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The traditional short circuit ratio index does not consider the impact of energy
storage devices (ESDs) and cannot be used for the collaborative optimization of
ESDs and renewable energy sources (RESs). Therefore, this paper proposes a
novel synergistic capacity short circuit ratio (SCSCR) index, which can reflect the
interaction between multiple RESs and ESDs on each bus under different
capacities. Based on the proposed SCSCR, a coordinated optimization
method of RESs and ESDs is proposed. It ensures system strength while
determining the optimal location and capacity proportion of RESs and ESDs.
Firstly, the location and capacity proportion of RESs are obtained through
optimization method because the system strength is mainly determined by
RESs connection points. Secondly, the optimal location and capacity
proportion of the ESDs are found under the optimal configuration of the
RESs. The proposed optimization method ensures the system strength while
obtaining the optimal location and optimal capacity proportion of RESs and ESDs.
Finally, the simulation results verify the effectiveness of this method on the IEEE
9 bus and 39 bus systems, providing reference for the site selection and efficient
operation of RESs and ESDs.
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1 Introduction

Under the background of the rapid development of new energy sources, issues of power
system stability have gradually emerged, scholars have conducted extensive research (Wang
et al., 2024; Kumar et al., 2013; Wang et al., 2022; Han et al., 2008). The continuous increase
in the number of renewable energy sources (RESs), such as photovoltaic and wind power
stations, had a significant impact on the stability of power transmission. RESs exhibited
uncertainty and variability, with their power generation being influenced by factors like
weather and seasons, potentially leading to fluctuations in the frequency and voltage of the
power system (Kumar, 2024). This caused greater challenges for the system in terms of
dispatching and balancing supply and demand (Kumar et al., 2018; Satapathy and Kumar,
2019a). When a substantial integration of RESs occurs at weak points, it can uncover
undesirable stability issues, particularly concerning voltage stability and quality, potentially
leading to significant system failures (Wu et al., 2017; Satapathy and Kumar, 2019b).
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System strength denotes the capacity of the interconnection
point between the power grid and renewable energy sources to
maintain voltage stability and quality (IEEE guide for planning
DC, 1997). When solar and wind energy are integrated into the
grid intermittent, they introduce variability and uncertainty,
which can challenge voltage stability and quality. It is crucial
to identify and address these vulnerabilities by precisely
measuring and assessing system strength to effectively guide
power grid planning, operations, and dispatch, thereby
ensuring the safe, efficient, and reliable power supply of the
new energy grid.

Short circuit ratio (SCR) is an important indicator for evaluating
the strength of the power grid, and its simple and intuitive
characteristics provide important references for power grid
planning and operation (Connection of Wind Farms to, 2016;
Wang et al., 2020a). The critical short circuit ratio (CSCR) is
defined as the SCR corresponding to the critical stable state of
the system voltage, which can be used as a critical value to
distinguish weak systems (Yu et al., 2021).

When renewable power plants electrically close, they interact
with each other. The impact increases with the increase of RES
proportion (Wang et al., 2020b). However, the traditional SCR
calculation methods overlook the interactions between
renewable energy power plants. In this case, the SCR
calculation method may provide inaccurate estimates of
system strength at the RES interconnection point (Zhang
et al., 2014). A generalized effective short circuit ratio
(GESCR) index was proposed to address the contradictions
encountered in early indicators in empirical reasoning (Xiao
et al., 2019). But this indicator was too complex to be applied to
large-scale power systems.

To address the issue of strength assessment in multi-machine
systems, the weighted short-circuit ratio (WSCR) method
developed by ERCOT (IEEE guide for planning DC, 1997) and
(Schmall et al., 2015), and the composite short circuit ratio method
developed by GE (Fernandes et al., 2015) and (Minnesota
Renewable Energy Integration and, 2014) considered the impact
of RES interactions on system strength. However, the above-
mentioned SCR assumed that all power electronic devices are
connected to the same bus, which can not reflect the true
characteristics of power systems. To address the above issues,
the SCR was generalized in Dong et al., (2018); Weifang et al.,
(2010), multi-infeed short circuit ratio (MSCR), generalized short
circuit ratio (gSCR), and Critical generalized short circuit ratio
(CgSCR) were defined to quantify the system strength of multi-
infeed systems. In Wu et al. (2017), considering the impact of
interactions between multiple RESs at different buses on system
strength, a site-dependent short circuit ratio (SDSCR) was
proposed, which can more accurately evaluate system strength
based on distance. However, the SCR evaluation in the above
literature mainly focused on the interaction between RESs,
ignoring the impact of energy storage devices (ESDs), electric
vehicles, etc., on system strength. There are a large number of
ESDs in the new power system, and their interaction with RESs will
affect system stability. Especially for electric vehicles, their
charging and discharging times are more variable and
uncontrolled, which has a greater impact on system stability
(Kumar et al., 2023a; Kumar et al., 2023b).

Planning and evaluation are two important parts for the
investment, operations and benefits of the renewable energy
power projects (Li et al., 2019; Kumar et al., 2016). Wen et al.
(2015) proposed a novel method for transmission network
expansion planning taking into account uncertainties of both
loads and renewable generations. Yu et al. (2009) proposed a
chance constrained formulation to tackle the uncertainties of
load and wind turbine generator in transmission network
expansion planning, which can calculate the uncertainty in
transmission grid expansion planning more efficiently. But most
of the above work focused on the perspective of economic dispatch.
There is little research on how to use SCR index for collaborative
optimization allocation of RESs and ESDs in the system.

Base on SDSCR, (Li et al., 2024) expanded the SCR by
considering the interaction between ESDs and RESs, and
proposed integrated short circuit ratio (ISCR). However, ISCR
did not obtain the optimal capacity from the perspective of RESs
and ESDs capacity proportion. Therefore, based on this, this paper
considers the impact of different capacity proportion on system
strength and proposes SCSCR. Based on SCSCR, a coordinated
optimization method of RESs and ESDs is proposed, which can
determine the optimal capacity proportion and optimal installation
location simultaneously.

The main contributions of this paper are listed as follows:

(1) A novel system strength evaluation index SCSCR is proposed,
which considers the interaction between RESs and ESDs at
different capacities in the system, making it more accurate for
evaluating weak points in the system.

(2) A coordinated optimization method based on SCSCR is
proposed to obtain the optimal location and capacity of RESs
and ESDs while ensuring the system strength of RES buses.

The rest of the paper is organized as follows. Section 2 proposes
SCSCR for system strength assessment of multi RESs and ESDs
system. Section 3 proposed a coordinated optimization method of
RES and ESDs based on SCSCR. Conclusions are drawn in Section 4.

2 Proposed SCSCR

2.1 Traditional SCR

The strength of the power grid system on one bus can be
evaluated using SCR. When RES is connected to the grid system
at the bus i, the SCR at the bus can be defined in (1) (IEEE guide
for planning DC, 1997). The tradition SCR is suitable for
measuring the system strength of a single machine grid
connected system, but it cannot accurately evaluate the system
strength of a multi machine system because it does not consider
the mutual influence between each grid connected unit (Xiao
et al., 2019).

SCRi � Sac,i
∣∣∣∣ ∣∣∣∣
Pd,i

� Ui| |2
Pd,i

•
1
Zi| | (1)

where Sac,i is the system short-circuit capacity at bus i, Pd,i is the
power injected at bus i, Ui is the voltage at bus i, and Zi is the
Thevenin equivalent impedance at bus i.

Frontiers in Energy Research frontiersin.org02

Liang et al. 10.3389/fenrg.2024.1467624

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1467624


When the reference voltage in the system is the rated voltageUN

of the bus and the reference power is the rated power Pd,N, the
reference impedance of the system Zb is as follows.

Zb � U2
N

Pd,N

Substituting Zb into Equation 1, when the system uses the rated
value as the reference value, the SCR is inversely proportional to the
per unit value of the equivalent impedance, that is

SCRi � 1
Zi| |/Zb

� 1

Zi,pu

∣∣∣∣ ∣∣∣∣
Generally speaking, the larger the SCRi, the stronger the

system at bus i, as the voltage at bus i is far from its voltage
stability limit (Wu et al., 2017; IEEE guide for planning DC,
1997). The value of CSCR is 3 (Kim et al., 2022; Hadavi et al.,
2021), and if SCR is greater than 3, the power grid is considered
strong at that location, which means that the power grid can
accommodate more renewable energy and energy storage devices
at this point while maintaining voltage stability. If the SCR value
is between 2 and 3, the power grid is considered weak at that
point. If the SCR is less than 2, then the power grid is considered
very weak at that location.

The SCR defined in (1) only considers the impact of a single RES
output power, but the interaction between multiple RESs in the
system can affect the system strength. SDSCR was proposed in (Wu
et al., 2017) to consider the effects of interactions between multiple
RESs. SDSCR is defined as:

SDSCRi � UR,i

∣∣∣∣ ∣∣∣∣2
PR,i + ∑

j∈R,j≠i

ZRR,ij

ZRR,ii

UR,i
*

UR,j
* PR,j

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ ZRR,ii

∣∣∣∣ ∣∣∣∣
where PR,i, PR,j are the RES output power of bus i and j, ZRR,ij is the
(i, j)th element in node impedance matrix ZRR, R is the set of the
buses connected with RESs.

SDSCR considers the interaction between RESs, expanded the
definition of SCR to make it more accurate in evaluating system
strength, and provides reference for optimizing the location and
capacity of RESs. However, SDSCR did not consider the interaction
between ESDs and RESs, and can only reflect the system strength
when the power of the power equipment in the system is given. It
cannot dynamically reflect the impact of changes in power
equipment capacity on the system strength. Therefore, this paper
proposes a novel SCSCR index that considers the impact of power
devices with different capacity proportions on the strength of the bus
in the system.

2.2 Proposed synergistic capacity short
circuit ratio (SCSCR)

The multiple RESs and ESDs are connected to the grid as shown
in Figure 1. ESD plays an important role in flexible adjustment of
RESs (Wang et al., 2021). When ESD operates in the discharged
state, it can output energy to the system and can be considered as a
power source. The network equation can be expressed as:

FIGURE 1
Multiple RESs and ESDs-connected grid system.
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UG

UR

UE

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � ZGG

ZRG

ZEG

ZGR

ZRR

ZER

ZGE

ZRE

ZEE

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ IG
IR
IE

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
where UG, UR, and UE are voltage vectors on the synchronous
generator bus, RES bus, and ESD bus; ZGG, ZGR, ZRR, ZRE, and ZEE

are the corresponding blocks of the bus impedance matrix; IG, IR,
and IE are current vectors connected to the buss of SG, RES and
ESD. The voltage at bus i connected to RES can be expressed as:

UR,i � ∑
m∈G

ZRG,imIGηm + ∑
k∈E

ZRE,ikIFηk +∑
j∈R

ZRR,ijIRηj (2)

where the UR,i is the ith element in UR; ηm is the current proportion
of themth device in IG; ηk is the current proportion of the kth device

in IE; ηj is the current proportion of the j
th device in IR;ZRG,im is the

(i, m)th element in ZRG; ZRE,ik is the (i, k)th element in ZRE; ZRR,ij is
the (i, j)th element in ZRR; G is the bus set connected to SG, E is the
bus set connected to ESD, and R is the bus set connected to RES.

Equation 2 can be transformed into

UR,i − UG,m

ZRR,im
� Ie,i � Se,i

UR,i
( )* (3)

where

UG,m � ∑
m∈G

ZRG,imIGηm

Ie,i � ∑
j∈R

ZRR,ij

ZRR,ii
IRηj +∑

k∈E

ZRE,ik

ZRR,ii
IEηk

FIGURE 2
Equivalent model of system with multiple RESs and ESDs connected.

FIGURE 3
Optimization flowchart of the proposed method for RESs and ESDs.
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Se,i � UR,iIe,i* � UR,i ∑
j ∈ R

ZRR,ij

ZRR,ii
IRηj + ∑

k ∈ E

ZRE,ik

ZRR,ii
IEηk⎛⎝ ⎞⎠*

� ∑
j∈R

ZRR,ij
*

ZRR,ii
*

UR,i

UR,j
SRηj +∑

k∈E

ZRE,ik
*

ZRR,ii
*

UR,i

UR,k
SEηk

(4)

Equation 3 is the same power flow equation for a dual bus
system, as shown in Figure 1. Se,i, UG,m and ZRR,im respectively
represent the equivalent input power, voltage source, and Thevenin
impedance at bus i. From Equation 4, it can be seen that in Figure 2,
Se,i includes the output power of RES in the system, i.e., SR, and the
output power of ESD, i.e., SE. Therefore, Se,i can reflect the
interaction effect of the output power of RESs and ESDs located
on different buses of the system.

According to Wu et al. (2017), the boundary conditions for
voltage stability in power systems can be derived as

UR,i

∣∣∣∣ ∣∣∣∣ cos θGm,Ri

UG,m

∣∣∣∣ ∣∣∣∣ � Re
UR,i

UG,m
[ ] � 1

2
(5)

where θGm,Ri � θGm − θRi, is the phase difference of voltages UG,m

and UR,i. Substitute Equation 3 into Equation 5:

UR,i

∣∣∣∣ ∣∣∣∣2
∑
j∈R

ZRR,ij

ZRR,ii

UR,i
*

UR,j
* S*Rηj + ∑

k∈E

ZRE,ik

ZRR,ii

UR,i
*

UR,k
* S*Eηk

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ ZRR,im

∣∣∣∣ ∣∣∣∣ � 1 (6)

In the distribution network with multiple new energy sources
connected, we defined the SCSCR based on Equation 6 to quantify
the strength of the system. SCSCR can reflect the distance to the
voltage stability boundary.

When ESD operates in a discharge state, SCSCR is
represented as:

SCSCRi � UR,i

∣∣∣∣ ∣∣∣∣2
∑
j∈R

ZRR,ij

ZRR,ii

UR,i
*

UR,j
* PRηR,j + ∑

k∈E

ZRE,ik

ZRR,ii

UR,i
*

UR,k
* PEηE,k

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ ZRR,im

∣∣∣∣ ∣∣∣∣ (7)

∑
j∈R

∑
k∈E

ηR,j + ηE,k � 1

PR + PE � P

where PR and PE represent the total output power of RESs and ESDs,
ηR,j and ηE,k represent the capacity proportions of each RESs and
ESDs, and P represents the total output power of RESs and ESDs in
the system.

It can be seen from (7) that SCSCR is a generalized form of SCR
defined in (1), when only one RES is connected to the power system,
the power of other RESs and ESDs in the equation is zero. At this time,
the expression of SCSCR is simplified to the same expression as SCR
in (1), whichmeans that SCR is actually a special case of SCSCR in the
case of a single RES connection. In addition, SCSCR retains the same
physical interpretation as SCR, which evaluates system strength based
on the distance between the system and the voltage stability limit.

FIGURE 4
Modified IEEE 9 bus system.
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3 The proposed coordinated
optimization method of RESs and ESDs

The coordinated deployment of RES and ESD can
significantly enhance the flexibility and efficiency of resource
utilization. However, the integration of a substantial number of
RES and ESD into weak power grids may lead to voltage stability
issues. System strength is highly correlated with the installation
locations and capacities of RES and ESD. Therefore, there is a
necessity to optimize the configuration of these, identifying the
ideal locations and proportions to ensure adequate
system strength.

RESs serve as the primary power output within the distribution
network, characterized by their relatively fixed quantity and
location. In contrast, ESD predominantly fulfill an auxiliary
regulatory function, typically featuring smaller capacities and
installation locations that are less constrained by geographical
considerations (Li et al., 2024). So we evaluate the system
strength by calculating the SCSCR of RES buses.

A coordinated optimization method based on the SCSCR is
proposed. Firstly, at the upper level, the focus is on optimizing the
location and capacity of RES. Secondly at the lower level, the
optimization process is applied to the location and capacity of
ESD. This ensures that the SCSCR value at the RES buses is
maximized, thereby determining the optimal location and
capacity proportion that enhances the overall system strength
of the bus.

In terms of upper-level optimization, the influence of ESD is
not considered, given that ESD can be flexibly configured and
typically have a smaller capacity compared to RES. Additionally,
the number of RES installations is generally fixed. It is also
assumed that the system operates under normal working
conditions, leading to voltages at each bus being close to their
nominal values. The SCSCR, as defined in Equation 7, has been
reformulated as presented in Equation 8. For the lower level

optimization of ESD, the impact of these devices is taken into
account, and the SCSCR value at the RES bus should be computed
using Equation 7.

SCSCRi � UR,i

∣∣∣∣ ∣∣∣∣2
∑
j∈R

ZRR,ij

ZRR,ii

UR,i
*

UR,j
* PRηj

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ ZRR,im

∣∣∣∣ ∣∣∣∣ (8)

The optimal location and optimal proportion standards for RESs
and ESDs should follow the following principles:

Firstly, when RES or ESD are installed at different buses, the
total capacity of several RES and ESD in the system is kept constant,
while the capacity proportions are changed to calculate the SCSCR.
This process determines the minimum value of SCSCR (MSCSCR)
at the RES bus for each installation case. The optimal installation
configuration corresponds to the case where theMSCSCR reaches its
maximum value. The maximization expression for MSCSCR is
presented in Equation 9, where n represents the number of
installation cases.

max

min SCSCRη,min
1 , SCSCRη,min

2 , ..., SCSCRη,min
R( )

1
,

min SCSCRη,min
1 , SCSCRη,min

2 , ..., SCSCRη,min
R( )

2

, ..., min SCSCRη,min
1 , SCSCRη,min

2 , ..., SCSCRη,min
R( )

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

The multi-source coordinated optimization method flowchart
and steps are described in Figure 3 and Algorithm 1, respectively.
The installation case is obtained from Equation 10

ncase � Cninstalltion
npotential

(10)

where ncase is installation cases, npotential is alternative potential buses,
ninstalltion is the number of RESs or ESDs to be installed.

1. Determine m alternative installation

cases for RESs

2. Iteration:i ≤ m

Calculate the SCSCR of RES buses for different capacity

proportions under each RES installation case i = i+1

3. Determine the MSCSCR for different capacity

proportions under each installation case

4. Find the maximum value of MSCSCR

5. The location and proportion corresponding to

this MSCSCR are optimal

6. Determine n alternative installation

cases for ESDs

7. Iteration:i ≤ n

RESs are installed in the optimal location calculated

above according to the optimal proportion

Calculate the MSCSCR of RES buses for different capacity

proportions under each ESD installation case i = i+1

8. Determine the MSCSCR for different capacity

proportions under each installation case

9. Find the maximum value of MSCSCR

10. The location and proportion corresponding to

this MSCSCR are optimal

Algorithm 1. Optimization process.

FIGURE 5
MSCSCR when changing RES1 capacity under different
installation conditions.
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4 Case studies

4.1 IEEE 9 bus system

To validate the efficacy of the multi-source collaborative
optimization technique proposed for distribution network planning
utilizing SCSCR, we employed the IEEE 9 busmodel to simulate a RES
and ESD integrated distribution network. As depicted in Figure 4, bus
1 serves as an idealized voltage source, replicating the power system
with adjustable frequency and voltage capabilities. The branch
parameters are presented in per-unit values, the base voltage VB is
230 kV and the base power SB is 100 MW. Following 5 buses as

potential buses: 2, 3, 5, 6, and 8 are chosen as the RES potential buses,
ESD potential buses are 2, 3, 4, 5, 6, 7, 8, and 9.

4.1.1 The optimization of two RESs
The total capacity of two RES is 40 MW.When the total capacity

of two RESs is constant and RESs are installed at different
proportions on different buses, the value of MSCSCR is shown in
Figure 5. As shown in Figure 5, the x-axis represents the percentage
of RES1 in the total capacity of the two RESs. It can be seen that
under different installation cases, as the capacity of RES1 changes,
the MSCSCR in the RES bus changes, which indicates that the
capacity of RES can affect the system strength. When two RESs are

TABLE 2 MSCSR for changing the proportion of two ESDs capacity at different buses.

Case Bus of two ESDs Capacity proportion MSCSCR Case Bus of two ESDs Capacity proportion MSCSCR

ESD1 (%) ESD2 (%) ESD1 (%) ESD2 (%)

1 5, 6 6.6 13.4 3.31331 16 5, 6 5.8 14.2 3.31106

2 5, 6 6.5 13.5 3.31323 17 5, 6 7.4 12.6 3.31085

3 5, 6 6.8 13.2 3.31301 18 5, 6 5.7 14.3 3.31075

4 5, 6 6.4 13.6 3.31292 19 5, 6 7.5 12.5 3.31054

5 5, 6 6.8 13.2 3.31270 20 5, 6 5.6 14.4 3.31044

6 5, 6 6.3 13.7 3.31261 21 4, 6 12.6 7.4 3.31028

7 5, 6 6.9 13.1 3.31239 22 5, 6 7.6 12.4 3.31024

8 5, 6 6.2 13.8 3.31230 23 4, 6 12.7 7.3 3.31019

9 5, 6 7.0 13.0 3.31208 24 4, 6 12.5 7.5 3.31015

10 5, 6 6.1 13.9 3.31199 25 4, 6 12.4 7.6 3.31001

11 5, 6 7.1 12.9 3.31177 26 4, 6 12.8 7.2 3.31001

12 5, 6 6.0 14.0 3.31168 27 5, 6 7.7 12.3 3.30993

13 5, 6 7.2 12.8 3.31147 28 5, 6 5.4 14.6 3.30982

14 5, 6 5.9 14.1 3.31137 29 5, 6 7.8 12.2 3.30962

15 5, 6 7.3 12.7 3.31116 30 5, 6 5.3 14.7 3.30951

TABLE 1 MSCSCR for changing the proportion of one ESD capacity when ESD is installed at bus 6.

Case Bus of ESD Capacity proportion of ESD (%) MSCSCR

1 6 7.35 3.31342

2 6 7.36 3.31341

3 6 7.37 3.31340

4 6 7.34 3.31340

5 6 7.33 3.31339

6 6 7.38 3.31338

7 6 7.39 3.31337

8 6 7.32 3.31337

9 6 7.31 3.31336

10 6 7.40 3.31335
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installed at bus 5 and 6 with the capacity proportion of ηR,5 � 48.1%
and ηR,6 � 51.9%, the value of MSCSCR is the highest. According to
the optimal location criterion, the optimal installation scenario for
two RESs is bus 5 and bus 6.

4.1.2 The optimization with one ESD
We consider different cases of ESDs integration including the

integrations of one ESD and two ESDs into system. Keep the total
capacity of RESs and ESDs at 40 MW, and install RES1 and RES2 on
bus 5 and 6 respectively with the capacity proportion of ηR,5 � 48.1%
and ηR,6 � 51.9%.

Changing the ESD capacity proportion in each installation
case, it can be seen from Table 1 that when ESD is installed at
bus 6 with ηE � 7.35%, i.e., PE � 2.92MW, MSCSCR reaches
its maximum.

4.1.3 The optimization with two ESDs
Assuming RESs account for 80% of the total capacity and two ESDs

account for 20%, changing the ESD capacity proportion under different
installation cases, as shown in Table 2, when two ESDs are installed at
bus 5 and 6 with ηE,5 � 6.6% and ηE,6 � 13.4%, i.e. PE1 � 2.64MW,
and PE2 � 5.36MW, respectively, MSCSCR is maximized.

FIGURE 6
Modified IEEE 39 bus system.

TABLE 3 MSCSCR for changing the proportion of four RESs capacity at different buses.

Case Bus of RESs Capacity proportions of RESs MSCSCR

1 8, 39, 33, 35 10%, 10%, 40%, 40% 3.48638

2 8, 39, 35, 36 10%, 10%, 10%, 70% 3.48622

3 8, 39, 33, 35 10%, 10%, 50%, 30% 3.44151

4 8, 39, 33, 34 10%, 10%, 10%, 70% 3.42654

5 8, 39, 35, 36 10%, 10%, 20%, 60% 3.42428

6 8, 32, 33, 35 10%, 20%, 40%, 30% 3.41241

7 8, 39, 33, 35 20%, 10%, 40%, 30% 3.38674

8 32, 39, 33, 35 20%, 10%, 40%, 30% 3.36852

9 8, 39, 33, 35 10%, 20%, 40%, 30% 3.35984

10 8, 32, 35, 36 10%, 20%, 10%, 60% 3.33539
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4.2 IEEE 39 bus system

This section further validates the effectiveness of the
proposed method using the IEEE39 bus system, as shown in
Figure 6. The system is divided into two regions for
optimization, and bus 30 is used as the interconnection point
with the power grid. The interaction between power devices
clustered in the two regions is considered, and the optimal
locations and capacities of RESs and ESDs in the two regions
are obtained. The potential buses for RESs are 8, 31, 32, and39 in
region 1 and 33, 34, 35, and 36 in region 2. The potential buses
for ESDs are 8, 10, 11, 13, 31, and 33 in region 1 and 16, 19, 21,
22, 23, 33, and 35 in region 2.

When the total capacity of four RESs is fixed at 200MW, RESs can
be installed at different buses with different capacity proportions. The
values ofMSCSCR are shown in Table 3, andMSCSCRhas the highest
value in case 1, indicating that the optimal proportion of the four RESs
is ηR,8 � 10%, ηR,39 � 10%, ηR,33 � 40%, ηR,35 � 40%, The optimal
installation locations are bus 8, 39, 33, and 35.

Assuming that RES accounts for 80% of the total capacity and
two ESDs accounts for 20%, four RESs are installed at bus 8, 39, 33,
and 35 with a capacity proportion of ηR,8 � 10%, ηR,39 � 10%, ηR,33 �
40% and ηR,35 � 40%, respectively. By changing the ESD capacity
proportion under each ESD installation situation, it can be seen from
Table 4 that when two ESDs are installed at bus 8 and 19 with ηE,8 �
3.13% and ηE,19 � 16.87% respectively, MSCSCR is maximized.

5 Conclusion

The traditional optimization of RESs and ESDs is based on
economy dispatch, while for the power system, system stability is the
most important. Therefore, this paper optimizes the location and
capacity of RESs and ESDs based on a new system strength indicator.
Based on theoretical analysis and simulation results, the following
conclusions can be drawn:

1) A novel system strength evaluation index SCSCR has been
proposed, which considers the interaction between RESs and
ESDs of different capacities.

2) A coordinated optimization method has been proposed, which
can maintain the system strength while obtaining the optimal
location and capacity ratio in the optimized configuration of
RESs and ESDs.

3) The simulation results have been provided to verify the
effectiveness of the proposed method verified through IEEE
9 bus and 39 bus system simulations.
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TABLE 4 MSCSR for changing the proportion of two ESDs capacity at different buses.

Case Bus of ESD Capacity proportion of ESD1 (%) Capacity proportion of ESD2 (%) MSCSCR

1 8, 19 3.13 16.87 3.47965

2 8, 19 3.14 16.86 3.47964

3 8, 19 3.12 16.88 3.47962

4 8, 19 3.11 16.89 3.47958

5 8, 19 3.15 16.85 3.47958

6 8, 19 3.10 16.90 3.47955

7 8, 19 3.16 16.84 3.47952

8 8, 19 3.09 16.91 3.47951

9 8, 19 3.17 16.83 3.47947

10 8, 19 3.08 16.92 3.47947
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