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Introduction: This paper constructs a revenue model for an independent
electrochemical energy storage (EES) power station with the aim of analyzing
its full life-cycle economic benefits under the electricity spot market.

Methods: The model integrates the marginal degradation cost (MDC), energy
arbitrage, ancillary services, and annual operation and maintenance (O&M) costs
to calculate the net profits of the EES power station. Using an iterative
optimization approach, we determine the optimal MDC and analyze the
economic end of life (EOL) for different types of EES power stations.

Results: By examining real-world examples from the California energy market,
we find that the full life-cycle benefits of an EES power station peak when its MDC
is optimal, at $45/MWh-throughput. Under these conditions, the economic and
physical EOL of commercial/industrial EES power station is 9 years, while the
economic EOL of residential-grade EES power station is 8 years, which is shorter
than their physical EOL of 9 years.

Discussion: The study further indicates that the economic life of an EES power
station is influenced by multiple factors, and operators need to determine the
optimal economic EOL to maximize revenue based on battery degradation
characteristics, market conditions and operational strategy.
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1 Introduction

With the global energy structure transition and the large-scale integration of renewable
energy, research on energy storage technologies and their supporting market mechanisms
has become the focus of current market domain (Zhu et al., 2024). Electrochemical energy
storage (EES) not only provides effective energy storage solutions but also offers new
business opportunities and operational strategies for electricity market participants. At
present, the configuration of energy storage projects mainly focuses on the source-side
renewable energy configuration and independent energy storage applications.

In some areas, energy storage is applied in the frequency regulation market transactions
in the form of an integrated system (Zhang and Wang, 2021), (Liang et al., 2021). From the
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perspective of specific practices, energy storage is primarily bundled
with thermal power, wind power, and photovoltaic in the form of a
consortium to participate in market transactions in the early stages
(Chen et al., 2021), (Zhu et al., 2022). However, due to the small scale
of EES devices in integrated systems, their effectiveness in achieving
time-shifting of electrical energy and promoting peak shaving and
valley filling is limited (Wang et al., 2024). With the rapid
development of renewable energy, the power system urgently
needs independent energy storage to participate in the electricity
market (He et al., 2022). Independent EES systems, with their fast
response and efficient charging and discharging characteristics,
bring new vitality and opportunities to the electricity spot
market, especially in promoting the integration of renewable
energy, improving system reliability, and optimizing energy
utilization efficiency.

From the perspective of top-level design, EES will recover most
of its revenue through the electricity market, especially the spot
market. The operation mechanism involves industrial and
commercial users obtaining the electricity prices for each time
period of the following day based on the clearing results of the
day-ahead electricity market. Combining the capacity, cycle
efficiency of the EES power station, and the load forecast for the
next day, the charging and discharging plan of the power station is
formulated. During the low price periods, the EES power station acts
as an electricity demand-side participant, purchasing electricity
from the grid at relatively lower prices to charge the batteries
and store cheap electricity (Sakti et al., 2017), (Xu et al., 2018).
During the peak price periods, which usually coincide with the peak
load periods, the EES power station switches to an electricity supply-
side participant, with the storage batteries supplying electricity to the
load and outputting to the grid, realizing peak load shifting and
obtaining price difference revenue from peak-valley price arbitrage
(Padmanabhan et al., 2020; Hesse et al., 2019; Fares and Webber,
2018). Through the flexible operation of the above-mentioned dual
roles, the EES power station can earn arbitrage profits from the
fluctuations of intraday power load and spot prices, becoming an
important profit-increasing entity in the electricity spot market. Cui
et al. (2021) and his partner proposed an optimal operation strategy
with the goal of maximizing the expected revenue by considering the
operating cost of the storage device and the prediction deviation of
the new energy generation, so as to avoid the loss of revenue caused
by the prediction deviation. For the problem of bidding strategy in
the integrated system electric energy spot market, the researchers
propose a spot declaration strategy aiming at maximising the
expected benefits, which is applied to the electric energy spot
market trading (Schram et al., 2020).

When rare high price differentials become part of the revenue, a
longer calendar life may be more beneficial for energy arbitrage than
an extended cycle life (Kumtepeli et al., 2020). In addition, EES
power stations can also utilize their flexible and fast charging and
discharging regulation capabilities to provide backup services,
frequency regulation, and other ancillary services to the power
grid, obtaining service revenue by participating in the bidding of
the electricity ancillary service market or signing long-term
agreements, which becomes an important way for the
commercialized operation of EES power stations.

The core elements of an EES power station are energy
transmission, battery management, and potential application

scenarios in the power system. As an independent entity
participating in the electricity spot market, the EES power
station gains revenue during the battery energy transmission
process. This paper aims to construct a revenue model for an
independent EES power station that comprehensively considers
the above factors to analyze its economic benefits in the
electricity spot market. By studying the profit model of EES
power stations in the electricity spot market, under limited
battery life and different electricity price fluctuations, the
owners and operators of EES power stations consider the
marginal degradation cost (MDC) and annual operation and
maintenance (O&M) costs. At the same time, they optimize the
battery charging and discharging plan through operational
decisions to extend battery life and improve the revenue of the
EES power station. This research provides a new perspective for
the operators of EES power stations, helping them better
understand the economic potential of the EES station and
formulate corresponding operation strategies to maximize
revenue. Furthermore, this research also contributes to
promoting the healthy development and market application of
EES technology.

2 Methods

2.1 EES power station profit model

As an independent market entity, the EES power station needs to
interact and collaborate with the power grid and users through
electricity market mechanisms and technical means to ensure
project revenue. The business model of an independent EES
power station participating in the electricity market transactions
is shown in Figure 1. Currently, energy storage only participates in
the market as a spot price taker, usually reporting quantity without
reporting price. From the declaration perspective, energy storage
only needs to declare the next day’s charging and discharging
dispatch curve in the day-ahead market. On the operation day,
the charging and discharging are arranged according to the actual
cleared power plan, and the actual clearing depends on the power
grid dispatch arrangement. Theoretically, the power grid will
prioritize dispatching according to the energy storage declaration
curve, and the actual charged and discharged electricity is settled at
the spot price.

Based on the analysis of the main revenue and operating costs of
the EES power station, and combining the short-term dispatch and
long-term decision models, this paper adopts an itemized method to
calculate the net operating revenue of the EES power station over its
entire life cycle. The mathematical formula of the model is as follows
(1)--(8):

RESSmax � max
x

RESS � max
x

∑
t≤T

δtRt x( ) (1)

R*
t � maxRt Pt( ) � max

Pt∈F
RM Pt( ) − CBD

t Pt( ) + As − Cfix

� max
Pt∈F

∑ Πh pdis
h − pcha

h( )[ ] − ∑
h∈ t+Δt( )

μt pcha
h + pdis

h + φ( ) + As

− Cfix

(2)
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dt � ∑
θ

2ztηt,θθ + φ (3)

s.t. ∑
t≤T

dt x( )≤Ḏ (4)

dt x( )≥φ (5)
Sc � 1 − ζ( ) Sc−1 + pcha

h ηt Ht( ) − pdis
h /ηt Ht( ) (6)

Ht+1 � Ht −
�H −H( )dt

Ḏ
(7)

0≤pdis
h , pcha

h ≤Pt (8)

Formula 1 utilizes the exponential discount factor (δt) and the
short-term benefits (Rt) of the EES power station to achieve the optimal
long-term revenue of the EES power station under the electricity spot
market, δt = (1+r)-α, where r represents the discount rate, and α is the
number of years the battery is used. Formula 2 calculates the short-term
net revenue (R*

t ) of the EES power station by using the difference
between the revenue and cost items of the EES power station, without
considering the real-time market electricity deviation and using a daily
settlement and monthly reconciliation method. The revenue items
include market revenue, RMt (battery charging and discharging
revenue) and ancillary service revenue As (i.e., battery reserve
revenue), while the cost items include the total battery degradation
cost CBD

t and the fixed operation and maintenance cost of the EES
power station Cfix The degradation degree of the EES power station
battery in period t is obtained through the sum of battery cycle
degradation and calendar degradation (Formula 3), where Et
represents the battery capacity within time t, and 2Et represents the
total energy of charging and discharging in a cycle process. Formulas 4,
5, as boundary conditions, respectively limit the degradation and usage
of the EES power station during operation to be less than the total usage
before the end of the battery’s physical life, and the total degradation

amount in period t does not exceed the calendar degradation value of
the battery. Formulas 6, 7 respectively represent the state of charge
(SOC) and state of health (SOH) functions of the EES power station
battery, both of which are related to the energy, battery capacity, and
charging and discharging efficiency of the EES power station. Formula 8
is the boundary condition for the power generation and charging
amount of the EES power station.

2.2 Parameter settings

We utilize the net revenue model of the EES power station to
simulate the life-cycle operation of the energy storage power station and
analyze the main revenue items of the EES power station under the
electricity spot market. The main parameters and data used in the
analysis case are as follows: We use the local marginal prices and non-
spinning reserve service prices of the California Independent System
Operator (CAISO) in 2018 to represent the price situation for each year
during the battery’s life cycle, with an average peak-valley price
difference of about $32/MWh. The power station adopts LFP
battery energy storage, with an initial battery charging and
discharging efficiency of 95% and no self-discharge effect, i.e., a self-
discharge rate of 0. Assuming that after operating 2000 cycles at 100%
depth of discharge, the capacity retention rate of the energy storage
power station is about 80% of the original battery (Ecker et al., 2014), at
which point the battery energy efficiency is low, and the battery is
considered to have ended its physical life. The average calendar
degradation of the energy storage power station is estimated to be a
1% capacity loss per year (Schuster et al., 2016; Keil et al., 2016).
Independent EES power stations require 24 h staffing, and labor
operation and maintenance costs and equipment maintenance costs
are relatively high. The annual operation and maintenance costs for

FIGURE 1
Graphical illustration of the business model for participation of EES plants in electricity market trading.
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large-scale industrial-grade EES power stations and commercial and
industrial EES are $16/kW-year and $27/kW-year, respectively (Chen
et al., 2023; He et al., 2020).

3 Results

3.1 Battery life and SOH

Figure 2 demonstrates the SOH trend of battery over time,
considering different marginal degradation cost (MDC) values. As
the battery inevitably experience cycling degradation and
performance degradation with increasing charge-discharge cycles, its
SOH also shows a decreasing trend with the increase in the usage time.
However, from the figure, we can observe that the larger the value of
MDC, the slower the SOH decline and the longer the physical life of the
battery. When MDC = 0, that is, without considering the degradation
cost of the battery, the SOH of the battery has dropped to below 80% in
about 2 years. In contrast, when MDC = 65, the battery’s SOH can still
remain above 85% after 10 years of use. This indicates that considering
MDC in the operational optimization of EES power stations and
moderately controlling charge-discharge power can effectively extend
battery life. Therefore, MDC is also considered an opportunity cost that
characterizes the long-term future value of EES power stations. In other
words, if theMDC is relatively large in the battery’s full life-cycle, future
benefits may be higher. However, it is not the case that the higher the
MDC is the better. Excessively high MDC can lead to reduced battery
utilization, potentially decreasing EES benefits. Thus, it is necessary to
seek a balance between prolonging the battery life and increasing the
battery utilization to select the optimal MDC value.

3.2 Full life-cycle benefits of EES

We utilize an EES revenuemodel to evaluate the life-cycle profits
of EES power stations. To determine the optimal MDC value, we

employed an iterative optimization approach. We simulated the EES
power station’s operation over its lifetime for a range of MDC values
from $0 to $100/MWh-throughput, in increments of $5/MWh-
throughput. For each MDC value, we calculated the total life-cycle
revenue using our comprehensive model. Figure 3 illustrates the
relationship between different MDCs and the profitability of EES
power stations. As the MDC increases, the life-cycle revenue of EES
power station rises sharply. When the MDC value increases from
0 to around $45/MWh-throughput, the revenue grows rapidly. This
indicates that within this range, the higher the MDC, the stronger
the EES power station’s profitability. The profits reach its peak when
the MDC value is approximately $45/MWh-throughput, which
represents the optimal operating point for maximizing the EES
power station’s life-cycle earnings. This optimal value was identified
as the MDC that resulted in the highest total revenue in our
simulations. When the MDC exceeds $45/MWh-throughput,
profits begin to decline slowly. Excessively high MDC lead to
accelerated battery degradation, shortened battery life and
reduced overall profitability. Therefore, as the MDC value
becomes increasingly large, approaching $100/MWh-throughput,
earnings begin to decrease dramatically.

For independent EES power stations, the profitability can be
realized by the way of auxiliary service (specifically referring to
reserve services in this context) in addition to the energy arbitrage
through the participation of EES in the electricity trading in the
spot market. As shown in Figure 2, at the optimal MDC ($45/
MWh-throughput), the battery’s SOH decreases to 80% in the
ninth year. Figure 4 illustrates the profitability of an EES power
station over its entire life-cycle under optimal MDC conditions.
The graph shows that the station’s profitability is highest in the
early stages of the project. Initially, energy arbitrage revenue is
$29.9/kW, and reserve services contribute $14.0/kW, resulting in a
total revenue of $43.9/kW. Energy arbitrage accounts for a larger
proportion of the revenue at this stage. However, as the EES power
station operates over its life-cycle, battery degradation intensifies,
causing a steady decline in energy arbitrage revenue. Ancillary

FIGURE 2
Physical life of batteries at different marginal degradation costs.
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services, being less affected by battery degradation, maintain
relatively stable demand and prices for reserve service capacity.
Consequently, the total annual revenue shows a downward trend.
By the eighth year, energy arbitrage revenue decreases to $16.9/
kW, while reserve services contribute $15.2/kW, resulting in a total
revenue of $32.0/kW.

In the last year of the battery’s life, all revenues drop sharply,
with total revenue amounting to only $16.6/kW. This trend shows
that, over time, battery degradation increases, the number of charge-
discharge times used for price arbitrage increases, and both battery
capacity and efficiency decrease, forcing the profitability of the
power station to decline. Providing reserve services, however, has
lower requirements for battery performance, needing only to
maintain a certain energy and power reserve, and is thus less
affected by battery degradation.

Therefore, EES power stations should focus on life-cycle
profitability and plan their operational strategies accordingly. In
the early stages of the project, emphasis can be placed on energy
arbitrage to fully utilize battery performance and obtain high
returns. As the battery degradation, the focus should gradually
shift towards increasing the proportion of ancillary services to
maintain a stable income.

3.3 Battery physical and economic life

Depending on the region and type of energy storage project, the
fixed operation and maintenance (O&M) costs for EES
power stations are estimated to range between 0 - $30/kW-year
(Hledik et al., 2018). Figures 5A, B show the relationship between the

FIGURE 3
The relationship between the profits of EES and MDC.

FIGURE 4
Trends in life-cycle profits of EES power stations under different operating models in the spot market.
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life-cycle net revenue and the battery’s SOH for EES projects in the
spot market under different O&M cost levels (16 $/kW-year for
commercial/industrial energy storage, and 27 $/kW-year for
distributed/residential energy storage). As the years of use
increase, the battery capacity irreversibly decreases. When the
SOH drops to 80%, it is typically considered the physical end of
the life (EOL) of battery. He et al. (Ecker et al., 2014) proposed that if
an EES project cannot achieve positive net profits during operation,
this point should be considered the economic end of life for the EES
power station. To analyze the net revenue situation of EES power
stations in the spot market, this paper introduces the concept of the
battery’s economic end of life.

In this case, when the MDC is set at its optimal value ($45/
MWh-throughput), the physical life of the LiFePO4 battery is
9 years. However, from an economic perspective, when the
annual net revenue drops to 0, the continuing operation loses its
economic value even if the battery has not reached the end of its
physical life. In Figure 5A, the commercial/industrial energy storage
scale reaches the end of both its economic and physical life in the
ninth year. For distributed/residential energy storage (Figure 5B),
the economic EOL of the station (8 years) is notably shorter than its
physical EOL (9 years). Higher O&M costs accelerate the decline in
net revenue, causing the battery to lose its economic value before
physical EOL. In other words, in the ninth year, even though the EES

FIGURE 5
Changes in net profit fromCalifornia EES power stations with battery cycle-life for different fixedO&M costs, (A) fixedO&M costs of $16/kW-year for
commercial/industrial energy storage, and (B) fixed O&M costs of $27/kW-year for distributed/residential energy storage. Energy arbitrage and providing
non-spinning reserve.
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power station’s battery can still operate, its revenue is insufficient to
cover the fixed operation and maintenance costs, resulting in no net
profit for the EES power stations. At this point, the battery can be
recycled or repurposed for other economically advantageous
applications. This approach ensures that resources are utilized
efficiently, maximizing the overall economic benefit of the energy
storage system throughout its life-cycle.

4 Discussion and conclusion

EES power stations play a crucial role in power systems. However,
their profitability in the electricity spotmarket faces uncertainties due to
several factors: their limited power generation capacity, constraints in
providing ancillary services, and the current imperfections in electricity
market trading mechanisms. Given these challenges, the key to
improving the economic benefits of small-scale EES power stations
lies in how to promote their active participation in electricity market
trading and maximize their advantages through reasonable scheduling
and flexible operations.

This paper proposes a revenue model for EES power stations to
evaluate their life-cycle profits. The model focuses on the impact of
MDC on the physical EOL of batteries and incorporates annual fixed
O&M costs to illustrate the net revenue of EES power stations under
the electricity spot market. Additionally, the concept of economic
EOL for EES power stations is introduced. Through data analysis,
the paper demonstrates that using the economic EOL as the
operational life for EES power stations is more meaningful than
relying solely on physical EOL metrics.

Energy arbitrage and ancillary services currently represent the
primary and most mature sources of revenue. In a case study of EES
power station arbitrage in the California energy market, it is found
that when the battery completes 2000 cycles and its capacity reduces
to 80% of the original (i.e., physical EOL), the optimal MDC for the
EES power station is $45/MWh-throughput. Under these
conditions, the EES power station achieves its highest life-cycle
revenue. For commercial/industrial-scale EES power station, both
the economic and physical EOL are 9 years. However, for
residential-scale EES power station, the economic EOL is earlier
than the physical EOL, at 8 and 9 years respectively. This indicates
that continuing to operate the residential-scale EES power station in
the ninth year would result in revenues lower than operating costs.

Therefore, operators need to carefully balance battery
degradation characteristics, market conditions, and operational
strategies to determine the optimal economic EOL of residential-
scales. This balance is crucial for making appropriate investment
and operational decisions. By considering these factors, operators
can maximize the economic benefits of their residential-scales while
ensuring they do not operate beyond the point where costs exceed
revenues. This approach allows for more efficient use of resources
and better long-term planning in the rapidly evolving energy storage
market. Future research could explore the impact of emerging

battery technologies on the economic lifespan of EES power
stations. Additionally, investigating the potential synergies
between EES power stations and other grid assets, such as
renewable energy sources or demand response systems, could
uncover new economic opportunities in the evolving
energy landscape.
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Nomenclature

Indices

t Indices for time, typically a day

h Indices for time, typically an hour

Parameters and
constants

φ Calendar degradation of the battery in period t

Cf ix Fixed operation and maintenance costs

Ḏ Total usage before the end of the battery life at 100% charge
and discharge depth

ζ Battery self-discharge rate

�H
H

EES Initial SOH
EES Final SOH

Variables and
functions

dt(x) Degradation of EES power station in period t

RMt(Pt ) Market revenue of EES power station in period t

CBD
t (Pt ) Total battery degradation cost during period t

Πh Regional marginal electricity price

As Ancillary services revenue

zt Remaining capacity of EES power station

θ Depth of charge and discharge

Sc SOC of EES power station

ηt,θ The number of cycles of a storage power station at a certain
charging depth

Ht+1 SOH of EES power station

pchah

pdish

The charging amount of the energy storage system
The discharging amount of the energy storage system

RESS Total revenue of EES power station

δt Discount factor for period t

x Optimal marginal degradation cost

ηt(St ) EES power station charging and discharging efficiency

Pt The charging and discharging amount of the EES power
station during period t

μt Adjusted MD for storage in time period t
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