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The short-term fluctuation of wind power can affect its prediction accuracy.
Thus, a short-term segmentation prediction method of wind power based on
ramp segment division is proposed. A time-series trend extraction method based
on moving average iteration is proposed on the full-time period to analyze the
real-time change characteristics of power time-series initially; secondly, a ramp
segment extractionmethod based on its definition and identification technique is
proposed based on the results of the trend extraction; and a segmentation
prediction scheme is proposed to lean the power prediction under different
time-series: the LightGBM-LSTM is proposed for the non-ramping segment using
point prediction, and the CNN-BiGRU-KDE is proposed for probabilistic
prediction of ramp segments. From the results, this ramp segment definition
and identification technique can effectively identify the ramp process of wind
power, which makes up for the misidentification and omission of the classical
climbing event definition; meanwhile, the segment prediction scheme not only
meets the prediction accuracy requirements of the non-ramping segment, but
also provides the effective robust information for the prediction of the ramping
period, which offers reliable reference information for the actual wind farms. In
particular, it is well adapted to wind power prediction under extreme working
conditions caused by ramping weather, which is a useful addition to short-term
wind power prediction research.
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1 Introduction

In 2020, with the deepening understanding of the “dual-carbon” goal by all parties in
society, China has put forward the goal of “2030 carbon peak, 2060 carbon neutral” (State
Grid, 2021), and wind power is ushering in rapid development. Wind power is difficult to
predict due to its unique stochasticity and instability, which poses a great challenge to the
reliable operation of wind farms and smart energy systems. With the development of
China’s power marketization, accurate and efficient short-term wind power prediction is
especially important to enhance the capacity of wind power consumption and promote the
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efficient interaction of source, grid, and load (Lefeng et al., 2022;
Lefeng et al., 2021; Lefeng et al., 2020). Currently, there is a lack of
in-depth research on the short-term power prediction method for
wind power over the whole period considering the weather in the
climbing segment (Cheng and Yu, 2019).

Existing short-term power prediction methods for wind power
can be divided into two kinds: the physical method (Ernst et al.,
2007) and the data-driven method (Wang et al., 2022). Among
them, the former is built based on the atmospheric motion portrayal,
according to the meteorological environment, geographic factors,
and other information, the use of hydrodynamics and other physical
laws to establish a model, focusing on the optimization of the
boundary conditions and physical solution rules, with the
characteristics of modeling difficulties, large computational
volume, and therefore poor timeliness, is generally suitable for
medium- and long-term forecasting (Cassola and Burlando,
2012). The latter takes the establishment of linear or nonlinear
mapping between relevant meteorological features and power time
series as the main means, emphasizes the search for intrinsic laws
from multi-source, multi-dimensional, and multi-modal data, and
has been widely used because of its better prediction accuracy (Zhou
et al., 2021).

Existing studies usually categorize data-driven methods into
deterministic forecasting and uncertainty forecasting based on the
result presentation. Among them, the existing deterministic wind
power prediction methods mainly include Auto-regressive and
moving average (ARMA) (Erdem and Shi, 2011), Convolutional
Neural Networks (CNN) (Men et al., 2016), and vector machines
(Hu et al., 2014). Deterministic methods can form a mathematical
abstract mapping relationship between inputs and outputs through
data mining and machine learning and are suitable for power time
series with gentle curve fluctuations. Specifically, literature (Meng
et al., 2021) proposes a parameter optimization-based attention
mechanism for accelerating the early prediction model to mine
the temporal correlation of the input series-gated recurrent unit
(GRU) short-term wind power prediction model; literature (Zhou
et al., 2021) proposes a wind power prediction model that introduces
the volatility hierarchical error correction model, which is based on
the improvement of long-term recurrent convolutional neural
network. All of the above literature has improved the prediction
accuracy to a certain extent, and better prediction results can be
achieved under normal fluctuating power hours. However, in the
face of the ramping section of the weather under the fluctuating
power, a single use of the above deterministic prediction methods
will not be able to quantify the prediction error, and the stability of
the prediction results is poor, and the combination of prediction
techniques is applied and born (Gao et al., 2016; Liu et al., 2024). At
the same time, due to the more complex and variable wind power
scenarios, it poses a more serious challenge to the prediction
methods. For this reason, we have carried out an in-depth study
of the problems and difficulties existing in the current wind power
prediction work.

Uncertainty prediction is a probabilistic interval prediction
method represented by kernel density estimation (KDE) (Wang
et al., 2024; Haoyi et al., 2023). Uncertainty prediction considers the
randomness of the results, quantifies the prediction error, provides
more information compared to the traditional point estimation, and
can significantly improve the effectiveness of power hour prediction

under weather in the climbing section (Jianhou et al., 2024).
Specifically, literature (Wang et al., 2024) introduces a new
offshore wind speed point and interval prediction model that
combines an innovative two-layer decomposition technique, GRU
and KDE. However, the lack of a typical power scenario delineation
leads to a low prediction accuracy of the model for some power
periods. Literature (Zareipour et al., 2011a; Cui et al., 2019) proposes
data-driven probabilistic wind power ramp prediction methods
based on massive simulated scenarios, but such models have yet
to improve their robustness under weather in the ramp section.
Literature (Ouyang et al., 2019) proposes an integrated learning
method to generate probabilistic prediction results, but the method
does not take into account the interference of power timing pseudo-
inflection points on the complete extraction of the ramp segment
period and does not highlight the improvement of the model’s
accuracy under ramp segment weather. The above uncertainty
prediction method improves the performance of wind power
prediction under complex meteorological conditions to a certain
extent, but there are still the following shortcomings: first, the lack of
targeted optimization of the ramp segment of the extreme weather
caused by the sudden change of power scenarios, which affects the
prediction accuracy; second, the deterministic prediction method of
the gentle power period is sufficient to meet the demand for
prediction accuracy and stability, and the uncertain prediction
takes up a large number of computing resources and the
prediction interval under the gentle power period is too long to
meet the prediction accuracy and stability requirements. Second, the
deterministic prediction method is sufficient to meet the demand for
prediction accuracy and stability in the gentle power period, while
the uncertainty prediction takes up a lot of computing resources and
the prediction interval is too large in the gentle power period, which
affects the reasonableness and intuition of prediction.

The basis of ramp prediction is its identification technology.
There have been in-depth studies on the research of wind power
ramp events abroad, but the definition of it by various research
institutions has not yet formed a unified standard. Literature
(Potter et al., 2009; Ferreira et al., 2011) summarized four
different definitions of ramp events by considering several
factors such as power amplitude change, duration, and
ramping rate. According to Truewind (2008), the occurrence
of a “ramp event” is accompanied by a large change in wind
speed in a short period, and the larger the amplitude change, the
smaller the duration, and the faster the ramping rate, the more
serious the ramp event is. Common studies set the minimum
threshold of climb duration at 1 h, but ramp events of less than
1 h are also possible (Kamath, 2010; Kamath, 2011). Further, the
literature (Zheng and Kusiak, 2009; Zareipour et al., 2011b) used
a mean clustering algorithm and support vector machine to
classify the ramp events in the historical data, respectively, and
analyzed the characteristics and hazards of different types of
ramp events.

The recognition technology of ramp events in China is not
mature, and it is based on power prediction. Literature (Greaves
et al., 2009) used a numerical weather prediction system to identify
possible future wind power’s ramp events by obtaining
meteorological background information. In literature (Cui et al.,
2014; Huang et al., 2016; Ouyang et al., 2017), ARMA, Kalman, and
neural network models were used to predict the power first, and then
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the predicted power was used for ramp recognition. Due to the lack
of consideration of the characteristics of ramp events, the
effectiveness of these methods in the identification of ramp
events is very limited, which makes the identification of ramp
events one of the urgent problems to be solved in the grid
connection of wind power.

Aiming at the above deficiencies, a short-term wind power
segmentation prediction method based on ramp period division
is proposed in this paper. Specifically, a trend extraction model
based on the moving average sensitivity method (MASM) is first
proposed for the whole period to characterize the real-time
change of power time series preliminarily; furthermore, a hill-
ramp segment definition and identification method is proposed
to extract the hill-ramp power period for the sub-time period;
finally, a segmented prediction method is proposed to make lean
prediction of wind power for the whole period: a light gradient
boosting machine (LightGBM) - Long short-term memory
(LSTM) is proposed for the non-hill-ramp segment period.
Finally, a segmented prediction method is proposed to make a
lean prediction of wind power for the whole period: a LightGBM-
LSTM combination prediction method is proposed for the non-
ramp period; a probabilistic prediction method based on CNN-
BiGRU-KDE is proposed for the ramp period. The experimental
results show that the prediction accuracy of the method proposed
in this paper is greatly improved compared with the existing
methods, providing new ideas for short-term wind power
prediction.

2 Basic idea

Changes in meteorological parameters under ramp segment
weather are characterized by instantaneous sudden changes and
drastic amplitude, which leads to many problems in wind power
prediction under ramp segment weather conditions.

The main problems are as follows:

(1) As the weather in the ramp segment has various changes in
meteorological patterns in a short period, it is easy to cause
misjudgment of the trend, which affects the accuracy of power
extraction in the ramp segment.

(2) Due to the strong stochasticity and complexity of the weather
mutation period in the ramp segment, it is difficult to accurately
and completely extract the power mutation period in the ramp
segment by the power mutation period extraction method with
the fixed characteristics as the extraction factor.

(3) Different meteorological models correspond to different time
series characteristics in the ramp weather period. To fully
utilize the performance advantages of deterministic and
uncertainty prediction methods, it is one of the urgent
problems to propose a segmented prediction strategy to
match different weather patterns.

To address the above issues specifically, this paper proposes a
segmented prediction method based on ramp segment identification
and recognition technology. The specific method flow is shown in
Figure 1. Firstly, the MASM model is used to extract the trend
components in the time series, smoothing transitions and capturing
trend changes. Subsequently, the power mutation sensitivity factor
(PMSF) is employed to calculate specific power points of sudden
changes, identify key changes in the time series, and obtain the
exponential moving average (EMA) sequence. On this basis, ramp
segments in EMA are identified and extracted by defining ramp
segments and setting ramp thresholds (ramp amplitude, ramp rate),
i.e., periods of significant changes in weather conditions, to analyze
their impact on electricity demand. In the prediction phase, a
segmented prediction method is adopted, processing the time
series according to different characteristics or patterns.

For non-ramp segments, the LightGBM-LSTMmodel is used for
point prediction, combining the advantages of gradient boosting and
long short-term memory networks to capture complex patterns and
temporal dependencies. For ramp segments, the CNN-BiGRU-KDE
model is employed for probabilistic prediction, generating predictive
probability distributions. Finally, the results of point prediction and
probabilistic prediction are integrated to form the final segmented
prediction. This method not only considers the accuracy of
prediction but also incorporates prediction uncertainty, providing
more comprehensive and reliable prediction results.

3 Time-series trend extraction

Under the weather of the ramp segment, the wind power shows
drastic changes, to accurately identify the ramp power period, the first
step is to extract the time series trend of the whole period. The
traditional method of recognizing the time series mutation is to
extract the index parameters such as mutation amplitude and

FIGURE 1
Method flow chart.
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mutation duration as the basis of identification. This method is only
applicable to a single time-sequence mutation scenario, and it is easy to
cause insufficient extraction of themutation period for the complex and
variable time-sequence mutation scenarios of the ramp segment. To
establish an ideal early warning mechanism for weather periods in the
ramp segment, this paper proposes a novel method of describing the
time-sequence trend by taking the historical time-sequence
characteristics into full consideration. Different from the traditional
trend extractionmethod that directly takes the original time series as the
feature extraction object, this method takes the moving average as the
trend research object. It not only avoids the trend misjudgment caused
by the raw power time series noise but also retains the timeliness of the
time series change trend. This method extracts the time-series trend
from the power curve 1 h before the point in time to be predicted.

MASM is a technical indicator that utilizes the aggregation and
separation conditions between short-term averages and raw data
combined with the time series characteristics of the averages
themselves to investigate and judge the highs and lows of the
prediction object (Li, 2013). The principle of MASM is to use the
EMA that characterizes the short-term trend of the raw data and to
compute the PMSF of the current instantaneous rate of change of the
EMA. The PMSF can better project the inflection point of the trend
after the comprehensive evaluation of the mutation sensitivity. The
specific steps of MASM are as follows:

Find the N-day smoothed moving average X of t if X′ is the N-1
day smoothed moving average:

X � EMA t,N( ) � N − 1( ) × X′ + t

N
(1)

Where: t is the current time point; X is the N-day smoothed moving
average of the time series at moment t; X′ is the N-1 day smoothed
moving average of the time series.

The EMA curve obtained above is smoothed by the Gaussian
window method, and the rate of change of each moment in the time
sequence is further calculated as PMSF. The specific calculation is
as follows:

PMSF � Xsmooth t( ) −Xsmooth t − Δt( )
Δt , Δt → 0 (2)

Where:Xsmooth(t) is the smoothed EMA value at the time t − Δt;
Xsmooth(t − Δt) is the smoothed EMA value at time t − Δt. The effect
of EMA and PMSF applications is shown in Figure 2. The EMA and
PMSF are calculated using Equations 1, 2.

4 Ramp segment identification

Considering that a ramp event is a large change in wind power
over a short period, the wind power ramp event can be redefined by
the ramp amplitude and ramp rate. In this paper, we will first find
the extreme points of historical wind power sequences, and analyze
and identify the ramp events based on the sequence of extreme
points to avoid the identification of ramps under different
definition criteria.

The current wind power ramp is generally studied as an “event”,
and the complete ramp event consists of multiple ramp segments, so
this paper will take the “ramp segment” as an object to study, and put
forward a new approach to identify the ramp segment, the basic idea
is shown in Figure 3.

As can be seen in Figure 3, on the one hand, the original wind
power sequence is extracted from the extreme point to find out the
extreme sequence; on the other hand, the new definition is
determined by the typical definition of ramp events; the
magnitude threshold and rate threshold are set in combination
with the above two aspects to identify the ramp segment; finally, the
feature analysis is carried out to determine the ramp segments in a
specific region.

4.1 Extreme extraction process

The extreme extraction method achieves the effect of feature
extraction by extracting the extreme values of the original sequence,

FIGURE 2
Schematic diagram of the effect of EMA and PMSF. (A) Raw
power data. (B) 60 min Expontial Movieng Average (EMA). (C) Extreme
Point detection.

FIGURE 3
Basic flow of ramp segment recognition.
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by searching the local extreme points of the numerical sequence.
Assuming that the original information matrix is X, X can be
expressed as.

X � T1, ..., Ti, ..., Tm

P1, ..., Pi, ..., pm
[ ]T

i � 1, ..., m

⎧⎪⎨⎪⎩ (3)

Where: X is the original data matrix; T1, Ti, and Tm are the 1st, I,
andmth data moments, respectively; P1, Pi and pm are the 1st, i, and
mth power data, respectively; i is the counting point;m is the amount
of original data. Extracting the extreme sequence fromX, the specific
process is as follows:

1) Initialize the beginning and end of E as the beginning and
end of X:

E 1, 1( ) � T1; E 1, 2( ) � P1

E d, 1( ) � Tm; E d, 2( ) � Pm
{ (4)

Where: E is the extreme matrix; d is the number of extreme points.

2) Give the discriminant of the extreme point:

①: Pi−1 >Pi <Pi+1
②: Pi−1 <Pi >Pi+1

{ (5)

If condition① is met, it is a point of minimal value; if② is met, it
is a point of maximum value. Store Ti、 Pi to E at the
extreme point.

3) Correction for the beginning of the polar matrix.

Sbin � E 2, 2( ) − E 3, 2( )
E 2, 1( ) − E 3, 1( ) (6)

Lbin � Sbin E 1, 1( ) − E 2, 1( )( ) + E 2, 2( ) (7)
Where: Sbin is the magnitude of the ramp, from the start to the end;
Lbin is the first and last of the positive correction. The first and last of
E are corrected using (Equations 6, 7).

(4) Extreme matrix terminal correction.

Send � E d − 1, 2( ) − E d − 2, 2( )
E d − 1, 1( ) − E d − 2, 1( ) (8)

Lend � Send(E d, 1( ) − E d − 1, 1( )) + E d − 1, 2( ) (9)
Where: Send is the terminal ramp; Lend is the terminal correction
value. The terminal of E is corrected using (Equations 8, 9).

The above content provides a detailed introduction to the basic
principles of the extreme extraction method and practical operation
steps. We utilize the wind power data measured at a wind farm to
verify the reliability of the extreme extraction method every 15 min,
and the verification results are shown in Figure 2C.

The solid line in Figure 2C is the characteristic line of the
extracted extreme points. From Figure 2C, it can be seen that the
extreme extraction method can effectively extract the extreme points
in the power series, and less extreme data can be used in the
presentation of the change characteristics of the original series, to
achieve the effect of data compression and achieve the purpose of
feature extraction.

To facilitate the analysis of the following article, the extreme
points are called temporary ramp points (TRP), and the E is called
TRP series Y, that is:

Y � TY
1 , ..., T

Y
j , ..., T

Y
n

PY
1 , ..., P

Y
j , ..., P

Y
n

[ ]T

j � 1, .., n

⎧⎪⎨⎪⎩ (10)

Where: Y is the TRP matrix; TY
j、 PY

j are the TRP moments with
power; j is the number of counts of temporary ramps; n is the
number of temporary ramps.

4.2 Definition of the ramp segment and
threshold setting

4.2.1 Definition of a ramp segment
1) The classical definition of a ramp event.

Literature (Zhang et al., 2018; Freedman et al., 2008; Cutler
et al., 2011) summarizes several typical definitions of
ramp events.

Definition I. The condition is met if the difference between the
power at the cutoff time and the power at the start time exceeds a set
threshold λ within a given period [t, t+Δt].

Pt+Δt − Pt| |> λ (11)

Then the power ramp event is considered to occur in this time
frame, where λ is the threshold of the ramp amplitude.

The literature (Zhang et al., 2018) recommends that a change in
amplitude greater than about 15%–20% of the total installed
capacity is recognized as a ramp event. The threshold of ramp
magnitude for wind farms is used for the test, which results in an
average value of about 30–40 MW. Figure 4 shows the ramp
identification plot according to Definition I (Equation 11), taking
λ = 35 MW.

FIGURE 4
Ramp segments identified according to Definition I.
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From Figure 4, this definition recognizes simple ramp events in
the power sequence. However, only the ramp amplitude is
considered, and the ramp rate (the change characteristics of the
power in the ramp process) is not considered, resulting in the loss of
power characteristics. In addition, the ramp amplitude threshold set
only based on the installed wind farm cannot effectively reflect the
actual power amplitude change of the wind farm, which is easy to
causes the omission of identification.

Definition II. Firstly, a time range [t, t+Δt] is circled, and then the
maximum and minimum values are searched in this time range to
find their extreme difference which is larger than λ, that is

max P t,t+Δt[ ]( ) −min P t,t+Δt[ ]( )> λ (12)

Then the power ramp event is considered to occur in this time
interval. Definition II considers the power amplitude in the time
interval, while the rate of change is not characterized.

Definition III. Circle a certain time range [t, t+Δt], and when the
power rate is greater than the value of β, it is the ramp rate in that
time range:

Pt+Δt − Pt| |
Δt > β (13)

Then the power ramp event is considered to occur within this
time frame, where the β is the threshold for ramp rate. This
definition is simultaneously able to determine the up-ramping
and down-ramping situations. Equation 13 defines an up-ramp
event when Pt <Pt+Δt and a down-ramp event when Pt >Pt+Δt.

According to the literature (Truewind, 2008; Cutler et al., 2011),
only when the power change of the wind farm reaches at least 50% of
the installed capacity within 4 h is recognized as a ramp event, so the
corresponding rate threshold can be calculated according to
0.417 MW/min. Combined with Equation 13, the ramp diagram
identified by Definition III is drawn, as shown in Figure 5.

As can be seen in Figure 5, although the dynamics can be
accurately depicted based on the ramp rate, the information

redundancy of the ramp events is also increased by the
extraction points with small change amplitude, leading to an
unclear identification of the ramp events.

The definition of the above ramp event method identifies
different results, which is not popularized in practical
applications. And for the ramp events with complex processes
and long periods, they are often interspersed with non-ramp
intervals which cause ramp misrecognition. In the following
segment, we will take a segmented approach, and based on the
definition of a typical ramp event, we will define the ramp
segment, and discuss and find the method of setting the
ramp threshold.

2) A new type of ramp segment definition.

As can be seen from Figures 4, 5, it is difficult to recognize the
complex process of ramp events by using Definitions I–III alone. In
this paper, the ramp event is segmented, and Definitions I–III are
combined and refined to redefine the ramp segment by combining
(Equations 3–9) with the Y, as follows:

ramp points: PY
j+1 − PY

j

∣∣∣∣∣ ∣∣∣∣∣> λ C1( )and

βmax >
PY
j+1 − PY

j

∣∣∣∣∣ ∣∣∣∣∣
TY
j+1 − TY

j

> β C2( )

stationary point: PY
j+1 − PY

j

∣∣∣∣∣ ∣∣∣∣∣< λ or
PY
j+1 − PY

j

∣∣∣∣∣ ∣∣∣∣∣
TY
j+1 − TY

j

< β

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(14)

where βmax is the highest value of the rate of change of the incoming
power determined by the wind farm installation and the grid, with
the specific reference values shown in Table 1.

Equation 14 makes a limitation on the ramp amplitude (C1) and
ramp rate (C2); when the C1 is available, the power rate between
TRPs (Equation 10) is examined; when the C1 and C2 are satisfied at
the same time, it is determined that the ramping has occurred
between the TRPs, and the PZ

q is judged to be a ramp point, see the
following ramp point matrix Z:

Z � TZ
1 , ..., T

Z
q , ..., T

Z
r

PZ
1 , ..., P

Z
q , ..., P

Z
r

[ ]T

q � 1, .., r − 1

⎧⎪⎪⎨⎪⎪⎩ (15)

Where: Z is the ramp point matrix; TZ、PZ are the moment and
power of the ramp point; q is the number of counts of ramp points; r
is the number of ramp points.

The combination of condition I and condition II (Equation 12)
makes the information redundancy better in complex ramp
segments. Since TY

j+1, T
Y
j are not a fixed time range, therefore, λ

and β do not constitute a fixed mathematical relationship, but two
independent conditional thresholds, and the setting between λ and β
is discussed on this basis.

Equation 14 introduces the concept of stationary point (SP),
defines the TRP with ramp amplitude less than λ or ramp rate less
than β as a stationary point, and replaces the successive stationary
points with a horizontal line, whose value is equal to the value of the
starting stationary point. By introducing the concept of stationary
point, clear statistics of the ramp period, reducing the redundancy of
information in the ramp segment, and reducing the statistical error

FIGURE 5
Climbing segments identified according to Definition III.

Frontiers in Energy Research frontiersin.org06

Yang et al. 10.3389/fenrg.2024.1474969

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1474969


of ramp duration, we can effectively distinguish and recognize the
calm and slow zones during power ramp.

4.2.2 Discussion of ramp threshold setting
1) Setting of β

C2 of Equation (14) already specifies the method for calculating
the ramp rate. As shown in Figure 6A, the ramp rates of adjacent
TRP are calculated and counted, and the confidence intervals of the
ramp rates are analyzed by their cumulative probability distribution
plots. Figure 6A shows that more than 90% of the ramp rates are less
than βmax, indicating that the majority of the ramp rates can meet
the grid connection

Requirements, and more than 80% of the rates are greater than
0.417MW/min. The ramp rate threshold for this wind farm is 0.4MW/
min, which can be obtained according to the recommendation of
Literature (Huang et al., 2016), which indirectly verifies the validity
of determining the ramp threshold by the method of mathematical
statistics. According to the definition of Equation 14, when the rate of
change of power in a certain time range is greater than a certain
threshold value, it can be determined that the ramp may occur in this
period. According to the mathematical and statistical results in

Figure 6A, more than 80% of the power changes are contained in
cases where the absolute value of the power rate of change is greater
than or equal to 0.417 MW/min, which is consistent with today’s
prevailing view of hill-ramp rate threshold setting.

2) Setting of λ.

To address the problem of setting λ (Equations 11, 12), this paper
utilizes mathematical statistics to determine the ramp magnitude
threshold by counting the power magnitude changes between
sequences of TRP, as shown in Figures 6B–F for β = 0.4314 MW/
min, λ = 2.875 MW, 5.588 MW, 22.873 MW, and 45.1598 MW. From
the figure, it can be seen that different ramp amplitudes can recognize
different ramp processes, and lower amplitude thresholds can have a
good description of the ramp process, but it is impossible to exclude the
interference of small fluctuations in power, which results in wrong
recognition. With higher amplitude thresholds, small fluctuations in
power can be excluded and the ramp process can be depicted with fewer
points. Setting different ramp amplitude thresholds and combining the
actual dynamic changes in the wind field, is a method to select the
optimal ramp amplitude threshold by choosing the probability interval
of changes with different amplitudes.

TABLE 1 Recommended value of maximum power rate change of wind farm.

Installed capacity of wind farms/MW Maximum change in 10 min/MW Maximum change in 1 min/MW

<30 20 6

30–150 Cap/1.5 Cap/5

>150 100 30

FIGURE 6
Ramp diagram under different ramp thresholds. (A) Ramp amplitude at neighboring TRPs. (B) The ramp amplitude threshold is 0 MW. (C) The ramp
amplitude threshold is: 2.873 MW. (D) The ramp amplitude threshold is: 5.5882 MW. (E) The ramp amplitude threshold is: 22.8731 MW. (F) The ramp
amplitude threshold is: 49.1598 MW.
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The determination of ramp amplitude thresholds using the
mathematical and statistical method has an obvious advantage in
that the thresholds can be set flexibly, and this threshold setting is
more prominent compared to the traditional method. The
magnitude of historical power changes is summarized through
statistics and analysis of historical data of a specific wind field to
set the ramp magnitude threshold flexibly, thus providing flexible
identification of ramp events.

4.3 Ramp segment identification based on
extreme point extraction

Through the redefinition of the ramp segment and the
discussion of the ramp threshold, combined with the experience
of the selection of the ramp threshold in the typical definition of

ramp, the uphill point is identified as an ascent point when the ramp
rate is greater than or equal to the value of β, the typical definition of
the ramp rate is less than the value of β, and the typical definition of
the ramp rate is greater than or equal to the value of β as the
characteristic ramp identification schematic as shown in Figure 7.
And the time of ascent was counted according to the ascent
schematic, and the results are shown in Figure 8. The formula is
as Equation 16 to discriminate the point of up and down the ramp,
and the formula is calculated as Equation 17 the duration of ramp.

up − ramping:
PZ
q+1 − PZ

q

TZ
q+1 − TZ

q

> β

down − ramping:
PZ
q+1 − PZ

q

TZ
q+1 − TZ

q

< − β

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (16)

T � TZ
q+1 − TZ

q+1
TFSP − TZ

q+1
{ (17)

where TFSP is the moment of the starting stationing point.
Figure 8A shows the distribution of ramp length, 12 ramp

segments were identified, the shortest segment was 0.5 h, the
longest segment was 3 h, and the average time of each segment
was 1.8 h. Figure 8B shows the cumulative distribution of
continuous time ramp, with more than 90% of the continuous
time counted in the area within 2.234 h.

Combined with the previous analysis, the basic flow of this
algorithm is given as follows: based on the extraction of extreme
value points, the identification of ramp segments is completed.

Step 1. Extract the extreme point of the historical actual power
sequence, according to the extreme value extraction
method and Equations 3–9 to get the extreme value
series E, also known as the TRP series Y.

Step 2. the amplitude change of power, according to C1 of Equation
14 and the TRP sequence calculation statistics, analyzes the
cumulative probability distribution of amplitude change by
calculation, sets the ramp amplitude threshold limit, and
finds out Equation 14.

Step 3. sets the ramp rate threshold and calculates and analyzes the
power rate of C2 of Equation 14 and the TRP sequence by
calculating and analyzing the cumulative probability
distribution of the rate of change.

Step 4. Identify the stationary point based on the stationary point
identification condition in Equation 14 Identify the
stationary point based on Equations 15, 16 based on the
parameters determined by STEP2 and STEP3, and identify
the upper and lower ramps based on Equations 15, 17 to
count the length of the ramp time.

5 Segmentation prediction algorithm

To improve the performance of wind power prediction under
the full-time period and make the model fit the typical
characteristics of various meteorological types, this paper

FIGURE 7
Wind power ramp diagram based on extreme point extraction.

FIGURE 8
Ramp duration chart. (A) Ramping duration distribution. (B).
Cumulative probability distribution of ramping duration.
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proposes a time-series segment prediction algorithm that combines
point prediction and probabilistic prediction. Based on the
extraction results of meteorological periods in the ramp segment
in Section 3, the time series is divided into a fluctuation segment and
a low output leveling segment, corresponding to the probability
prediction and point prediction respectively. This method helps to
improve the reasonableness and readability of the prediction results,
and reduces the amount of modeling operations, and improves the
computational efficiency.

5.1 LightGBM-LSTM based point
prediction method

In practical applications, full-time power prediction challenges a
single prediction model. In this paper, a combined LightGBM-
LSTM prediction method is proposed to improve the problem of
insufficient prediction accuracy in specific scenarios. Massive feature
data are used as inputs to the LSTM network and LightGBM
prediction model, respectively; meanwhile, to improve the
prediction accuracy of the LSTM neural network, the preliminary
prediction result of the LightGBM model is input into the LSTM
network as one of the features. This combined prediction model can
combine the respective features of the above 2 models, which can not
only explore the intrinsic connection between multi-feature data but
also avoid the bad influence on the prediction accuracy due to
over-fitting.

5.1.1 LightGBM model
LightGBM is a framework for implementing the gradient

boosting decision tree algorithm. The training speed is faster, the
memory consumption is lower, the accuracy is better, the support of
distributed, and the fast processing of massive data can be performed
(Chen et al., 2021). The main improvements of the LightGBMmodel
include the histogram algorithm and the Leaf-Wise Reading Strategy
(Ju et al., 2019). Among them, the former can be substantially
reduced in terms of memory usage; the latter can grow deeper
decision trees for better prediction accuracy with the same number
of breaks. In addition, LightGBM supports category characteristics
that do not need to be transformed (e.g., whether it is weather on a
ramp road) and incorporates decision rules for category
characteristics in the decision tree algorithm.

5.1.2 LSTM
LSTM is a special kind of Recurrent Neural Network

architecture (Nguyen. et al., 2024), which can solve the problem
of modeling time-series data of integrated drives. LSTM can
effectively deal with the long-time dependency relationship and
introduces the “memory unit” and gating mechanism. The structure
of LSTM is shown in Figure 9.

Figure 9 shows the input Xt, the output Ht, the memory cell
state Ct, and the candidate memory cell state ~Ct of the LSTM at
the t time.

The Ct is the main memory unit responsible for storing and
transmitting information in the LSTM. It is similar to the hidden
layer in a traditional neural network, but it gets updated with
information at every step. This design allows it to maintain long-
term memory.

The input information for each step of the LSTM contains the
Ct−1,Ht−1 of the previous step and the Xt of the current step, which
allows it to preserve long-term dependencies over the entire time
series. The core of the LSTM is a 3-gate structure, the oblivion gate,
the input gate, and the output gate, whose outputs are ft, it and ot,
respectively.

The oblivion gate decides which information of Ct−1 from the
previous step is to be forgotten. Its uses a Sigmoid function to obtain
the ft. It is a vector in the range [0, 1] which is used to control how
much of Ct−1 is forgotten.

The computational expression for ft is:

ft � σ wf Ht−1, Xt[ ] + bf( ) (18)
Where: σ is the activation function of the gate structure; wf , bf are
the weight and bias of the oblivion gate.

The input gate controls the input information of the current
step. It consists of two parts: one part uses a tanh function to filter
valid information from Xt as ~Ct; the other part uses a Sigmoid
function to obtain it, which is used to control the degree of validity of
the candidate memory cells.

The computational expressions for the it, ~Ct and Ct are
respectively:

it � σ wi Ht−1, Xt[ ] + bi( ) (19)
~ct � tanh wc Ht−1, Xt[ ] + bc( ) (20)

Ct � ft ⊗ Ct−1 + it ⊗ ~ct (21)
where:wi, bi are the input gate weights and bias;wc, bc are the weight
and bias of the candidate memory cells; ⊗ is the element-by-
element product.

The output gate determines the output information of the
current time step, which uses the Sigmoid function to obtain ot;
ot and Ct together determine the Ht of the neuron at the
current time step.

The computational expressions for the ot and the Ht are:

ot � σ wo Ht−1, Xt[ ] + bo( ) (22)

FIGURE 9
Model structure of LSTM.
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Ht � ot ⊗ tanh Ct( ) (23)
where: wo, bo are the output gate weight and bias. In summary, the
basic model of LSTM is formed by Equations 18–23.

5.2 Probabilistic prediction methods based
on temporal pattern classification

5.2.1 Convolutional neural networks
CNN is a feed-forward neural network type of deep learning

model, due to its properties of extracting spatial features commonly
used in various data analysis, computer vision, natural language
processing, and other fields, so a convolutional layer is set up in the
data to extract spatially correlated features. Especially for the
characteristics of multi-dimensional extraction of data, to reduce
the complexity of the problem; the pooling layer is designed to
reduce the dimensionality and number of data so that it can reduce a
lot of features that need to be operated to improve the learning
efficiency; with the development of deep learning, more and more
forms of convolution can be exercised to improve the effect of
residual convolution, Alexnet and other convolution of
different functions.

5.2.2 Bidirectional gated recurrent unit (Bi-GRU)
GRU uses recursion to obtain global information from the input

sequence, utilizes update gate and reset gate to reduce gradient
dispersion, and achieves the ability to remember the sequence over
time and less computational loss. The update gate determines how
much previous information is currently retained at the
forecast point.

zt � σ Wz · ht−1, Feat[ ] + bz( ) (24)
where: zt is the output of the update gate; Feat denotes the input
matrix for time step t. ht−1 is the hidden state of the previous time
step t-1. Wz bz are weight and base of the update gate.

Reset gate controls how much historical information should be
ignored and determines whether the storage unit removes
unnecessary detection features. Described as

rt � σ Wr · ht−1, Feat[ ] + br( ) (25)
where: rt is the output of the reset gate;Wr, br are weight and base of
the reset gate.

Effective forecasting models need to extract implicit features and
complex changes in serial data. However, GRU can only extract
information from the forward direction, while ignoring the valuable
information in the backward time series data. Therefore the
algorithmic idea of Bi-GRU is proposed, in which the Bi-GRU
layer in the encoder consists of two independent GRU networks as
shown in Figure 2. They are interconnected at adjacent depths to
ensure that the hidden layer state at the previous depth can be
transferred to the next hidden state in one direction and features can
be extracted from both directions. Bi-GRU can be represented as

hT � F �Lt, L
←

t( ) (26)

where: �Lt, L
←

t are the hidden states of the forward and backward
GRUs. F denotes how the outputs of the two directions are

combined, e.g., multiplication function, averaging function,
summation function, etc. In summary, the basic unit model of
Bi-GRU is constituted by Equations 24–26.

6 Calculation validation

6.1 Description of experimental data

Selected for this test sample is information from a wind farm in
the country. The data and information of this experiment include
the annual output power of this wind farm in 2021 as well as a
variety of meteorological factors during the same period. All the
above data intervals are 15 min. To verify the effectiveness and
superior performance of the algorithm of this paper for the weather
conditions of the ramp segment, 10% of the wind farm data of
variable meteorological scenarios containing the weather of the
ramp segment are specially selected as the validation dataset.

6.2 Evaluation indicators

The article evaluates the prediction performance in terms of both
deterministic and uncertainty prediction metrics. Among the
deterministic prediction evaluation metrics include relative root mean
square error (RRMSE) and mean absolute percentage error (MAPE).

RRMSE � n

�������������
1
n
∑n
i�1

f − fhis( )2√⎡⎣ ⎤⎦/ ∑n
i�1
fhis

⎛⎝ ⎞⎠ (27)

MAPE � 100%
n

∑n
i�1

f − fhis

fhis

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (28)

Where: n is the total number of prediction samples; f is the
prediction value; fhis is the true power value.

Uncertainty prediction evaluation metrics include prediction
interval coverage percentage (PICP) and prediction interval average
width (PINAW) (Ushakov and Ushakov, 2012).

RPICP � 1
W

∑W
w�1

kwa (29)

RPINAW � 1
T
∑T
t�1
U xt( ) − L xt( ) (30)

Where: RPICP is the PICP value; W is the point to be predicted
and is taken as 250 in this paper; kwa is a Boolean quantity, kwa =
1 means that the actual power value of the point to be measured falls
within the prediction interval at the given confidence level. RPINAW is
the PINAW value; T is the time-range prediction; U(xt), L(xt) are
the upper and lower power predictions. A smaller PINAW
corresponds to a better prediction when the PICPs are equal.

6.3 Validation of point prediction results

The LIGHTGBMmodel in the MATLAB platform is used to call
the LIGHTGBMmachine learning library, the number of weak back
trees is 200, the number of leaves is 50, the learning rate is 0.05, and
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the number of iterations is 3,000; the short-term prediction model of
wind power based on the LSTM model constructed by using the
KERAS framework. The initialization parameters of the prediction
model are: the number of nodes in the hidden layer of the model
network and the learning rate of the weights are determined by the
IGWO algorithm, the number of model iterations is 15, and the
activation function of the LSTM model uses the Sigmoid function.

The data for the training set of the model is the first 80% of the
full year 2021 data, while the data for the test set is the last 20%. To
observe the prediction effect over a longer time interval, the
2021 data is subjected to several sets of short-term 60-day rolling
forecasts with a forecast window of 10 days, i.e., the power changes
are predicted 10 days in advance for the next 10 days. As described in
5.1, the algorithm especially selects the power-abrupt time-series
segments containing the weather of the ramp segment as the
validation dataset and predicts the wind power under the
variable meteorological scenarios using LightGBM (Zheng and
Kusiak, 2009; Zareipour et al., 2011b), LSTM (Greaves et al.,
2009), and LightGBM-LSTM, respectively, and the prediction
results of the algorithms are shown in Table 2. The resultant
curves are predicted in different ways, as shown in Figure 10.

Comparing the prediction curves in Figure 10, it can be seen that
the prediction effect of LightGBM-LSTM algorithm is closer to the
real value. And it can be further seen from the prediction errors
(RRMSE and MAPE were calculated using Equations 27–28) in
Table 2 that it has better performance in both RRMSE and MAPE,
indicating that the model not only has high prediction accuracy, but
also can capture the features of the data well and give predictions

close to the true value. Meanwhile it has better prediction stability
and generalization ability to prevent overfitting. The improved
LightGBM-LSTM algorithm combines the respective features of
LSTM and LightGBM, which can not only mine the intrinsic
connection between multi-featured data, but also avoid the
adverse effects of overfitting, and improve the prediction
accuracy of the method by combining the prediction strategies.
The LightGBMmodel has an obvious advantage in prediction speed,
but its training process is susceptible to overfitting, which results in a
lower prediction accuracy is low. The LSTM network in the
combined prediction model adds LightGBM as one of the input
feature tensors, and thus has a better prediction effect.

6.4 Analysis of inter-area prediction results

The data of a wind farm with an installed capacity of 201 MW in
China is selected for example analysis. Figure 11 shows the

TABLE 2 Presents the recommendedmaximumpower rate change value for
wind farms.

Model RRMSE MAPE

LSTM 12.475 10.843

LightGBM 8.857 6.934

LightGBM-LSTM 6.734 4.174

FIGURE 10
Comparison of point prediction performance.

FIGURE 11
Error distribution of probabilistic predictions.

FIGURE 12
Probability interval prediction effect diagram.
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distribution of prediction error, and Figure 12 shows the prediction
effect of a certain 5-day period in 2021, which shows that the interval
prediction model can closely follow the trend of the wind power
series under the same confidence level, and obtains a narrower
average bandwidth and a higher interval coverage. It can provide
more accurate forecast information for decision-makers.

The probabilistic prediction effect is shown in Figure 12, where
the probabilistic prediction performance is portrayed through the
PICP (Equation 29) and PINAW (Equation 30) evaluation metrics,
respectively. It can be seen that the actual power timeseries curve is
surrounded by the estimated confidence interval. According to the
performance effect of prediction, the model is better able to extract
and recognize the transitive time period timing pattern. Obviously,
for the probabilistic prediction time period, the prediction intervals
of lower confidence intervals are surrounded by higher confidence
intervals, which effectively avoids the intersection of quartiles and
proves that the power prediction method proposed in this paper has
a good comprehensive performance. Further, the CNN-BiGRU-
KDE probabilistic prediction method proposed in this paper
shows certain accuracy advantages in the 80%, 85%, and 90%
confidence intervals, which further demonstrates the effectiveness
and superiority of the method proposed in this paper. Meanwhile, it
can obtain interval coverage greater than the preset confidence level
at different confidence levels. And the probabilistic prediction
method based on CNN-BiGRU-KDE not only produces favorable
bias at all confidence levels, but also has high reliability.

Based on the above analysis of the deterministic prediction
results, it is easy to see that the LightGBM-GRU algorithm
adopted in this paper shows a high prediction effect in the small
fluctuation and gentle power period. However, for the weather
segments with violent fluctuations and ramp segments, there is
still a certain error. Especially, it is more obvious in the period of
frequent large waves, so the point prediction-probability interval
prediction segmentation method proposed in this paper can better
make up for the above shortcomings. On the other hand, the
probabilistic prediction results are shown as the upper and lower
bounds of the confidence interval and the probability density
distribution, and the accuracy of the point prediction is sufficient
to support the actual demand in the non-ramp weather segments.
This is a further manifestation of the rationality of the segmented
prediction strategy proposed in this paper. As can be seen from the
presentation of the segmented prediction results in Figure 12 above,
the actual power time series curve is surrounded by the estimated
confidence interval. According to the predicted performance results,
the model can extract and recognize the ramp segment period
timing patterns better. The prediction intervals of lower
confidence intervals are surrounded by higher confidence
intervals, which effectively circumvents the interquartile crossover
against the probabilistic prediction periods, proving that the
comprehensive performance of the power prediction approach
mentioned in this paper is good.

7 Conclusion

This paper proposes a short-term wind power segmentation
prediction method based on the identification of ramp segment
periods for the phenomenon of sudden power change in a short

period of time under climbing segment meteorology. Compared
with the existing methods, the proposed method improves the
efficiency and accuracy of fluctuating period extraction in the
ramp segment through the adaptive turning time period
identification method based on local feature distribution; the
improved LightGBM-LSTM algorithm can not only mine the
intrinsic connection between multi-feature data, but also avoid
the adverse effect of overfitting, and improve the prediction
accuracy through the combination of prediction strategies; the
proposed CNN-BiGRU-KDE probabilistic prediction method
shows good prediction performance at the specified confidence
level; by proposing a segmented prediction method based on the
temporal pattern, it overcomes the influence of the variability of the
power temporal features on the prediction results under the
meteorological model, and significantly improves the model
prediction performance. In summary, the prediction method
proposed in this paper has good prediction accuracy in the full
time period including the ramp segment weather, and has good
generalization performance, which provides a certain useful
supplement for the research in the field of ultra-short-term wind
power prediction.
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