i+1 +X2

i,i+1( ) p P2
i,i+1 + Q2

i,i+1
V2

i

( )( )√
.

The active power loss of the ith branch can be expressed as in
Equation 4,

APLi,i+1 � Ri,i+1
P2
i,i+1 + Q2

i,i+1
V2

i

( ). (4)

Hence, the total active power loss can be expressed as
Equation 5,

TAPL � ∑n

i�1APLi,i+1. (5)

3.2 Power loss with connected DGs

Optimizing the position of DGs reduces power losses, enhances
voltage stability, and reduces expenditures. This, in turn, enhances
supply assurance and dependability. The loss in active power when
the DG is integrated into the system can be computed as follows:

APLDG, i,i+1( ) � Ri,i+1
P2
DG, i,i+1( ) + Q2

DG, i,i+1( )
Vi| |2( ).

The total active power loss in the system connected to DGs is
mentioned in Equation 6,

TAPLDG � ∑n

i�1APLDG, i,i+1( ). (6)

3.3 Reduction in power loss

The power loss should be minimized by installing a DG. The
active power loss index (APLI) is calculated as the ratio of the total

FIGURE 2
IEEE 16-bus system.
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active power losses including those of DG (TAPLDG) to the total
active power losses (TAPL) excluding it. It is given by Equation 7,

APLI � TAPLDG

TAPL
. (7)

By installing a DG into the system, the net power loss is reduced
by minimizing APLI.

3.4 Voltage deviation index

The voltage deviation index (VDI) is also known as the voltage
quality index. It is a metric used to analyze the voltage supply standards
in electrical power systems. It represents the magnitude of the voltage
deviations from the nominal value and is generally expressed as a
percentage, as given in Equation 8. A high-voltage deviation index
indicates that the voltage supplied varies significantly from the standard
voltage level. This may result in equipment malfunction, low electrical
device efficiency, and power quality problems.

DI � max
V1-Vi

V1
( ) ∀ i � 1, 2, 3 . . . . . . . . . . . . ..n. (8)

By installing a DG, the proposed technique aims to minimize the
VDI and bring it closer to zero. This would enhance the network
performance and increase voltage stability.

3.5 Operational cost reduction

The installation of DGs helps reduce operational costs.
It has two main components. One is related to the cost of
active power provided by the substation. The second is the
cost of the power provided by the DG. The first part can be
reduced by limiting the actual power losses. Meanwhile,
the second cost can be reduced by extracting less power
from the DG. Hence, the total operational cost represented
by Equation 9 is,

TOC � x pTAPLDG + y pDGPtotal, (9)

TABLE 1 Performance evaluation of the IEEE 16-bus system for various load models using the IbI logic algorithm.

Evaluation
criterion

Constant power load Constant current
load

Constant
impedance load

CP (half) CP (full) CP (overload)

W/
o DG

With
DG

W/
o DG

With
DG

W/
o DG

With
DG

W/
o DG

With
DG

W/
o DG

With
DG

DG size (in MW) (bus) — 2.623 (5)
6.327 (8)
1.777 (15)

— 12.192 (8)
3.164 (15)
4.736 (5)

— 11.465 (8)
6.515 (5)
7.208 (11)

— 4.719 (5)
3.168 (15)
11.91 (8)

— 11.66 (8)
3.086 (15)
4.727 (5)

Power loss (in kW) 124.525 19.2148 511.43 80.9241 1,354.274 268.0773 487.032 77.4356 463.911 74.2639

% RL — 84.5695 — 84.1771 — 80.2051 — 84.1005 — 83.9918

PLI — 0.1543 0.1582 — 0.1979 — 0.1589 — 0.16

Vmin (p.u.) (bus) 0.9848 (11) 0.9958 (9) 0.9687
(11)

0.9911 (9) 0.9482 (11) 0.9847 (9) 0.9696 (11) 0.9913 (9) 0.9705 (11) 0.9916 (9)

VDI 0.0152 0.0042 0.0313 0.0089 0.0518 0.0153 0.03034 0.0086719 0.0295 0.0084

ROC ($) — 0.3743 — 0.70233 — 0.8851 — 0.69212 — 0.68071

TABLE 2 Comparative analysis of the IEEE 16-bus system.

Case Aman et al. (2014) Quoc and Mithulananthan (2013) Proposed method

T-III DG T-I DG T-III DG T-I DG T-III DG

No. DG PLOSS = 511.43 PLOSS = 511.43 PLOSS = 511.43 PLOSS = 511.43 PLOSS = 511.43

1 DG Bus Size Ploss Bus Size Ploss Bus Size Ploss Bus Size Ploss Bus Size Ploss

8 20.77 315.02 12 10.4 193.6 9 12.82 164.02 8 12.12 170.12 8 11.99 165.6

2 DG 7 7.526 492.59 12 10.4 142.12 9 13 102.82 8 12.23 114.98 8 11.98 106.25

8 21.38 7 5.2 6 5.84 5 4.7 5 4.86

3 DG 11 10.93 536.56 12 10.4 106.82 9 13 69.2 8 12.12 80.92 8 11.98 73.82

9 13.71 7 5.2 6 5.84 15 3.17 15 2.99

8 9.172 16 3.9 15 3.9 5 1.74 5 4.94
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where TAPLDG is the total active power loss with the DG, DGPtotal is
the total rating of the DG connected, and x and y are the cost
coefficients in USD/kW. The values of x and y are considered
4 USD/kW and 5 USD/kW, respectively. Thus, the reduction in
operational cost is given by Equation 10

ROC � TOC

c2 DGPtotal
max

, (10)

whereDGPtotal
max indicates the maximum rating of the total connected

DG rating.

3.6 Objective function

The proposed multi-objective optimization approach aims
to reduce the power loss, voltage variation, and overall

operating costs of the distribution system. This is expressed
as Equation 11

Minimize F x( ) � min αAPLI + βVDI + γROC( ), (11)
where (α + β + γ) � 1, α, β, γ ∈ [0, 1].

The following constraints should be satisfied to optimize the
objective function:

• The size and site of placement should be considered only
at full load.

• The voltages at each bus should remain within the reasonable
range of ±5%, i.e., 0.95 to 1.05 p.u.

Vmin ≤V≤Vmax.

• The generator operating range should lie within the
permissible limit, i.e.,

FIGURE 3
(A) Voltage profile of the 16-bus network with T-I DG. (B)Convergence graph for T-I DG. (C) Voltage profile of the 16-bus network with T-III DG. (D)
Convergence graph for T-III DG.
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Pmin
i ≤Pg ≤Pmax

i .

• The current feeder capability limit should remain within the
rated current capability of the branch Iratedi , i.e.,

Ii ≤ Iratedi ∀i ∈ branches of network{ }.
4 Load models

According to Imran et al. (2014), various load models are
classified on the basis of the load factor ρ, bus voltage (its
magnitude and frequency), and real and imaginary power of the
load. The effect of a variation in the load at any node ‘i’ is given by
Pi � ρPi,actualV

ξ
i and Qi � ρQi,actualV

ψ
i .

The load factor ρ is defined as the multiplying factor by which
the variation in load power at any node is observed. Three load
models according to the parameters were considered in this study
(constant power load at half loading, full loading, and overloaded
conditions; constant current load; and constant impedance load).
For these loading systems, ξ is considered 0, 1, and 2, respectively. ψ

is also considered 0, 1, and 2, respectively. The load factor for all
these types of loads is considered 1 only.

4.1 Incomprehensible but intelligible-in-
time logic algorithm

The human brain is an exquisite albeit complex system that
understands only what it observes or experiences, referring to these
experiences as logic. It can be trained using various types of logic (L).
Entities that fall outside the range of understanding of the common
brain are rejected as illogical. However, these may be understood by
an expert (E). In such cases, logic that can be understood by the
common brain is called general logic (G-logic) and that which can be
understood only by an expert is called special logic (S-logic). When
described by an expert, G-logic can be understood by a non-expert
and transformed into S-logic. However, occasionally, even experts
are incapable of learning certain S-logic in the current scenario, such
as the presence of wormholes in space. We call these experiences
non-logics (NLs). It is likely that present NL would transform into
logic over time. For example, elderly persons may not have assumed

FIGURE 4
IEEE 33-bus system.

TABLE 3 Performance evaluation of the IEEE 33-bus system for various load models using the IbI logic algorithm.

Evaluation
criterion

Constant power load Constant current
load

Constant
impedance load

CP (half) CP (full) CP (overload)

W/
o DG

With
DG

W/
o DG

With
DG

W/
o DG

With
DG

W/
o DG

With
DG

W/
o DG

With
DG

DG size (in MW) (bus) — 0.367 (14)
0.371 (25)
0.529 (30)

— 0.841 (13)
0.999 (24)
0.970 (30)

— 0.996 (7)
0.321 (17)
0.756 (25)

— 0.661 (14)
0.983 (30)
0.617 (25)

— 0.603 (14)
0.652 (25)
0.907 (30)

Power loss (in kW) 47.07 17.5926 202.67 71.8924 575.36 191.4303 174.76 63.8636 151.1048 55.1885

% RL — 62.6252 — 64.5286 — 66.7287 — 63.458 — 63.4767

PLI — 0.3737 — 0.3547 — 0.3327 — 0.3654 — 0.3652

Vmin (p.u.) (bus) 0.958 (18) 0.9836 (33) 0.913 (18) 0.9655 (33) 0.852 (18) 0.95 (33) 0.919 (18) 0.9680 (33) 0.926 (18) 0.9704 (33)

VDI 0.042 0.0164 0.087 0.0345 0.148 0.05 0.081 0.032 0.074 0.0296

ROC ($) — 0.34624 — 0.28675 — 0.55654 — 0.62489 — 0.59626
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that they would be able to make a video call over the internet or have
considered online bank transactions. In their time, these concepts
were not considered logical. However, in the present advanced
world, these technologies are applied in day-to-day activities and
are considered logical. A contradiction always exists between logic
and non-logic in understanding and solving a particular problem.
Solving problems through logic is imperative. However, there is

always a secondary plan for considering NLs that could become
logical over a period of time.

A novel optimization method based on the theory of IbI logics,
introduced by Mirrashid and Naderpour (2023), is called IbI logic
algorithm optimization. The ILA functions similarly to the human
mind, which is a sophisticated biological system with special cognitive
capacities. The underlying concept of the ILA is that solutions that are

TABLE 4 Comparative analysis of the IEEE 33-bus system.

Method PLDG (kW) % RL Vmin (bus) DG location DG size (MW) SDG (MVA) p.f TOC ($)

GA
[Moradi et al.]

106.3 49.61 0.9809 (25) 11
29
30

1.5
0.4228
1.0714

2.9942 upf 15,396.2

PSO
[Moradi et al.]

105.35 50.06 0.9806 (30) 13
32
8

0.9816
0.8297
1.1768

2.9881 upf 15,361.9

GA/PSO
[Moradi et al.]

103.4 50.09 0.9808 (25) 32
16
11

1.2
0.863
0.925

2.988 upf 15,353.6

SA
[Injeti et al.]

82.03 61.12 0.9676 (14) 6
18
30

1.1124
0.4874
0.8679

2.4677 upf 12,666.6

BFOA
[Imran et al.]

89.9 57.38 0.9705 (29) 14
18
32

0.6521
0.1984
1.0672

1.9176 upf 9,948.1

IWO
[R. Prabha et al.]

85.86 57.47 0.9716 (29) 14
18
32

0.6247
0.1049
1.056

1.7856 upf 9,271.44

LSF
[Hung et al.]

85.07 59.72 0.9690 (18) 18
33
25

0.72
0.81
0.9

2.43 upf 12,490.28

HPSO [Aman et al.] 84.16 60.11 0.9865 (25) 29
15
31

0.444
1.3641
1.973

3.7811 upf 19,242.14

KH
[S. Sultana et al.]

75.412 64.25 0.9610 (33) 13
25
30

0.8107
0.8368
0.841

2.4885 upf 12,744.14

ILA [proposed method] 71.89 64.52 0.9655 (33) 13
24
30

0.841
0.999
0.97

2.81 upf 14,337.56

SA
[Injeti et al.]

26.72 87.33 0.9826 (25) 6
18
30

1.1976
0.4778
0.9205

2.9975 0.866 13,086.3

BFOA
[Imran et al.]

37.85 82.06 0.9802 (29) 14
18
32

0.6798
0.1302
1.1085

2.2153 0.866 9,743.9

IWO
[R. Prabha et al.]

37.05 81.64 0.9838 (25) 14
18
32

0.5176
0.1147
1.0842

1.9821 0.866 8,730.7

LSF
[Hung et al.]

23.05 89.09 0.9824 (25) 6
30
14

1.059
1.059
0.741

2.859 0.85 12,471.67

KH
[S. Sultana et al.]

19.578 90.72 0.9816 (33) 13
24
30

0.853
0.9
0.899

3.062 0.866 13,336.772

ILA [proposed method] 14.49 92.85 0.9922 (8) 13
24
30

0.679
0.756
1.168

3.0057 0.866 13,072.64
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presently considered illogical or indecipherable by humans may
eventually develop into rational and reasonable solutions.

4.1.1 ILA parameters
1. IbI logic and non-logic: Common understanding is logic. A set

of NLs is to be considered, from which the correct NL, capable
of becoming IbI logic, must be identified.

2. IbI probability: The likelihood of an NL transforming into
IbI logic.

3. Degree: A distance parameter calculated over a period in which
NL can be transformed into IbI logic.

4. Comprehensibility: The distance of confidence at any given
time for the probability of conversion and the degree of
closeness between L and NL.

4.1.2 IbI logic algorithm stages
The ILA comprises a preparation phase and three primary stages,

namely, exploration, integration, and exploitation. The preparation
phase involves the formation of a group of experts based on the

number of models and iterations required. Each stage of the
optimization process has a distinct function. Additional solutions are
identified within the search space during the exploration phase. Linking
these new solutions and pre-existing solutions constitutes the integration
step. Identifying the best solution within the search space is the ultimate
objective of the exploitation phase. The capacity of ILA optimization for
individually monitoring the exploration and exploitation phases
provides users control over the algorithm’s performance and the
flexibility to modify the parameters as necessary. This is one of the
significant advantages of optimization. Moreover, unlike other
optimization methods, the ILA is renowned for its efficiency in
identifying the best solutions while ensuring rapid computation. All
of these processes are independent of characteristics. No reversal is
permitted for any solution after passage through the earlier stages of the
upcoming iterations. Figure 1 shows the various phases of the ILA.

4.1.2.1 Phase I—preparation
After setting the starting values of ILA parameters, the number

of iterations for each model (nm) is represented as tm. Meanwhile,

FIGURE 5
(A) Voltage profile of the 33-bus network with T-I DG. (B)Convergence graph for T-I DG. (C) Voltage profile of the 33-bus network with T-III DG. (D)
Convergence graph for T-III DG.
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the total number of iterations is represented as NT, and the number
of iterations for the first stage is represented as nt1.

tm � nt1
nm

,

nt1 � ps1NT.

The final observations of each model are forwarded to the next
model for further optimization. This process continues until all the
models are optimized. The process is then transferred to the next phase.

Before commencing the first stage, a class of experts is formed.
Each class is responsible for a topic.

Here, the experts aim to identify the future logic of the topic in
the search space provided. The number of classes (ng) for a specific
model is assigned a random number between 0 and a specified
maximum value (ng,max).

ng,m � rand. ng,max( ).
4.1.2.2 Phase II—optimization

This phase includes three stages, namely, grouping, integration,
and ILA logic search.

4.1.2.2.1 Stage-1 grouping. In this step, each class focuses on
every feasible option in the solution space to identify the optimal NL.
Prior to each iteration, three primary characteristics are defined. The
current iteration logic (L) is the expert (Ei) that had the highest NL

value from the previous iteration (Ei,p) across all the classes. The
second factor is the class’s best expert EI,g. The third factor is the
average of all the experts (Es) denoted as Ag, achieved by each group
in the previous iteration.

FIGURE 6
IEEE 69-bus system.

TABLE 5 Performance evaluation of the IEEE 69-bus system for various load models using the IbI logic algorithm.

Evaluation
criterion

Constant power load Constant current
load

Constant
impedance load

CP (half) CP (full) CP (overload)

W/
o DG

With DG W/
o DG

With DG W/
o DG

With
DG

W/
o DG

With
DG

W/
o DG

With
DG

DG size (in MW) (Bus) — 0.170 (12) — 0.498 (17) — 0.441 (21) — 0.219 (12) — 0.395 (18)

0.857 (61) 0.389 (64) 1.483 (56) 1.576 (61) 0.301 (64)

0.153 (22) 1.425 (61) 0.202 (69) 0.276 (22) 1.162 (61)

Power loss (in kW) 51.59 17.1624 224.96 71.2488 652.41 183.8777 188.6 60.7037 158.75 52.6363

% RL — 66.7377 — 68.3283 — 71.8156 — 67.8138 — 66.8426

PLI — 0.3326 — 0.3167 — 0.2818 — 0.3218 — 0.3315

Vmin (p.u.) (bus) 0.9566
(65)

0.988,735
(65)

0.9090
(65)

0.981,136
(65)

0.8439
(65)

0.95 (65) 0.9172
(65)

0.97797
(65)

0.9246
(65)

0.98195
(65)

VDI 0.0433 0.011265 0.9099 0.018864 0.156 0.05 0.0827 0.02203 0.07534 0.01805

TOC ($) — 0.31414 — 0.2369 — 0.59818 — 0.55778 — 0.50003
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The following equations from Equation 12 to Equation 14
provide the expressions for comprehensibility, degree, and
probability of any ith expert Ei.

Ci �











∑nNL

i�1 Ei-L( )2
√

, (12)

Di �












∑nNL

i�1 Ei-Ei,p( )2√
, (13)

Pi �













∑nNL

i�1 Ei-EI,g( )2√
, (14)

where g = 1,2,3, . . . ng, m.

TABLE 6 Comparative analysis of the IEEE 69-bus system.

Method PLDG (kW) % RL Vmin (bus) DG location DG size (MW) SDG (MVA) pf TOC ($)

GA
[Moradi et al.]

89 60.44 0.9936 (57) 21
62
64

0.9297
1.0752
0.9925

2.9974 upf 15,343

PSO
[Moradi et al.]

83.2 63.02 0.9901 (65) 61
63
17

1.1998
0.7956
0.9925

2.9879 upf 15,272.3

GA/PSO
[Moradi et al.]

81.1 63.95 0.9925 (65) 63
61
21

0.8849
1.1926
0.9105

2.988 upf 15,264.4

SA
[Injeti et al.]

77.1 65.73 0.9811 (61) 18
60
65

0.4204
1.3311
0.4298

2.1813 upf 11,214.9

BFOA
[Imran et al.]

75.23 66.56 0.9808 (61) 27
65
61

0.2954
0.4476
1.3451

2.0881 upf 10,741.4

IWO
[R. Prabha et al.]

74.59 66.78 0.9802 (18) 27
65
61

0.2381
0.4334
1.3266

1.9981 upf 10,288.86

LSF
[Hung et al.]

90.84 58.57 09,785 (65) 65
27
61

1.36
0.51
0.51

2.38 upf 12,263.36

HPSO [Aman et al.] 87 61.32 0.9808 (28) 61
63
46

3.6525
0.0322
0.1529

3.8376 upf 19,536

KH
[S. Sultana et al.]

69.563 69.04 0.9790 (65) 12
22
61

0.4962
0.3113
1.7354

2.5429 upf 12,986.75

ILA [proposed method] 71.25 68.33 0.981,136 (65) 17
64
61

0.498
0.389
1.425

2.312 upf 11,845

SA
[Injeti et al.]

16.26 92.77 0.9885 (61) 18
60
65

0.5498
1.1954
0.3122

2.3757 0.866 10,352

BFOA
[Imran et al.]

12.9 94.26 0.9896 (64) 27
65
61

0.3781
0.3285
1.3361

2.3587 0.866 10,265.1

IWO
[R. Prabha et al.]

13.64 93.92 0.9946 (68) 27
65
61

0.3709
0.3156
1.0905

2.052 0.866 8,939.56

LSF
[Hung et al.]

4.95 97.74 0.9939 (69) 61
17
50

2.073
0.622
0.829

3.5595 0.82 14,613.75

KH
[S. Sultana et al.]

5.9149 97.36 0.9943 (50) 11
22
61

0.5607
0.3574
1.7738

3.1084 0.866 13,483.02

ILA [proposed method] 6.9104 96.93 0.9942 (50) 20
61
66

0.2356
0.996
0.1882

1.6395 0.866 7,126.67
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The following equations from Equation 15 to Equation 17 are
the ratios of comprehensibility, degree, and probability. These are
updated at the initiation of each iteration.

RC,i � Ci-Cmin

Cmax-Cmin
, (15)

RD,i � Di-Dmin

Dmax-Dmin
, (16)

RP,i � Pi-Pmin

Pmax-Pmin
, (17)

where I = 1,2,3, . . . . . . nNL.
The first task is to update new knowledge K0,i,s1 and K1,i,s1. In

each stage, the parameters Bp, Bc, and BD are selected randomly
between Bmin and Bmax. If Ei is closer to the logic of the present
iteration, it can be considered in the computations. This is because it

may improve in the subsequent iterations. The knowledge of each
expert should be updated according to the ratio, randomness,
average value, and iterative value as specified in equations from
Equation 18 to Equatio 23. Thus, the best solution can be achieved.

K0,i,s1 � Rp,i
Ei + Er

2
forRc,i ≤Bc andRP,i ≤Bp, (18)

K0,i,s1 � Rp,i
Ei + Ea,g

2
for Rc,i ≤Bc andRP,i >Bp, (19)

K0,i,s1 � Rp,i
EI,g + Er

2
forRc,i >Bc andRP,i ≤Bp, (20)

K0,i,s1 � Rp,i
EI,g + Ea,g

2
forRc,i >Bc andRP,i >Bp, (21)

K1,i,s1 � c1Ea.g for RD,i ≤BD, (22)
K1,i,s1 � c1Eu for RD,i >BD. (23)

FIGURE 7
(A) Voltage profile of the 69-bus network with T-I DG. (B)Convergence graph for T-I DG. (C) Voltage profile of the 69-bus network with T-III DG. (D)
Convergence graph for T-III DG.
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The overall updated knowledge can be expressed by
Equation 24,

Ks1 � K0,s1 + K1,s1

∣∣∣∣ ∣∣∣∣
2

. (24)

A further update in the expert value is given as

Es1,new1 � Ei + c2Ks1,

Es1,new2 � c3Es1,new1 + c4EI.g.

FIGURE 8
IEEE 118-bus system.
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The best value is provided by

Es1,new � minimum Es1,new1, Es1,new2( ).
In this stage, the updated value is examined using all the

previous values, and the expert retains the position with superior
value of fitness.

Ei,s1 � minimum Ei, Es1,new( ).
4.1.2.2.2 Stage-2 integration. In this stage, all the experts are
combined, and the knowledge provided in the current iteration is used
to increase NL. Initially, all the ratios Rc and RD are computed. Then, RP
is calculated using the newly updated value of Pi.

Pi �














∑nNL

i�1 Ei-EI( )2
√

g � 1, 2, 3, . . . . . . . . . . . . . . . .ng,m.

The new knowledge updating process for experts is given by
Equations 25–31 for K0,s2 and Ks2, as follows:

K0,i,s2 � RP,i
Ei + ER

2
forRc,i ≤Bc andRP,i ≤Bp, (25)

K0,i,s2 � RP,i
Ei + EA

2
forRc,i ≤Bc andRP,i >Bp, (26)

K0,i,s2 � RP,i
EI + ER

2
forRc,i >Bc andRP,i ≤Bp, (27)

K0,i,s2 � RP,i
EI + EA

2
forRc,i >Bc andRP,i >Bp, (28)

K1,i,s2 � c5EA for RD,i ≤BD, (29)
K1,i,s2 � c5Eu for RD,i > BD, (30)

Ks2 � K0,s2 + K1,s2

∣∣∣∣ ∣∣∣∣
2

. (31)

When the target is the minimum value of the fitness function, the
final Ei would be the result of the following equations from Equation
32 to Equation 35.

Es2,new1 � Ei + c6Ks1, (32)
Es2,new2 � c7Es2,new1 + c8EI, (33)

Es2,new � minimum Es2,new1, Es2,new2( ), (34)
Ei,s2 � minimum Ei, Es2,new( ). (35)

4.1.2.2.3 Stage-3 ILA logic search. The proposed strategy
focuses on improving the knowledge of each expert by using
the average aggregate knowledge of all the experts. It then
updates the knowledge of each expert. The method is repeated
until the convergence criteria are met. Before entering the next
stage, the average value of the knowledge from the previous stage
must be computed. These are provided from Equation 36 to
Equation 41.

Ki,s3 � EA-ER| | if knowledge factor � 1, (36)
Ki,s3 � EA-EI| | if knowledge factor � 2, (37)

Es3,new1 � Ei + c9Ks1, (38)
Es3,new2 � c10Es3,new1 + c11EI, (39)

Es3,new � minimum Es3,new1, Es3,new2( ), (40)
Ei,s3 � minimum Ei, Es3,new( ). (41)

The ILA is different from conventional algorithms as it has a greater
number of tuning parameters. The increased number of optimization
phases, including all the stages with their tuning parameters, makes ILA
a more controllable and faster-converging algorithm. It is also true that
themajor asset of themethod is its main challenge. The large number of
tuning parameters makes the method finely configurable, but achieving
that fine configuration is an arduous task.

4.1.3 Process of the ILA for placing DGs in the RDS
The procedure for the implementation of the ILA for the placing

of DG in the RDS is as follows:

TABLE 7 Performance evaluation of the IEEE 118 bus system with five DGs for various load models using IbI Logic algorithm.

Evaluation
criterion

Constant power load Constant current
load

Constant
impedance load

CP (half) CP (full) CP (overload)

W/
o DG

With
DG

W/
o DG

With
DG

W/
o DG

With
DG

W/
o DG

With
DG

W/
o DG

With
DG

DG size (in MW) (bus) — 1.00(3) — 1.919(33) — 1.00(5) — 1.05(3) — 1.06(3)

1.16(52) 1.877(70) 1.00(58) 1.20(42) 1.00(72)

1.17(73) 1.753(91) 1.00(44) 1.15(74) 1.04(91)

1.12(111) 2.37(110) 1.009(23) 1.39(96) 2.07(50)

1.008(81) 1.904(80) 1.01(41) 2.89(109) 1.81(111)

Power loss (in kW) 302.66 153.948 1298.15 576.239 3795.71 1379.36 1084.08 564.89 914.48 499.2087

% RL — 49.14 — 55.6107 — 63.66 — 47.89 — 45.4106

PLI — 0.508 — 0.4438 — 0.3634 — 0.521 — 0.545

Vmin (p.u.) (bus) 0.93824
(77)

0.97701
(77)

0.86881
(77)

0.95 (54) 0.76733
(77)

0.95 (77) 0.8851
(77)

0.95 (77) 0.8991
(77)

0.95 (77)

VDI 0.06176 0.2299 0.13112 0.05 0.23267 0.05 0.1149 0.05 0.1009 0.05

ROC ($) — 0.27986 — 0.44735 — 0.30612 — 0.40815 — 0.37012
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1. Initialize with the basic parameters, such as the number of buses,
base voltage and kVA, minimum DG size, maximum DG size,
Vmin and Vmax, initial population, and number of iterations.

2. Apply the backward–forward sweep load flow method for
the base case.

3. Form the BIBC-BCBV matrices and the DLF matrix.
4. The base case power losses and the bus voltage values are

thus obtained.
5. Select the number of DGs to be placed (in this study, numbers

could be 3, 5, or 7).
6. Identify the capacity of DGs using the ILA process.

7. Run the load flow process with the DG size selected, and
check for the reduction in losses by placing the DG on
suitable locations.

8. If yes, save the size for a particular bus.
9. If no, go to step 6 and repeat the cycle until the

convergence is met.
10. The line losses are given as

PG = (dg_value (ind)) and QG = PG*pfdata.

11. The reduction in power losses is calculated as

TABLE 8 Comparative analysis of the IEEE 118-bus system (with five DGs).

Method PLDG
(kW)

% RL Vmin

(bus)
DG
location

DG
size (MW)

DG size
(MVAr)

SDG
(MVA)

pf

SA
[Injeti et al.]

858.8133 33.75 0.91905 (54) 75 2.1318 — 13.4953 upf

116 0.7501 —

56 1.1329 —

36 4.5353 —

103 4.9452 —

KH
[S. Sultana et al.]

576.46 55.53 0.9558 (53) 50 2.872 — 11.6869 upf

74 2.434 —

81 1.8113 —

96 1.69 —

110 2.8796 —

ILA [proposed
method]

576.2388 55.61 0.95 (54) 33 1.919 — 9.827 upf

70 1.877 —

91 1.753 —

110 2.374 —

80 1.904 —

SA
[Injeti et al.]

684.0282 47.23 0.93765 (54) 75 2.9296 1.6896 18.854 0.866

116 1.5465 0.893

56 1.4841 0.857

36 4.4551 2.5725

103 5.9126 3.414

KH
[S. Sultana et al.]

233.383 81.99 0.9605 (46) 50 3.2112 1.8543 14.32 0.866

74 2.3741 1.3418

81 1.9867 1.147

96 1.7109 0.9878

110 3.1172 1.7997

ILA [proposed
method]

230.1619 82.26 0.9605 (46) 4 2.129 1.2293 12.63 0.866

74 2.29 1.3222

91 1.415 0.817

109 3.097 1.7882

50 2.012 1.1617
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delPLdg = PDGTloss/PTloss.

12. The voltage index is given as

delvd = max ((v1-finalvoltage)/v1).

13. The reduction in operating cost is expressed as

deltoc = TOC/(c2*PDGmax).

14. The complete objective function is expressed as

final_objective = alpha1*delPLdg + alpha2*delvd +
alpha3*deltoc.

15. Display the output.

5 Simulation and results

The proposed technique was tested on four IEEE standard test
bus system (i.e., IEEE-16, IEEE-33, IEEE-69, and IEEE-118 bus
radial distribution systems) to determine its efficiency on various
load types and identify the optimal location of multiple DGs to
minimize the objective function (which includes the minimization
of the active power losses, voltage deviation index, and operational
costs). MATLAB code was developed for the ILA and executed on an
Intel® Core™ i7-7700 CPU @ 3.60 GHz desktop installed with 8 GB
RAM. The performance of the algorithm is examined over
30 consecutive trials for each dataset, and the best minimum (in
case of the power loss and the cost) and maximum (in case of the bus
voltage) values are considered. The weighting factors in the objective
function were set as α = 0.5, β = 0.4, and γ = 0.1. The cost coefficients
x and ywere considered 4 USD/kW and 5 USD/kW, respectively. y is

FIGURE 9
(A) Voltage profile of the 118-bus network with five T-I DGs. (B) Convergence graph for T-I DG. (C) Voltage profile of the 118-bus network with five
T-III DGs. (D) Convergence graph for T-III DG.
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generally maintained on the higher side, owing to the maintenance
and installation costs of the DGs.

The performance of the ILA method depends on the selection of
various input values. The number of iterations and initial population
(number of experts) were set to 20 and 50, respectively. Five models
were considered. Bmin and Bmax were set to 0.4 and 0.6, respectively.
The maximum iteration percentage required for stages 1 and 2 is 33%
each. The replication value for clustering (ηrep) was 10. The number of
trials to converge the class in ηrep replication is considered 100. The
values for ILA coefficients considered c1 were randomly selected from
the range between 0 and 1, c2 was randomly chosen between −1.5 and
1.5, c3 was randomly chosen between −1.5 and 1.5, c4 and c5 were
selected randomly between 0 and 1, c6 was selected between −0.75 and
0.75, c7 was randomly chosen between −0.75 and 0.75, c8 is randomly
selected between 0 and 1, c9 is a random vector selected
from −0.25 and 0.25, c10 was randomly chosen between −0.25 and
0.25, and c11 was randomly chosen between 0 and 1.

The efficacy of the proposed approach was tested on various load
types, such as constant power (CP) at light load (0.5), full load (1.0),
heavy load (1.6), constant current (CC), and constant impedance
(CI) loads. Two types of DGs were considered in this study: T-I
(injects active power at unity power factor) and T-III (capable of
feeding real and imaginary powers at a power factor of 0.866).

5.1 IEEE 16-bus system

Initially, to test the operation of the ILA optimization technique, a
small standard test system with 16 buses was considered. The initial
version of this system had 16 buses, 3 feeders, and 13 branches.

However, according to Aman et al. (2014), the earlier version was
modified into the single feeder, 15-bus radial network shown in
Figure 2. The bus and line data were obtained from Aman et al.
(2014). The base values, load values, and losses for the 16-bus system
were VBASE = 12.66 kV, BASE = 100 MVA, PLOAD = 28,700 kW,
QLOAD = 5,900 kVAr, Ploss = 511.40 kW, andQloss = 590.37 kVAr. The
voltage limit at all the buses was set within 0.95–1.05 p.u. The real
power loss without DG inclusion was 511.43 kW, and the reactive
power loss was 590.3668 kVAr. According to Behera et al. (2015), a
50% penetration of DG was considered. The base case load flow
proposed by Singh and Bala (2015), without DG integration, was run.
Then, DG was added to the buses.

First, the T-I DG was implemented for all types of load models.
The results shown in Table 1 were found effective. Three numbers of
both types of DGs, i.e., T-I and T-III were connected to the system to
obtain optimum outcomes. In Table 2, these results are compared
with those of previous studies conducted by Aman et al. (2014) and
Quoc and Mithulananthan (2013). Compared with the results of
Aman et al. (2014), which reported a loss of 536.56 kW, the proposed
method displayed a remarkable loss reduction of 73.82 kW with the
integration of T-III. Similarly, with the integration of T-I DG, the
proposed method obtained 80.92 kW, unlike the 106.82 kW reported
by Quoc and Mithulananthan (2013). Figure 3 depicts the voltage
profile and convergence characteristics of both types of DGs. With no
DG integrated into the system, the minimum andmaximum reported
voltages are 0.969 p.u. at bus 11 and 1.00 p.u. at bus 1, respectively.
However, with the insertion of three T-I DGs into the network, the
voltage improved by 0.991 p.u. at bus 9 and 1.00 p.u. at bus 1.
Meanwhile, with the installation of three T-III DGs, the voltage limit
ranged between 0.993 p.u. at bus 4 and 1.0001 p.u. at bus 8.

TABLE 9 Performance evaluation of the IEEE-118 bus system with seven DGs for various load models using IbI Logic algorithm.

Evaluation
criterion

Constant power load Constant current
load

Constant
impedance load

CP (half) CP (full) CP (overload)

W/
o DG

With
DG

W/
o DG

With
DG

W/
o DG

With
DG

W/
o DG

With
DG

W/
o DG

With
DG

DG size (in MW) (bus) — 1.103 (5) — 1.303 (18) — 1.0 (2) — 1.656 (8) — 1.07 (30)

1.14 (48) 1.174 (80) 1.00 (42) 1.52 (41) 1.01 (51)

1.054 (41) 1.233 (43) 1.02 (40) 1.31 (70) 1.61 (50)

1.062 (80) 1.765 (72) 1.00 (24) 1.55 (96) 1.06 (42)

1.05 (111) 1.037 (35) 1.00 (35) 1.81 (110) 1.24 (80)

1.027 (74) 2.378 (110) 1.00 (102) 1.19 (107) 2.02 (73)

1.028 (97) 1.2 (96) 1.00 (60) 1.965 (33) 2.79 (108)

Power loss (in kW) 302.66 135.61 1,298.15 558.39 3,795.71 1,332.49 1,084.08 498.57 914.48 437.67

% RL — 55.194 — 56.98 — 64.89 — 54.001 — 52.14

PLI — 0.448 — 0.4301 — 0.351 — 0.46 — 0.47

Vmin (p.u.) (bus) 0.9383
(77)

0.9721 (54) 0.8689 (77) 0.95 (54) 0.76733
(77)

0.95 (77) 0.8851 (77) 0.95 (77) 0.8991
(77)

0.9604 (99)

VDI 0.062 0.0279 0.1311 0.05 0.23267 0.05 0.1149 0.05 0.1009 0.0396

TOC ($) — 0.37887 — 0.52684 — 0.4052 — 0.56959 — 0.55796
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TABLE 10 Comparative analysis of the IEEE 118-bus system (with seven DGs).

Method PLDG
(kW)

% RL Vmin

(bus)
DG
location

DG
size (MW)

DG size
(MVAr)

SDG
(MVA)

pf

SA
[Injeti et al.]

900.19 30.56 0.93249 (111) 75 2.8246 — 22.5155 upf

116 0.4606 —

56 3.6739 —

36 7.4673 —

103 5.0803 —

88 2.2979 —

48 0.7109 —

KH
[S. Sultana et al.]

574.71 55.66 0.9470 (77) 48 1.7242 — 11.5826 upf

53 1.3356 —

74 1.8623 —

80 1.8653 —

96 1.6631 —

109 1.9473 —

112 1.1848 —

ILA [proposed
method]

558.39 56.98 0.95 (54) 18 1.303 — 10.09 upf

80 1.174 —

43 1.233 —

72 1.765 —

35 1.037 —

110 2.378 —

96 1.2 —

SA
[Injeti et al.]

638.03 50.71 0.94689 (111) 75 2.7544 1.5904 25.2011 0.866

116 0.5076 0.2931

56 4.3123 2.49

36 6.1109 3.5285

103 5.335 3.0805

88 0.6262 0.3616

48 2.1778 1.2575

KH
[S. Sultana et al.]

312.66 75.88 0.9679 (27) 43 1.9726 1.1389 13.4886 0.866

51 1.9849 1.146

69 1.7929 1.0351

73 1.8551 1.071

88 1.8975 1.0955

108 1.9905 1.1492

109 1.9951 1.1519

(Continued on following page)
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TABLE 10 (Continued) Comparative analysis of the IEEE 118-bus system (with seven DGs).

Method PLDG
(kW)

% RL Vmin

(bus)
DG
location

DG
size (MW)

DG size
(MVAr)

SDG
(MVA)

pf

ILA [proposed
method]

297.98 77.04 0.9594 (46) 13 1 0.5774 12.1028 0.866

50 1.044 0.6028

72 2.039 1.1773

84 1.175 0.6784

89 1 0.5774

110 3.091 1.7847

52 1.132 0.6536

FIGURE 10
(A) Voltage profile of the 118-bus network with seven T-I DGs. (B) Convergence graph for T-I DG. (C) Voltage profile of the 118-bus network with
seven T-III DGs. (D) Convergence graph for T-III DG.
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5.2 IEEE 33-bus system

The second test system considered is a medium-sized radial
network comprising 33 buses and 32 branches shown in Figure 4.
It is completely radial in characteristic. The base values, load
values, and losses for the 33-bus system were VBASE = 12.66 kV,
SBASE = 100 MVA, PLOAD = 3,715 kW, QLOAD = 2,300 kVAr,
Ploss = 202.67 kW, and Qloss = 135.14 kVAr. The bus and line data
were obtained from Baran and Wu (1989a). The voltage limits at
the buses were set between 0.95 and 1.05 p.u. The real and
reactive power losses for this system were 202.67 kW and
135.141 kVAr, respectively. The detailed results for various
load types are shown in Table 3. It includes DG capacity,
power loss, percentage reduction in losses, power loss index,
voltage deviation index, minimum bus voltage and its number,
and operating cost.

Three DGs were connected to achieve the objective function.
The results are summarized in Table 4. These are observed to be
better than those achieved by the previous works from many
perspectives. The results are compared with those reported by
Moradi and Abedini (2012), Kumar Injeti and Kumar (2013),
Imran et al. (2014), Prabha and Jayabarathi (2016), Quoc and
Mithulananthan (2013), Aman et al. (2014), and Sultana and Roy
(2015). The power losses obtained with the integration of the type-I
DG were 71.89 kW compared with previously reported losses.
Similarly, for the type-III DG, the reported loss was 14.49 kW. It
was significantly lower than those achieved in these works. The
voltage profiles of the type-I and type-III DGs are shown in Figures
5A, C, respectively. The convergence characteristics of the objective
function with respect to the number of iterations are shown in
Figures 5B, D, respectively.

5.2.1 IEEE 69-bus system
The next system considered was a large distribution network

comprising 69 buses and 68 branches. The line and bus data were
obtained from Baran and Wu (1989b). The single line
representation is shown in Figure 6. The real and reactive
power losses were 224.9606 kW and 102.147 kVAr,

respectively. The base voltage was 12.66 kV. The load on the
system was set to 3,802.1 kW. The base power was 100 MVA. The
voltage constraints were set between 0.95 and 1.05 p. u. The
maximum permissible limit for DG penetration was set to 50%.
Three DGs of type-I and type-III were connected in the system.
The load flow was performed for all the load models. The results
are reported in Table 5. This network involved a convergence
criteria issue. Therefore, the number of iterations was increased
to 100 instead of 50. Therefore, good results were obtained,
compared with those reported by Moradi and Abedini (2012),
Kumar Injeti and Kumar (2013), Imran et al. (2014), Prabha and
Jayabarathi (2016), Quoc and Mithulananthan (2013), Aman
et al. (2014), and Sultana and Roy (2015), as shown in Table 6.

The computed loss with the implementation of type-I DG was
71.25 kW using this method. This value is better than 89.0 kW
obtained by the GA, 83.2 kW by PSO, and 81.1 kW by GA/PSO, as
reported by Moradi and Abedini (2012). The value also shows the
significance of this method compared to those of Kumar Injeti and
Kumar (2013), Imran et al. (2014), Prabha and Jayabarathi (2016),
Quoc and Mithulananthan (2013), and Aman et al. (2014).
However, it is less effective compared to the results by Sultana
and Roy (2015). Although the loss reduction by the ILA is not
superior to that achieved by the KH method, the TOC is much
significantly lower for the ILA method than that for the KH
method. This is because the overall rating of the connected DG
was less than that for the KH method.

Similarly, when the type-III DGs were optimally connected to
the system using the IbI logic algorithm method, the results
obtained were better than those achieved using the SA, BFOA,
and IWO techniques. This is evident in Table 6. The losses were
reduced less by the ILA than by the Loss Sensitivity Factor (LSF)
and Krill Herd (KH) methods. However, the overall connected size
of the DGwas significantly smaller than those of these two superior
methods. Hence, the total operating cost was significantly lower in
the ILA method. The voltage profiles for type-I and type-III DGs
for the 69-bus system are shown in Figures 7A, C, respectively.
Meanwhile, the convergence of the objective function is shown in
Figures 7B, D.

TABLE 11 The worst, best, average, median, and standard deviation values of bus voltages for test systems with the implementation of T-I and T-III into all
the systems under study.

Bus
system

Number
of DGs

Type of
the DG

Minimum value
(bus number)

Maximum value
(bus number)

Mean
value

Median Standard
deviation

16-bus 3 DGs T-1 0.991,061 (9) 1.00 (1) 0.995574343 0.999325691 0.000674,309

T-3 0.992610261 (4) 1.0001941 (8) 0.997674851 0.999907791 0.000092208

33-bus 3 DGs T-1 0.965,532 (33) 1.00 (1) 0.981390851 0.982766393 0.017233607

T-3 0.992189954 (8) 1.0003793 (30) 0.995599326 0.997724779 0.002275221

69-bus 3 DGs T-1 0.981,136 (65) 1.00 (1) 0.992520842 0.993855028 0.006144972

T-3 0.994246186 (50) 1.00 (1) 0.997123093 0.997873915 0.002126085

118-bus 5 DGs T-1 0.95 (54) 1.00 (1) 0.974157367 0.99596176 0.004038241

T-3 0.960,591 (46) 1.00 (1) 0.981,212 0.996,385 0.003615

118-bus 7 DGs T-1 0.95 (54) 1.00 (1) 0.97483355 0.99596283 0.00403,717

T-3 0.959,402 (46) 1.00 (1) 0.981,747 0.996,384 0.003616
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5.3 IEEE 118-bus system

The ILA was tested on a 118-bus system shown in Figure 8 to
demonstrate its optimal performance for a very large-scale
distribution of networks. The base values, load values, and losses
for the 118-bus system were VBASE = 11 kV, SBASE = 100 MVA,
PLOAD = 22,709.72 kW,QLOAD = 17,041.06 kVAr, Ploss = 1,298.09 kW,
andQloss = 978.73 kVAr referred by Sultana and Roy (2015). The 118-
bus radial distribution networks required seven DGs. However, the
established approach was adaptable to any number. Meanwhile, the
number of DG units in a test system depends on their size. However,
introducing many DG units into a system can cause increased power
losses. In this study, two cases were formulated for analyzing the
impact of integrating five and seven DG units into the system. Both
cases were tested for different load models.

5.3.1 Case 1: IEEE 118-bus system with five DGs
The real and reactive power losses for this network are

1,298.09 kW and 978.73 kVAr. The reported real power loss is
576.239 kW with the integration of type-I DG. This value is close to
that reported by Sultana and Roy (2015) and significantly less than
that obtained by Kumar Injeti and Kumar (2013). In addition, the
TOC obtained is lower because the connected size was less.

Similarly, compared with the results of Kumar Injeti and Kumar
(2013), the power loss is improved by 381.1619 kW, and 6.224 MVA
less power was required to connect. The performance evaluation and
comparative analysis for 118-bus system with five DGs are given in
Tables 7, 8 respectively. This reduced the operating cost. The voltage
profiles and convergence characteristics for type-I and type-III are
shown in Figure 9.

5.3.2 Case 2: IEEE 118-bus system with seven DGs
The optimal locations of the seven type-I DGs are located at bus

numbers 18, 80, 43, 72, 35, 110, and 96; with a total capacity of
10.09 MVA, these DGs reduced the loss in the 118-bus system to
558.7097 kW. This was better than that achieved by kumar Injeti and
Kumar (2013) and Sultana and Roy (2015). The type-III DG units,
operating at 0.866 p. f., connected to bus numbers 13, 50, 72, 84, 89,
110, and 52 reduced the power loss to 297.9819 kW. In addition, the
operating cost was lower than that in the two previous studies
because the overall DG capacity connected in the ILA was
10.09 MVA for the T-I DG and 12.1028 MVA at 0.866 p. f. for
the T-III DG. The performance evaluation and comparative analysis
for 118-bus system with seven DGs are given in Tables 9, 10
respectively. The bus voltages have been drawn for all the DG
conditions. The convergence characteristics of the objective
function with respect to the iterations are shown in Figure 10.

The worst, best, average, median, and standard deviation values
of bus voltages for test systems with the implementation of T-I and
T-III into all the systems under study are given in Table 11.

6 Conclusion

This study investigated the challenging mixed problem of
placing and sizing DGs to minimize real power losses as the

voltage profile increases. A novel ILA method was used, for
the first time, to identify the optimal size and location of DGs. To
demonstrate the validity and effectiveness of the proposed
technique, it was tested on very small, small, medium, and
large-scale distribution networks, and hence, it shows the
capability to be tuned at every size of the distribution
network Furthermore, its performance was compared with
those achieved by previous published works. The
recommended technique outperformed the existing algorithms
in terms of single objective or as a whole, and the convergence
characteristics of the objective function value. The analysis of
different DG combinations to find the best possible solution to
the problem, inclusion of the environmental objectives in
problem formulation, and the analysis of DG performance
with the 3 phase non-linear load could be the future scope for
utilizing this algorithm.
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