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The reliability of the power supply for 5G base stations (BSs) is increasing. A large
amount of BS backup energy storage (BES) remains underutilized. This study
establishes a double-layer optimization distribution network (DN) considering BS
clusters. An energy consumption characteristics and scheduling ability model of
the BSs was established to address the differences in the characteristics of
different traffic flows. A double-tier planning model for BS-joining grid market
ancillary services is proposed. The upper-layermodel addresses optimal tidal flow
problems in DNs to minimize integrated operating costs, while the lower-layer
model focuses on BES economic optimization. The double-layer model changes
into a single-layer linear model using the Karush–Kuhn–Tucker (KKT) condition
and the Big M method. Simulation validation using the IEEE-33 node DN proves
that this approach can reduce DN operating costs, regulate voltage fluctuations,
and guarantee economical and safe DN operation.
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1 Introduction

Information and communication technologies, particularly cellular wireless networks,
have been vigorously developed (Habibi et al., 2019; Xiong et al., 2019; Xiong et al., 2020).
Compared with previous generations of base stations (BSs), current BSs have the
characteristics of high bandwidth, high-density connections, high reliability, and low
latency. This exponentially increases the power consumption (Fan et al., 2022; Sun et al.,
2022). The specific capacities of backup energy storage (BES) batteries are deployed when
constructing the BSs. It provides backup power to the BS in case of a utility power
interruption. Owing to the exponential increase in the number of BSs and the power
supply reliability of the distribution network (DN), the coordinated scheduling potential
of idle BES should not be underestimated. Therefore, there is an urgent need to conduct a
study on the coordinated scheduling of power grids that considers the energy consumption
characteristics and scheduling ability of BSs, which is of great significance for improving the
utilization value of BSs, avoiding the waste of idle resources, and improving the voltage quality.

Some scholars achieved specific results in their research on utilizing BES resources in
BSs. Ma et al. (2021) established a double-layer optimization planning model for
configuring a BS photovoltaic (PV) BES system, effectively reducing the peak load. This
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effectively increased the utilization rate of PV power generation and
improved its in situ digestion of PV power generation. Han and
Ansari (2014) modeled multiple BSs and their equipped renewable
energy aggregates as microgrids. The switching operation strategies
of the BSs are jointly optimized at the network level. Liu and
Natarajan (2015) considered a BES at the BS by optimizing the
transmit power and storage usage to reduce the cost. Yong et al.
(2021) considered BS availability metrics. They evaluated the
dispatchable capacity of a BS BES using a semi-Markov model.
Most of the 5G BESs in the above literature participate in grid co-
dispatch considering their economy. 5G BS clustering is a simple
aggregation. The traffic characteristics of 5G base stations in
different city zones differ. The communication load and residual
capacity they generate impact the power grid differently. Therefore,
analyzing the dynamic energy consumption of base stations in urban
areas with different communication characteristics is necessary.

Nowadays, fewer studies take into account the participation of 5G
base stations in distribution network planning (Yong et al., 2021; Guo
et al., 2022), and further research is needed to scale up the application of
5G base stations and promote the synergistic optimization of network-
side resources, such as base stations and distributed generation (DG)
and energy storage systems (ESSs), within the distribution network
(Cheema, 2020; Ma et al., 2022). Han et al. (2021) proposed a co-
optimization method according to the Stackelberg game for
demand–response-based DNs and BSs, which reduced the total
energy cost and promoted PV consumption. Chen (2020) proposed
an economic model for BS BES participation in response requirements,
considering the over-discharge penalty. It is optimally solved using a
double-layer serial structure algorithm comprising a wolf pack
algorithm and a differential evolutionary algorithm. Johann et al.
(2018) discussed a time-varying tariff-based energy management
strategy. Consumption is improved while costs are minimized. Han
and Ansari (2013) proposed the full utilization of renewable energy
sources to reduce the energy exhaustion of individual BSs. The BSs with
a higher proportion of renewable energy sources serve a larger number
of users. Han and Ansari (2014) divided BSs into clusters based on the
electrical distance. Sharing electrical energy in a cluster fully utilizes new
energy. Although the above studies have proven the prospect of BS
participation in DN scheduling, most are aimed at BS participation in
DN PV consumption and distributed BES capacity allocation and have
not been combined with on-load tap changers (OLTCs), static reactive
power compensation (SVC) devices, or other network-side resources
that are coordinated and optimized. Simultaneously, the above
literature’s double-layer optimization algorithms are mostly heuristic-
intelligent or reinforcement learning algorithms. Although heuristic
intelligence algorithms can obtain an optimal solution under certain
conditions, they can easily fall into a local optimum and are more
dependent on the acceleration of the data. In contrast, reinforcement
learning algorithms can deal with complicated environments and tasks.
However, they require considerable computational resources and time
for training and are more sensitive to parameter tuning and selection.

Based on the aforementioned issues, a double-layer optimization
strategy for DNs considering BS clusters is proposed. First, we
established the energy consumption characteristics and
scheduling capability model of BSs with different communication
traffic characteristics and analyzed the potential of BSs to participate
in DN scheduling. We propose a two-layer cooperative scheduling
optimization model for BSs to participate in grid-market auxiliary

services. The upper-layer model solved the optimal tidal current
problem to achieve the most negligible comprehensive operating
cost. The lower-layer model solved the economic problems
associated with the BS. Finally, through a simulation example
analysis, it was verified that the BS cluster could coordinate to
join the economic security dispatch of the DN, improve the voltage
fluctuation, and reduce its own operating cost simultaneously under
the premise of guaranteeing its power safety.

2 5G BS characterization model

Macro-BSs have more comprehensive coverage and higher
power consumption, and only macro-BSs are equipped with self-
containing BES at this stage. Hence, this study focuses on macro-BSs
with tremendous dispatchable potential.

2.1 Basic structure of a 5G BS

The BS equipment primarily includes communication,
electricity, and other equipment. The basic structure of a BS is
illustrated in Figure 1. BS communication equipment typically
comprises an active antenna system (AAU) and a building base
band unit (BBU). Conversely, electrical equipment provides power
supply and BES, whereas indoor inverter air-conditioning, rooftop
distributed energy, and lighting are other equipment.

Under regular operation, the BS power supply provides most
power demand by converting AC power from the distribution grid
to DC power. In addition to the assurance of operational BS
reliability when the distribution grid power supply is interrupted
for a short period, the BSs are configured with a BES that can provide
power to the communication equipment for a specified duration,
typically 3 hours (Renga et al., 2018).

2.2 Operational characteristics of 5G BSs

2.2.1 5G BS energy consumption characteristics
Over 80% of the energy consumed in the BS communication

load comes from the AAU (Hassan et al., 2019). It is susceptible to

FIGURE 1
Basic structure of the 5G macro BS.
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the intensity of the communication load, and its power consumption
is positively proportional to the number of mobile users accessing
the system.

The energy consumption of the BS equipment can be divided
into static and dynamic types. Static power consumption is
independent of the communication load. This is the primary
energy consumption used to maintain regular operation. Essential
energy consumption is the baseline energy consumption of the BBU,
transmission equipment, and AAU. Dynamic power consumption
refers to the portion linearly correlated with the service traffic. Its
power consumption model is expressed in Equation 1.

P5G.BS,t � Pactive,i,t � PS,i,t + αPD,i,t

Psleep,i,t
{ , ε � 1

, ε � 0
, (1)

where P5G,BS,t is the energy consumption of the BS at time t,
Pactive,i,t is the energy consumption of BS i in the active state, Psleep,i,t
is the energy consumption of BS i in the sleep state at time t, PS,i,t is
the static energy consumption of BS i at time t, α is the energy
consumption scaling factor of BS i, and PD,i,t is the dynamic energy
consumption.

1) When the base station is in the active state, ε = 1. Its power loss
Pactive consists of transmitting power PD,i,t and inherent power
PS,i,t. With an increase in the BS’s communication load, the
corresponding transmitting power PD,i,t increases linearly. The
inherent loss PS,i,t refers to the loss in data processing units,
power amplifiers, cooling devices, and other components,
which changes negligibly with the communication load.

2) When the base station is in a sleep state, ε = 0. Its power loss is
fixed as Psleep,i,t.

During the operation, 5G BS transmits signals via the AAU with
a certain transmit power; then, these signals are propagated until the
terminal devices receive them. In this study, a log-normal shadowing
path-loss model is used to describe the propagation loss of 5G
signals in outdoor environments (Xiong et al., 2019):

PS,i,t � a + b log10 dn−s( ). (2)

The constraint (Equation 2) defines the propagation path loss
(in dB) between BS n and terminal s as a logarithm function of the
horizontal distance from 5G BSs to terminal devices.

Based on the propagation path loss, the 5G BS’s transmit power
PD,i,t and the terminal device’s received power PRec,i,t satisfy the
Equation 3 relationship:

PD,i,t

PRec,i,t
� 10

PS,i,t
10 . (3)

Because of the BS equipment limitations, dynamic energy
consumption cannot reach the maximum value and is related to
the mobile user communication data, which is expressed in
Equations 4, 5.

PD,t � βPD,max, (4)
0≤PD,t ≤PD,max, (5)

where β is the coefficient reacting to the mobile user’s
communication data and PD,max is the maximum value of the
dynamic energy consumption, which is the output power

corresponding to the AAU when the mobile user’s
communication load is fully loaded.

2.2.2 5G BS BES safe power reserve capacity analysis
A 5G BS BES generally refers to energy consumption under

full load for capacity allocation. The BS BES capacity can be
found in two aspects: one part is the standby capacity used to
guarantee the high-reliability power supply of the BS, and the
other is the dispatchable capacity that can participate in the
demand response (Frenger and Tano, 2019). With the uncertain
change in the mobile users’ communication load, the standby and
dispatchable capacity ratio will also change; however, its sum
remains constant.

The safe capacity of the BS in each period can be determined
from its dispatchable capacity. As shown in Equation 6.

Cres,t,min � ∫t+Tres,min

t
P5G.BS,tdt, (6)

where Cres,t,min is the safe power reserve capacity that the BS
requires in period t, P5G.BS,t is the dispatchable capacity that can join
the demand response, and Tres,min is the shortest power reserve time
of the BS, which can be determined according to the calculation
from the literature (Guo et al., 2021). This time is typically taken
as 3 hours.

3 Double-layer optimization model for
DNs considering the synergy between
BS BES and grid-side resources

Considering the BS’s BES, DN and BS have decision variables in
the double-layer power system structure. The upper-layer
optimization model is a DN optimization model that considers
multiple network-side resources. The lower-layer optimization
model is a BS system model that considers the characteristics of
communication traffic. Under the premise of guaranteeing the
autonomy of each model and evaluating the competitive
cooperative game relationship between the two models, the
double-layer optimization model can iteratively realize the
optimization of the entire system.

3.1 Upper DN modeling

3.1.1 Upper-layer objective function
The upper-layer model was used to find the DN optimal tidal

current. Its optimization aims to reduce the total operating cost of
the DN over the cycle. The expression for this objective function is in
Equation 7.

minCTotal � Cgrid − C5G + CESS + CCA + CLOSS, (7)

where Cgrid is the cost of exchanging power with the grid;
C5G is the revenue from power purchases by the BSs; CESS is
the BES’s investment, operation, and maintenance cost; CCA is
the cost of carbon emissions from the DN; and Closs is
the cost of network loss from the DN. The details are in
Equation 8.
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Cgrid � ∑24
t�1
cgrid,tPgrid,tΔt

CESS � ∑
j∈BESS

∑24
t�1

cdischarge,tPdischarge,j,t( ) + ccharge,tPcharge,j,tΔt

CCA � κf∑24
t�1
Pgrid
t Δt

C5G � ∑24
t�1
c5G,tP5GΔt

CLOSS � ∑32
i�0
∑33
j�1
clossIij′rijΔt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (8)

where κ is the cost of carbon emissions corresponding to a
unit of coal-consumed electricity generation, f is the coal
consumption coefficient corresponding to a unit of electricity
generation in the external grid, and close is the price per unit of
network loss.

3.1.2 Upper-layer constraint
3.1.2.1 Power system current constraints

pj � ∑
k: j→k

Pjk − ∑
i: i→j

Pij − I2ijrij( ) + gjV2
j

qj � ∑
k: j→k

Qjk − ∑
i: i→j

Qij − I2ijxij( ) + bjV2
j

Vj � Vi − 2 rijPij + xijQij( ) + r2ij + x2
ij( )I2ij

I2ij �
P2
ij + Q2

ij

V2
i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (9)

where pj and qj are the active and reactive power injected into
node j, respectively; Pjk and Qjk are the active and reactive power
flowing out of node j to the next node k, respectively; and Pij and Qij

are the active and reactive power, respectively, flowing into node j
from the previous node i.

The above power system trend constraints (Equation 9) are
nonlinear constraints that are difficult to solve using the
optimization algorithm and need to be relaxed by a second-order
cone, and the linearization results are in Equation 10.

pj � ∑
k: j→k

Pjk − ∑
i: i→j

Pij − ~Iijrij( ) + gj
~Vj

qj � ∑
k: j→k

Qjk − ∑
i: i→j

Qij − ~Iijxij( ) + bj ~Vj

~Vj � ~Vi − 2 rijPij + xijQij( ) + r2ij + x2
ij( )~Iij

2Pij

2Qij
~Iij − ~Vj

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
2

≤ ~Iij + ~Vj,∀ i, j( ) ∈ E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
. (10)

3.1.2.2 Security constraints

V2
j. min ≤Vj′≤V2

j. max

I2ij. min ≤ Iij′≤ I2ij. max

Pgrid,min ≤Pgrid,t ≤Pgrid,max

Qgrid,min ≤Qgrid,t ≤Qgrid,max

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (11)

where Qgrid,t is the reactive power of the distribution grid
interacting with a higher grid at time t (Equation 11).

3.1.2.3 Power balance constraints

pload + PIN + P5G � Pgrid + P5G.dis − P5G.ch

qload + QIN � Qgrid
{ , (12)

where pload and qload are the active and reactive loads of each
node of the DN, respectively, and PIN and QIN are the active and
reactive powers injected into each node of the DN, respectively
(Equation 12).

3.1.2.4 Active management equipment constraints
Active DN management equipment includes OLTCs, group-

switching capacitor banks (CBs), SVCs, ESSs, and DGs (Dong
et al., 2020).

3.2 Lower-layer 5G BS BES model

The lower-layer model solves the BS system operation during
the scheduling cycle (24 h). The decision variables are the BS
purchased and sold power and the 5G external PV output.

3.2.1 Lower-level objective function
The lower-level optimization objective is to minimize the overall

cost of the BS cluster system. The objective function is expressed in
Equation 13.

minC5G � C5G +∑24
t�1
c5G.PV,tP5G.PV,tΔt, (13)

where C5G is described in detail above, c5G.PV,t is the purchase
and sale price of electricity from the grid, and P5G.PV,t is the external
PV output at time t of 5G.

3.2.2 Lower-level constraint
3.2.2.1 BS backup storage charging and discharging
constraints

There is a direct link between backup storage capacity and
charging and discharging power. Ensuring that the capacity is
within its limits throughout the cycle is vital. The backup
storage capacities are equal during the first and last periods of
the cycle.

E5G.ESS,t � E5G.ESS,t−1 1 − δ( ) + χ5G.ch,t−1P5G.ch,t−1
− 1/χ5G.dis,t−1( )P5G.dis,t−1
E5G.ESS,min ≤E5G.ESS.t ≤E5G.ESS,max

E5G.ESS,0 � E5G.ESS,T

μ5G.dis,t + μ5G.ch,t ≤ 0
μ5G.dis,tP5G.dis,min ≤P5G.dis,t ≤ μ5G.dis,tP5G.dis,max

μ5G.ch,tP5G.ch,min ≤P5G.ch,t ≤ μ5G.ch,tP5G.ch,max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (14)

where E5G.ESS,t is the BS BES’s capacity in period t; ’ is its self-
discharge rate; ’5G.ch,t and ’5G.dis,t are the BS BES’s charging and
discharging efficiencies, respectively; and ’5G.dis,t and ’5G.ch,t are
the BS BES’s charging and discharging identifications, respectively.

3.2.2.2 BS BES SOC constraints
From the BS BES charging and discharging constraints

(Equation 14), we can see that BS BES cannot be charged
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and discharged simultaneously at any given moment. Therefore,
the 5G BS BES power loss relationship is discussed in
separate cases.

When the BES is charged, the relationship is in Equation 15.

Pinn,t � η5G.ch,tP5G.ch,t. (15)

When the BES is discharged, the relationship is in Equation 16.

Pinn,t � P5G.dis,t

η5G.dis,t
. (16)

Here, Pinn,t represents the actual charging and discharging
power of the BS BES in period t.

The BS BES SOC at moment t is shown in Equation 17.

θSOC,t � θSOC,t−1 + Pinn,t

Eremain,t

θSOC,min ≤ θSOC,t ≤ θSOC,max

⎧⎪⎪⎨⎪⎪⎩ , (17)

where θSOC,t is the BS BES SOC in period t and Eremain,t is the
remaining backup capacity of the BS BES in period t.

3.2.2.3 BS system power balance constraints

load � P5G + P5G.DG, (18)

where load is the mobile user communication load of the 5G BS
and P5G is the power purchased from the grid (Equation 18).

3.3 Solution method

Considering the game coupling between BS and DN in this
iterative process, a two-layer optimization model for DN is
proposed. Its decision variable transmission is more complex and
remains a problem that needs to be solved. The
Karush–Kuhn–Tucker (KKT) condition is a generalization of the
Lagrange multiplier method and is a sufficiently necessary condition
for an optimal solution for a convex optimization problem (Fang
et al., 2016; Yang et al., 2024). Therefore, in this study, the

Lagrangian function of the lower optimization model was
conducted. The KKT conditional was used to transform the
lower optimization model into the constraints of the upper
optimization model. The upper objective function is
optimized while ensuring that the lower objective function
meets its constraints. Simultaneously, the transformed single-
level model has a large number of 0–1 variables multiplied by the
decision variables and is non-linear. To linearize the
transformed model, 0–1 variables are introduced using the
Big M method . It is finally transformed into a mixed-integer
second-order cone problem. The solution process is shown
in Figure 2.

4 Example simulation and analysis

4.1 Example overview and parameterization

In this study, we consider an example of an IEEE-33 node DN.
The validity and accuracy of the proposed two-layer optimization
model are verified through simulation analysis. The topology is
shown in Figure 3. The rated voltage of the system was 12.66 kV, and
the rated power was 1 MVA. This study considered 1 day (24 h) as a
scheduling cycle divided into 24 scheduling periods. The in-cycle
load profile and DG output of the system are shown in Figure 4. The

FIGURE 2
Schematic diagram of the solution process.

FIGURE 3
IEEE-33 node DN topology.

FIGURE 4
Load profile and DG output during the system cycle.

Frontiers in Energy Research frontiersin.org05

Lv et al. 10.3389/fenrg.2024.1454382

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1454382


purchased and sold electricity tariffs for the distribution grid and the
BS BES are listed in Table 1.

As shown in Figure 3, it is assumed that the DG is accessed at
nodes 4, 9, 14, 20, and 28 to suit the requirements of this study. The
parameters of each active management device were selected from
Dong et al. (2020). There were 120 BSs in the DN. According to
Equations 1–4, the communication load factor of a 5G base station is
related to the region where it is located. As a result, all 5G base
stations are divided into BS groups in three different urban
geographical areas: industrial, commercial, and residential. A
single BS’s maximum and minimum states of charge were 85%
and 15%, respectively. The results of the safe power-reserve capacity
analysis of each BS-cluster BES are shown in Figure 5.

We created three scenarios to validate the validity and accuracy
of the proposed two-tier model.

Scenario 1: the active DNwas configured with active management
equipment, and the BS cluster was not configured with a BES. This
served as the blank control group.

Scenario 2: the active DN was configured with
active management equipment, and the BS clusters were
configured with a BES. BES is not involved in distribution
network co-scheduling. This is the traditional conditioning strategy.

Scenario 3: the active distribution grid was configured with active
management equipment, and the BS clusters were configured with a
BES. BES is involved in distribution network co-scheduling. This is the
moderating strategy of this paper.

4.2 Effectiveness and accuracy of the
movement control program

A comparison of scenarios 1 and 2 in Table 2 shows that
after the BS clusters were equipped with a BES, each BS cluster’s
power consumption was still supplied by utility power, with no
change in the total operating costs for all BSs. However, the total
operating cost of the DN in Scenario 2 is reduced by ¥36,087.2,
which is 60.69% lower than that of the DN in Scenario 1.
Scenarios 1 and 3 were compared, and the cost for each
scenario was reduced to a different degree after backup
storage was included in the dispatch. The total operating cost
of all BSs was decreased by ¥3,503.1, which is 25.97% lower than
that of BSs in Scenario 1. This indicates that the participation of
backup storage in the DN co-dispatch facilitates the
involvement of BS clusters in the electricity market for
higher returns.

Meanwhile, as shown in Table 2, the DN total operating cost
in Scenario 3 is ¥25,526.7, which is 57.07% lower than that in
Scenario 1. The cost of carbon emissions for Scenario 3 is
¥4,803.7, which is 60.62% lower than that for Scenario 1. The
ESS and BS cluster BES charge–discharge line diagrams are
shown in Figure 6. Scenario 3: BS clusters introduce a BES for
co-scheduling. The reduced number of ESS charged and
discharged minimizes the utilization of the existing ESS in the
DN. The introduction of a BES in BSs can reduce the ESS capacity
allocation. This enables a reduction in ESS operating costs. It can
be observed that BS clusters configured with a BES to participate
in the synergy can reduce the DN’s total operating cost and
provide certain low-carbon benefits.

The voltage distributions of scenarios 1, 2, and 3 are shown in
Figures 7–9, respectively. As shown in the figure, the individual node
voltages are not out of bounds because of the access to active
management devices. However, the voltage fluctuations at the
system nodes were extensive. Scenarios 1 and 2 are compared.
Although the peak-to-valley voltage difference in Scenario 1 is
lower than that of Scenario 2, the voltage fluctuation in Scenario
2 is significantly reduced. Scenario 2 is then compared with Scenario
3. The peak-to-valley voltage difference for Scenario 3 is 0.62, which
is 43.327% lower than that of Scenario 2. Meanwhile, Scenario 3 does
not have the sudden valley-end voltage as in Scenario 2, and the
voltage level is smoother.

TABLE 1 Purchase and sale prices for electricity purchased from distribution grids and BES.

Time Electricity price (¥·(kW·h)-1)

Purchase price of electricity from
the grid

Purchase price from the
storage plant

Sale price from the storage
plant

Peak period 8:00–12:00
17:00–21:00

1.36 1.15 0.95

Normal
period

12:00–17:00 0.82 0.75 0.55

Trough
period

21:00–24:
00

0:00–8:00

0.37 0.40 0.20

FIGURE 5
Safe power reserve capacity of backup storage for each 5G
BS cluster.

Frontiers in Energy Research frontiersin.org06

Lv et al. 10.3389/fenrg.2024.1454382

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1454382


The comparison of active management equipment output before
and after 5G base station cluster backup storage participation in
coordination is shown in Figure 10. Compared with the traditional
regulation strategy, the CB and SVC reactive outputs of the
regulation strategy in this paper are reduced to some extent.
However, the voltage level does not worsen as a result. Instead, it
also improves. It can be seen that the participation of backup energy
storage in cooperative dispatch can ensure that the voltage level is at
an acceptable level. At the same time, it reduces the utilization of the
grid-side resources of the distribution network to increase their
service life, thereby reducing operating costs.

TABLE 2 Double-layer optimized scheduling results.

Scenarios Scenario 1 Scenario 2 Scenario 3

Upper-layer model optimization results Total DN operating cost (¥) 59,458.4 23,371.2 25,526.7

Net loss cost (¥) 15,164.8 6,145.7 5,305.3

Carbon cost (¥) 12,196.9 4,459.8 4,803.7

Lower-layer model optimization results BS cluster operating cost (¥) 13,488 13,488 9,984.9

BES cost (¥) 8,439.2 6.844.9 3,389.8

FIGURE 6
ESS and 5G base station cluster backup storage energy charge/
discharge line graphs.

FIGURE 7
Voltage distribution of nodes in Scenario 1.

FIGURE 8
Voltage distribution of nodes in Scenario 2.

FIGURE 9
Voltage distribution of nodes in Scenario 3.

FIGURE 10
Output of reactive power compensation devices before and after
optimization.
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5 Conclusion

In this study, we constructed a model of the energy consumption
characteristics and dispatchable capacity of BSs in various urban
areas. A double-layer optimal scheduling strategy for DNs that
considers BS clusters is proposed. The upper-layer model solved
the optimal tidal flow problem of the DN, while the lower-layer
model focuses on BES economic optimization. Using the
Karush–Kuhn–Tucker condition, the lower-level model is
transformed into upper-level constraints, and the Big M method
converts the nonlinear model into a linear programming problem.
The accuracy and precision of the proposed model were verified
through numerical simulations and analyses. The following
conclusions were drawn: 1) the proposed method reduces the
DN total operating cost by 57.07% compared to BS clusters
without a backup storage configuration. The total BS operating
costs were 25.97% lower than those of the traditional strategies. The
rationale is as follows: it fully uses the BS’s redundant ES and
revitalizes existing ES scheduling resources. Consequently, there is
less need for an ESS in the DN, which reduces investment costs. 2)
BS-clustering collaboration can regulate voltage fluctuations, reduce
DN losses, and increase DN voltage levels. Compared to the
traditional strategy, the proposed method reduces the network loss
cost and voltage volatility by 13.67% and 24.57%, respectively. The
self-provided BES output of the BS can help the grid cut peaks, fill
valleys, and reduce the burden on the primary grid and liaison lines.
This creates considerable low-carbon benefits, along with improved
economics. In subsequent studies, the energy consumption BS will
consider the effects of temperature and humidity. This facilitates a
more realistic BS model. Meanwhile, the participation of BS in other
ancillary markets, such as distribution network frequency regulation,
is also a focus of our future research.
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