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This study proposes a novel distributed energy trading market model with
a value distribution mechanism to optimize the allocation and transactions
of distributed energy resources (DERs). The framework incorporates a direct
load management approach via an electricity aggregator agent, simplifying
market processes and reducing transaction costs. A Nash bargaining model is
employed to design a fair and efficient value distribution mechanism, promoting
equitable benefit allocation among participants. Themodel integrates stochastic
programming to account for uncertainties in real-time load and DER output,
enhancing its robustness and applicability in real-world scenarios. The proposed
mechanismquantifies eachDER’s contribution using amarket value contribution
rate, serving as a foundation for the Nash bargaining model. This approach
ensures individual rationality for both the aggregator and DERs whilemaximizing
overall system benefits. Case studies validate the model’s effectiveness,
demonstrating improvements in resource utilization and fair benefit allocation.
This research contributes to the advancement of distributed energy markets,
offering valuable insights for designing efficient and equitable market structures,
ultimately promoting grid stability, renewable energy adoption, and the
development of more sustainable and flexible energy systems.

KEYWORDS

distributed energy resources, energy trading, optimization, market model, value
distribution mechanism, Nash bargaining

1 Introduction

The rapid development of distributed energy resources (DERs) has brought new
challenges and opportunities to the energy sector. DERs, including distributed generation,
energy storage, and flexible loads, have the potential to enhance system efficiency,
reliability, and sustainability (Ackermann et al., 2001). However, the integration of
these resources into existing power systems requires innovative market mechanisms
and operational strategies. Despite the growing adoption of DERs, existing market
structures and pricing mechanisms often fail to effectively incentivize their optimal
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utilization and integration. Traditional fixed-price mechanisms
and net metering schemes do not accurately reflect the real-
time value of DERs, leading to suboptimal resource allocation
and missed opportunities for system-wide efficiency improvements
(Parag and Sovacool, 2016). Furthermore, the lack of appropriate
market models hinders the ability of DER owners to fully capitalize
on the flexibility of their assets and potential contributions
to grid stability (Burger et al., 2017). This situation calls for
innovative market designs that can facilitate efficient transactions,
properly value DER services, and equitably distribute benefits
among market participants. Without such advancements, the full
potential of DERs in enhancing grid resilience, reducing costs, and
supporting the transition to a low-carbon energy system remains
unrealized (Zhou et al., 2018).

Existing approaches to DER integration face challenges
including scalability issues in peer-to-peer (P2P) models,
suboptimal resource allocation in aggregator-based systems,
inaccurate valuation of DER contributions, and implementation
difficulties due to regulatory barriers and integration complexities.
Additionally, current methods often struggle with fair benefit
allocation, effective coordination of numerous small-scale resources,
and adequate consideration of real-time uncertainties in load and
energy output.

Recent research has explored various approaches to address
the challenges of integrating DERs into existing power systems.
These approaches can be categorized into peer-to-peer energy
trading models, aggregator-based approaches, value distribution
mechanisms, and market design challenges for DERs. Peer-to-
peer energy trading models have gained significant attention as a
means to facilitate direct energy transactions between prosumers.
Tushar et al. (2021) provided a comprehensive review of peer-to-
peer energy systems for connected communities, highlighting their
potential to enhance local energy autonomy and system efficiency.
They discussed various market designs, including bilateral contracts
and auction-based mechanisms, emphasizing the need for scalable
and fair trading platforms. Morstyn et al. (2018) introduced a
cooperative game theory approach for peer-to-peer energy trading,
aiming to ensure stable and fair outcomes for all participants and
potentially increase the adoption of such trading schemes.

Aggregator-based approaches have emerged as a promising
solution to manage the complexity of coordinating numerous
small-scale DERs. Burger et al. (2017) reviewed the value of
aggregators in electricity systems, discussing how they can create
value by optimizing DER portfolios and providing services to
both DER owners and system operators. Their work underscored
the importance of appropriate market designs to unlock the full
potential of aggregation services. Wang et al. (2014) explored the
concept of transactive energy systems, proposing a distributed
optimization framework for coordinating DERs in distribution
networks. Their approach showed promise in reducing system
operational costs and enhancing the integration of renewable
energy sources. Burger et al. (2019) conducted a critical review
of the trade-offs between centralized and decentralized resources,
highlighting the importance of proper value assessment and
distribution in DER integration. Their analysis emphasized the need
for market structures that accurately reflect the contributions of
individual DERs to system-wide benefits.

Value distribution mechanisms are crucial for ensuring fair
benefit allocation amongmarket participants. In P2P energy trading
frameworks, such as the Brooklyn Microgrid, the value allocation
mechanism can be adapted to determine fair compensation
for prosumers based on their contributions to the local energy
market. This adaptation could replace traditional fixed pricing
models with dynamic pricing that reflects real-time supply and
demand, enhancing the economic viability of P2P transactions
(Soto et al., 2021). In community energy systems, particularly
those emerging under the European Union’s Clean Energy
Package, the value allocation mechanism could be utilized by
community energy managers to optimize local energy exchanges.
This approach would ensure that benefits are distributed fairly
among community members, thereby fostering participation and
promoting local energy resilience (Inês et al., 2020). Furthermore,
the mechanism can be integrated into ancillary service markets,
allowing aggregators to participate in larger electricitymarkets while
ensuring that the contributions of DERs are accurately valued. For
instance, in the Power Responsive program in the United Kingdom,
the value allocation mechanism could facilitate the participation
of aggregators in providing demand response services, ensuring
that all participants receive compensation commensurate with their
contributions to grid stability (National Grid ESO, 2021).

Market design challenges for DERs remain a significant area
of research. Parag and Sovacool (2016) examined the electricity
market design for the prosumer era, identifying key challenges in
integrating DERs into existing market structures. They emphasized
the need for new market models that can accommodate the unique
characteristics of DERs. Mengelkamp et al. (2018) investigated local
electricity markets, proposing a blockchain-based microgrid energy
market. Their work demonstrated the potential for decentralized
market structures to facilitate efficient energy trading among
prosumers while also highlighting the technical and regulatory
challenges in implementing such systems.

A novel distributed energy market model based on a value
distribution mechanism is proposed in this article, addressing
key challenges in the optimization of DER allocation and market
transactions. The framework integrates a direct load management
approach through an electricity aggregator agent, aiming to simplify
market transactions and reduce costs. The proposed model uses
a Nash bargaining approach to design a fair and efficient value-
distribution mechanism, promoting equitable benefit allocation
among market participants. Additionally, stochastic programming
is incorporated in this model to account for uncertainties in
real-time load and distributed energy output, enhancing its
robustness and applicability in real-world scenarios. This integrated
approach offers a comprehensive solution that optimizes resource
allocation, facilitates efficient market transactions, and ensures fair
benefit distribution among participants. The proposed framework
contributes to the ongoing development of effective distributed
energy markets, addressing the need for scalable, fair, and efficient
solutions in the evolving energy landscape.

The main contributions of this paper can be
summarized as follows:

1. A novel distributed energy trading market model based on a
value allocation mechanism is proposed in this article, which
optimizes allocation and market transactions for DERs.
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2. We design a value allocation mechanism using a Nash
bargainingmodel, which incentivizesmarket participation and
enhances overall system benefits.

3. The model is validated through case studies demonstrating the
improved utilization of distributed resources and fair benefit
allocation, contributing to the design of efficient and equitable
distributed energy markets.

2 System model

It is essential to establish optimization models for distributed
energy systems (DESs) under both independent operation and
shared operation modes. This analysis elucidates the fundamental
mechanism by which the shared operation mode incentivizes
DESs to participate in the spot market, thereby enhancing social
welfare. To streamline the bidding process and protect user privacy,
we propose a direct load management model where electricity
aggregators act as agents forDESs in distributed energy transactions.
Following market optimization and clearing, we introduce the
concept of a market value contribution ratio to quantitatively assess
the contributions of different DESs. This ratio serves as the basis for
allocating and settling system benefits according to the contribution
of each DES, thereby ensuring sufficient incentives and willingness
for DESs to participate in the distributed energy trading market.

2.1 Distributed energy trading market
model

Considering the numerous DESs in the distribution network,
we assume that DESs are price takers, meaning that the distributed
system will not strategically alter its electricity consumption
behavior to influence the benefits of participating in distributed
energy transactions. Due to the relatively small electricity volumes
of DESs in the distribution network, this model does not consider
the impact of DES load behavior changes on transmission network
nodal prices, treating nodal prices as predetermined constants. To
simplify themarket transactionmodel, themodels in this section do
not account for the distribution network topology or network losses.

2.1.1 Distributed energy trading market process
To streamline the bidding process and simplify market

transactions, a market process adapted for distributed energy
trading is designed in this section. Given that electricity is a
homogeneous commodity, we consider an electricity aggregator
operating a unified distributed energy trading platform, acting
as an agent for all DESs. On this platform, DESs can share
surplus electricity from their photovoltaic (PV) systems and energy
storage or utilize surplus energy from other DESs. The energy
consumption behavior of DESs is guided by the aggregator through
coordinated pricing. After market clearing, the aggregator pays the
corresponding fees based on the cleared trading volume of each
DES in the distributed energy transactions. The specific process
is as follows:

1. All DESs sign agreements with the aggregator, allowing them
to participate in the aggregator-operated distributed energy

trading platform and stipulating payment and settlement rules
for distributed energy transactions.

2. Each DES optimizes its distributed energy resources and load
based on the coordinated price issued by the aggregator and
decides on its trading volume in the platform.

3. The aggregator collects net load information from all DESs,
participates in wholesale market electricity purchases and
sales, and maintains power supply and demand balance.

4. The aggregator settles accounts with all DESs: settling net
loads at the retail electricity price, surplus electricity at the
net metering price, and distributed energymarket transactions
according to the agreement.

Figure 1 shows the market framework of the DESs and
aggregator. Compared to traditional models without a distributed
energy trading market, energy sharing provides DESs with a
win–win trading platform and business model. The distributed
energy trading market forms a coalition of the aggregator and all
DESs, aiming to maximize social welfare in response to price signals
from the main grid.

It should be noted that maximizing the overall benefits of the
aggregator and all DESs requires all DESs to report their private
information to the aggregator, including utility functions, load
demands and adjustment ranges, and distributed energy parameters.
However, in reality, it is challenging for the aggregator to require
all DESs to report their private information, making it difficult to
implement a centralized quotation-based market trading model.
Therefore, the concept of direct load management is adopted in this
section by the aggregator acting as an agent for DESs, proposing a
distributedmarket tradingmodel to simplify the transaction process
and protect DES privacy.

Each DES is equipped with an energy management controller
(EMC) to optimize and control the hourly power of energy storage,
electrical appliances, and other equipment within the DES. The
EMC communicates with the electricity aggregator, sending cost
information, adjustment ranges, and other parameters of distributed
energy resources to the aggregator while receiving control signals
issued by the aggregator. Consequently, the aggregator acts as an
agent for all DESs to participate in distributed energy trading,
implementing direct loadmanagement. It is worth noting that under
the direct load management mode, DESs only need to entrust their
distributed energy resources to the aggregator. The aggregator then
decides on the operation mode of the distributed energy resources
and allocates value based on the benefits created by these resources.

2.1.2 Aggregator model
The aggregator acts as an intermediary connecting the DESs and

the main grid. It purchases electricity from the main grid at nodal
marginal prices and sells it toDESs at retail prices or buys distributed
energy from DESs at net metering prices and feeds it back to the
main grid at nodal marginal prices.

The aggregator acting as an agent is considered in this section
for N DESs participating in the day-ahead market. To account
for the uncertainties in real-time load and distributed energy
output, we use a scenario-based stochastic programming approach.
Specifically, we use scenario sets to characterize possible real-
time loads and distributed energy outputs. The net revenue model
for the aggregator is as follows:
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FIGURE 1
Distributed energy trading market model based on the aggregator agency.
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s∈ΦS

∑
t∈ΦT

γs[λ
out
s,t P

NS
s,t − λ

in
s,tP

NL
s,t + λ

R
t ∑
i∈ΦU

PNL
i,s,t − λ

S
t ∑
i∈ΦU

PNS
i,s,t], (1)

where rA is the net revenue of the aggregator; ΦS, ΦT, and ΦU

represent the sets of scenarios, time periods, and DESs, respectively;
γs is the probability of scenario s; λouts,t and λins,t are the prices for the
aggregator to sell electricity to and buy electricity from the main
grid, respectively; λRt and λSt are the retail price and net metering
price offered by the aggregator to DESs, respectively; PNS

i,s,t and PNL
i,s,t

are the net surplus power and net load, respectively, of ith DESs in
scenario s and time period t; PNS

s,t and PNL
s,t are the total net surplus

power and net load of all DESs, respectively, in scenario s and time
period t, which are represented as follows:

PNL
s,t = [ ∑

i∈ΦU

(PNL
i,s,t − P

NS
i,s,t)]
+

,∀s, t, (2)

PNS
s,t = [ ∑
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i,s,t − P

NL
i,s,t)]
+

,∀s, t. (3)

The buying and selling prices between the aggregator and the
main grid are related to nodal marginal prices. In reality, due to
factors such as transmission fees and tax rates, the purchase price
λins,t is often not equal to the selling price λouts,t . Purchase and sale ratio
coefficients ωin and ωout, respectively, are introduced in this section
to reflect the relationship between nodal marginal prices and the
aggregator buying and selling prices:

λins,t = ω
inλLMP

s,t ,λ
out
s,t = ω

outλLMP
s,t ,∀s, t. (4)

2.1.3 Distributed energy system management
model

Let us assume that each distributed energy system is equipped
with one rooftop PV system, one battery energy storage system,
and several electrical devices. The energy management system of
each DES is responsible for optimizing and controlling distributed
energy resources and controllable loads. The optimization model is

as follows. The objective function is

argmin
Xi

cUi = ∑
s∈ΦS

∑
t∈ΦT

γs [λ
R
t P

NL
i,s,t − λ

S
tP

NS
i,s,t −Ui (PL

i,s,t)] , (5)

where the optimization decision variableXi includes the net surplus
power PNS

i,s,t, net load PNL
i,s,t, controllable load PL

i,s,t, PV power PPV
i,s,t,

energy storage charge and discharge power PESS
i,s,t,α/β, and stored

energy of the ith DES EESSi,s,t . c
U
i is the net cost of the ith DES. Ui(⋅) is

the utility function of the ith DES, which is assumed to be a concave
quadratic function in this paper.

The optimization model includes the following constraints.

2.1.3.1 Power balance constraint

PNL
i,s,t − P

NS
i,s,t = P

L
i,s,t − P

PV
i,s,t + P

ESS
i,s,t,α − P

ESS
i,s,t,β,∀s, t, (6)

which indicates that the net load of a DES equals the difference
between its total load and distributed energy output. Note that as
the retail electricity price PhiR is higher than the net metering price
PhiS, the objective function (Equation 5) ensures that at least one of
the net surplus power and net load is 0. When the DES net load is
positive, PNL

i,s,t > 0 and PNS
i,s,t = 0; when the DES net load is negative,

PNL
i,s,t = 0 and PNS

i,s,t > 0.

2.1.3.2 Net load constraint

0 ≤ PNL
i,s,t,P

NS
i,s,t ≤ P

C
i,max,∀s, t. (7)

2.1.3.3 PV power constraint

0 ≤ PPV
i,s,t ≤ P

FPV
i,s,t ,∀s, t. (8)

2.1.3.4 Controllable load constraints

PL
i,s,t,min ≤ P

L
i,s,t ≤ P

L
i,s,t,max,∀s, t. (9)

Frontiers in Energy Research 04 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1476691
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Hu et al. 10.3389/fenrg.2024.1476691

∑
t∈ΦT

PL
i,s,t ≥ Q

L
i,s,∀s, (10)

where Pi,s,t,min and Pi,s,t,max, respectively, represent the lower and
upper limits of controllable load for the ith DES, and QL

i,s is the
minimum daily electricity consumption of the ith DES.

2.1.3.5 Energy storage operation constraints

0 ≤ PESS
i,s,t,a ≤ P

ESS
i,α,max,∀s, t, (11)

0 ≤ PESS
i,s,t,β ≤ P

ESS
i,β,max,∀s, t, (12)

EESSi,s,t = E
ESS
i,s,t−1 + η

ESS
i PESS

i,s,t,a − P
ESS
i,s,t,β/η

ESS
i ,∀s, t, (13)

EESSi,min ≤ E
ESS
i,s,t ≤ E

ESS
i,max,∀s, t, (14)

EESSi,s,NT = EESSi,s,0,∀s. (15)

Equations 11, 12 represent the power constraints of energy storage
charging and discharging, respectively, and PESS

i,α,max represents the
maximum charging and discharging power. Equation 13 represents
the dynamic change process of stored energy, Equation 14 limits
the stored energy, and EESSi,min and EESSi,max are the lower and upper
limits of stored energy, respectively. Equation 15 sets the final state of
energy storage to be the same as the initial state, ensuring continuous
operation of energy storage.

So far, we established the mathematical models for DESs
operating independently without participating in the market.
Optimizing and solving the above model can obtain the optimal
operating state X∗i of DESs when operating independently. At this
time, the net cost of the DES is recorded as cU,0i and the net income
of the aggregator when DESs operate independently is recorded
as rA,0. At this point, the cost vector [−rA,0,cU,01 ,…,c

U,0
N ] composed

of DESs and the aggregator is called the non-cooperative state
(disagreement point).

2.1.4 Distributed energy trading market model
As analyzed previously, the establishment of a distributed

energy trading market by the aggregator is equivalent to organizing
all DESs with the objective of maximizing social welfare or
minimizing system operating costs as a market clearing model.
When DESs participate in distributed energy trading, sharing their
own distributed energy resources with other systems, it may lead to
increased operating costs compared to their independent operation
state.Therefore, the aggregator, as themarket organizer, needs to pay
fees to the DESs to incentivize their active participation in market
optimization. Let the fee paid by the aggregator to the ith DES be
πESi , then the net cost of the DES becomes cUi − π

ES
i , whereas the net

income of the aggregator becomes . The distributed energy trading
market model is established as follows, with the objective function:

argmin
x
−rA +∑

i
πES
i +∑

i
(cUi − π

ES
i ) = −r

A + ∑
i∈ΦU

cUi , (16)

In Equation 16, the optimization decision variables x include all
optimization decision variables of distributed energy systems, the

TABLE 1 Parameters for the ESS.

PESS
iαmax PESS

iβmax ηESSi EESSi,min EESSi,max EESSi,0

5 kW 5 kW 95% 5 kW h 30 kW h U[5, 30] kWh

total net surplus power and net load variables of the aggregator, and
the electricity volume of distributed energy systems participating
in distributed energy trading. The objective function represents
minimizing the costs of the aggregator and all distributed energy
systems. Note that as piESi is the benefit settlement between
the aggregator and distributed energy systems, it cancels out
in the objective function. The model includes the following
constraints.

2.1.4.1 Power balance constraint for distributed energy
systems

PNL
i,s,t − P

NS
i,s,t − P

ES
i,s,t = P

L
i,s,t − P

PV
i,s,t + P

ESS
i,s,t,α − P

ESS
i,s,t,β,∀i, s, t. (17)

Compared to the power balance constraint Equation 6, when
DESs operate independently, the electricity volume of DESs
participating in market trading is introduced into the constraint
condition.

2.1.4.2 Distributed energy trading balance constraint

∑
i∈ΦU

PES
i,s,t = 0 : λESs,t ,∀s, t. (18)

The above equation indicates that the sum of the trading volumes
of all distributed energy systems in each scenario and time period
is zero. λESs,t represents the marginal price of distributed energy
market clearing.

2.1.4.3 Distributed energy trading volume constraint for DESs

−PCi,max ≤ P
ES
i,s,t ≤ P

C
i,max,∀i, s, t. (19)

The above equation indicates that the trading volume
of distributed energy systems can be positive or negative.
A positive value means the distributed energy system is a
supplier in the market, whereas a negative value means it
is a consumer.

In addition, the distributed energy trading market model also
includes individual constraints (Equations 6–15) for all distributed
energy systems, as well as constraints (Equations 1–4) for the
aggregator. Optimizing the above model yields the optimal
operating state x̂ when DESs participate in market trading. At this
time, the net cost of distributed energy systems is represented as cU,1i ,
and the net income of the aggregator is recorded as rA,1i . The cost
vector composed of distributed energy systems and the aggregator
[−rA,1,cU,11 ,…,c

U,1
N ] is called the cooperative state (agreement point).

As the distributed energy market maximizes the benefits of the
aggregator and distributed energy systems, the cooperative state has
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TABLE 2 Comparison of three different operation modes for DESs.

Operation mode Participate market Settlement mechanism

Independent operation (M1) No Sales price and net-metering price

Market trading + benefit sharing (M2) Yes Bilateral negotiated price

Market trading +value allocation (M3) Yes Value allocation mechanism

FIGURE 2
Power curves of a DES with and without the distributed energy market: (A) without energy sharing and (B) with energy sharing.

FIGURE 3
Comparison of the aggregated net load vs. nodal marginal price of the 10 DESs with and without a market.

lower costs than the non-cooperative state. The difference is called
the cooperative surplus, which is defined in Equation 20:

Δ = (−rA,0 + ∑
i∈ΦU

cU,0i )−(−r
A,1 + ∑

i∈ΦU

cU,1i ) ≥ 0. (20)

After market optimization scheduling, distributed energy
systems share distributed power sources, causing their operation to
deviate from individual optimum, which may lead to an increase

in their own electricity purchase costs, that is, cU,1i > c
U,0
i . For this

reason, the aggregator needs to identify the contributions and values
of different distributed energy systems in the distributed energy
market and allocate benefits to ensure that all distributed energy
systems have the willingness and incentive to actively participate
in the distributed energy market, that is, 1cU,1i − π

ES
i ≤ c

U,0
i . As πES

i
cancels out in the distributed energy market clearing model, a value
allocation mechanism to calculate πES

i is proposed in this paper.
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TABLE 3 Load, energy storage charge/discharge, and consumption of
PV electricity for all smart buildings.

Mode Load (kWh) ESS (kWh) PV power (kWh)

No market 378.34 221.12 188.76

Market 392.59 381.71 188.76

2.2 Value allocation mechanism for the
distributed energy trading market

Nash bargaining theory is a method to study how market
participants share cooperative surplus. By maximizing the product
of utility differences before and after cooperation for all market
participants, subject to a series of constraints, optimizing the Nash
bargaining model can yield the benefit allocation results among
market participants. The optimal solution of the Nash bargaining
model satisfies properties such as individual rationality, balance of
payments, and social welfare maximization.

First, a market value contribution rate is proposed in this
section to quantify and identify the contributions and values of
different DESs in distributed energy market transactions. Then, a
Nash bargaining model is established considering the market value
contribution rate, the benefit settlement between the aggregator
and DESs is optimized, and the corresponding value allocation
mechanism is derived theoretically to promote DES participation in
the spot market.

2.2.1 Market value contribution rate
First, the contribution of a DES to distributed energy market

transactions is defined as the economic value of its market
participation volume. In scenario s and time period t, the
contribution CU

i,s,t of a DES is defined in Equation 21:

CU
i,s,t = λ

ES
s,t |P

ES∗
i,s,t | ,∀i, s, t. (21)

That is, the product of the distributed energy market clearing
price and the DES market participation volume. Note that as the
DES market participation volume PES

∗

i,s,t can be positive or negative,
the absolute value of the volume is taken in the above equation. It
is considered that both supply and demand generate value for the
distributed energy market.

Therefore, themarket value contribution rate of aDES is the ratio
of its total contribution to market transactions to the contributions
of all DESs, which is defined in Equation 22:

SCRi = (1− τA)
∑

s,t
γsC

U
i,s,t

∑
j,s,t

γsC
U
j,s,t

, (22)

where τA ∈ (0,1) is the profit rate of the aggregator, which is assumed
to be a constant in this section. In practice, this profit rate can
be controlled by relevant government departments to limit the
earnings of the aggregator. Note that for DESs not participating in
the distributed energymarket, PES∗i,s,t is always 0, so their contribution
is 0, and their market value contribution rate is also 0.

2.2.2 Value allocation mechanism
The settlement rules between the aggregator and DESs can be

obtained by optimizing the following Nash bargaining model:

max
X,Π

fNB = (−rA,0 + rA − ∑
i∈ΦES

πES
i )

TA

∏
i∈ΦES

(cU,0i − c
U
i + π

ES
i )

SCRi ,

(23)

Equation 23 is subjected to all DES individual constraints,
aggregator constraints, and distributed energy market constraints
(Equations 17–19), and the following individual rationality
constraints:

−rA,0 + rA − ∑
i∈ΦES

πES
i ≥ 0, (24)

cU,0i − c
U
i + π

ES
i ≥ 0,∀i ∈Φ

ES. (25)

In this model, the optimization decision variables are X and
the payment Π fees from the aggregator to DESs. The objective
function is aCobb–Douglas function,where the first term represents
the utility difference of the aggregator before and after organizing
the distributed energy market and the second term represents
the utility difference of DESs before and after participating in
the distributed energy market. Constraints (Equations 24, 25)
represent the individual rationality of the aggregator and DESs,
respectively, ensuring that costs decrease after participating in the
distributed energy market, thus guaranteeing the willingness of
market participants. Note that ΦES represents the set of DESs with
market value contribution rates greater than 0, excluding DESs not
participating in the market from the DES set ΦU.

The above Nash bargaining model has the following
analytical solution:

πES∗
i = SCRi ⋅Δ+ c

U,1
i − c

U,0
i ,∀i, (26)

In Equation 26, Δ is the cooperative surplus, that is, the total system
cost reduction or total social welfare increase. The value allocation
mechanism stipulates that the payment received by DESs consists of
two parts: the first part is the increase in individual operating costs
after DESs participate in the distributed trading market; SCRi ⋅Δ is
the benefit obtained from the cooperative surplus according to the
energy contribution rate.

Therefore, the economic connotation of the value allocation
mechanism is as follows: first, pay each DES for the additional
operating costs incurred by sharing distributed energy, to ensure that
the operating costs of each DES do not increase after participating
in market transactions; then, share the jointly created social welfare
according to the contribution of each DES. Note that this settlement
rule also applies to DESs not participating in market transactions,
whose contribution rate is 0, and the individual operating cost
change is 0, resulting in zero payment from the aggregator to
these DESs.

From the value allocation mechanism, the net benefits of DESs
and the aggregator after participating in the distributed trading
market are defined in Equations 27, 28:

−rA,0 +(rA,1 − ∑
i∈ΦU

πES∗
i ) = τ

AΔ, (27)

cU,0i − (c
U,1
i − π

ES∗
i ) = SCRiΔ,∀i. (28)
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TABLE 4 Cost benefit of electricity retailers and smart buildings under three operation modes (unit: USD).

No. M1 cost Cost after market participation M2 cost M3 cost

1 1.58 10.20 0.91 1.23

2 4.35 13.45 3.96 3.67

3 0.78 11.13 0.39 0.62

4 2.89 9.65 2.48 2.22

5 −0.28 12.22 −0.72 −0.43

6 4.07 11.18 3.68 3.36

7 7.69 9.98 7.28 7.01

8 1.91 13.59 1.50 1.79

9 2.61 12.15 2.19 2.45

10 5.23 13.24 4.85 4.49

Aggr. −31.99 −123.38 −32.71 −33.02

FIGURE 4
Cost reduction for different DESs under M2 and M3 settlements.

Thus, it can be observed that the net benefits of all DESs and
the aggregator in the distributed trading market are non-negative,
ensuring the willingness of market participants to participate.

3 Simulations

3.1 Dataset

The effectiveness of the value allocation mechanism is verified
in this section through a system of 10 DESs. The data used in this
simulation include 1 aggregator and 10 DESs. The load and rooftop
PV data for the DESs are sourced from Austin, Texas, United States.
The quadratic and linear coefficients of the DES utility functions are
drawn fromU[−0.5, −0.1] andU[20, 50], respectively.The adjustable
range of the DES load is 0.8–1.2 times the baseline, and the daily

minimum electricity consumption requirement for each DES is
its actual load. The parameters of the DES battery energy storage
are shown in Table 1.

The aggregator provides time-of-use electricity prices for DESs,
that is, 0.212 $/kWh from 1:00 a.m. to 8:00 a.m. and 22:00 p.m. to
24:00 p.m.; 0.238 $/kWh from 8:00 a.m. to 12:00 p.m. and 18:00 p.m.
to 22:00 p.m.; and 0.263 $/kWh from 12:00 p.m. to 18:00 p.m. The
net metering price is 0.03 $/kWh. Locational marginal price data
are taken from an annual price of a bus in the US PJM market. The
coefficients are set to ωin = 2 and ωin = 2.

To verify the effectiveness of organizing the distributed energy
market and the value allocation mechanism, three operation modes
are adopted in this section, as shown in Table 2.

Among them, M1 represents the independent operation mode
of DESs, which does not consider the distributed energy trading
market. DESs only trade and settle with the aggregator at
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FIGURE 5
Net benefits of the aggregator and DESs settled according to M3 as the aggregator profit rate increases.

given retail and net metering price levels. M2 represents market
trading and benefit sharing settlement, which allows DESs to
participate in the distributed energy trading market while using the
traditional symmetric Nash bargaining model for average benefit
sharing. Symmetric Nash bargaining requires equal weights for all
DESs, that is,

SCRi =
1− τA

N
,∀i. (29)

The aggregator profit rate is set to τA = 0.2. Therefore, the
traditional symmetric Nash bargaining model does not distinguish
the value and contribution created by different DESs in market
transactions, and the social welfare brought by market transactions
is evenly distributed among all DESs.

M3 represents market trading and value allocation settlement,
which allows DESs to participate in the distributed energy trading
market and uses the value allocation mechanism proposed in this
paper, that is, “market value contribution rate + Nash bargaining,”
for benefit sharing. The market value contribution rate defines the
bargaining power of DESs in the Nash bargaining model proposed
in this paper:

SCRi = (1− τA)
∑

s,t
γsC

U
i,s,t

∑
j,s,t

γsC
U
j,s,t

. (30)

By comparing M1 and M3, we can verify the role of the
distributed energy market and analyze the effects of different
settlement mechanisms. It is worth noting that both M2 and M3
consider the distributed energy market, and their market trading
results are consistent, with only the settlement results being different
as indicated in Equations 29, 30.

3.2 Results of distributed energy market
trading

Figures 2A, B compare the power curves of a DES with and
without the distributed energy market. It shows that without a
distributed energy market, DESs have no incentive or willingness
to arbitrage through energy storage under peak–valley retail prices.
Therefore, energy storage is only used to store excess photovoltaic
electricity during the day and discharge at night to meet part of the
load. Due to the low netmetering price level, DESs tend tominimize
their own net load rather than feed electricity back to the aggregator.
After the aggregator organizes the distributed energy market, DESs
will significantly increase the utilization of battery storage, shifting
daytime loads to nighttime. The net load curve of the DES shows
that the DES can even provide power during the day. Moreover,
comparing the load curves with and without the market shows that
the DES load curve itself also shows some degree of peak shaving
and valley filling.

The marginal price of the 10 DESs is compared with market
and without market, as shown in Figure 3. In the distributed energy
market, the aggregator aggregates all DESs to respond to the main
grid price. Therefore, during the peak load period from 8:00 to
20:00, the aggregated net load decreases by 101.56 kW h, which is
equivalent to providing power support for the main grid, alleviating
the main grid supply pressure, and demonstrating the grid-friendly
benefits of distributed energy resources.

Table 3 shows the load, energy storage charge/discharge amount,
and photovoltaic consumption for all DESs. The distributed energy
market allows DESs to share surplus electricity from PVs and ESSs,
or purchase shared electricity from other DESs, thus providing
a more cost-effective way of electricity consumption. DESs tend
to use more electricity to increase their utility level, with the
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distributed energy market effectively increasing the load by 3.12%.
Additionally, the energy storage utilization rate increased by 73.45%.
Due to the zero marginal cost of photovoltaic generation, PV
electricity is fully consumed under both market and non-market
conditions.

Table 4 compares the costs and benefits of the aggregator and
DESs under three operationmodes. Note that negative costs indicate
positive benefits. Compared to M1, which has no distributed energy
market, the costs of DESs significantly increase after participating
in the market. This is because DESs need to deviate from their
individually optimal operating states when sharing distributed
energy or responding to main grid prices. However, the aggregator
can profit from this. To incentivize DESs to participate in the
distributed energymarket, the aggregator needs to share the benefits
generated from market operation with the DESs. Both M2 and M3
settlement methods can reduce the operating costs of DESs and
improve their benefit levels. M2 evenly distributes the total fees
the aggregator allocates to DESs among different DESs, whereas
M3 distributes them according to the contribution rate of DESs.
Under the M3 operation mode, the aggregator benefit can increase
by 3.46%, and the cost reduction for different DESs ranges from 0.36
to 0.44 dollars.

3.3 Results of the value allocation
mechanism

As previously analyzed, symmetric Nash bargaining evenly
distributes the total fees allocated by the aggregator among different
DESs, resulting in equal contribution rates for each DES. However,
in reality, different DESs contribute differently to distributed energy
market transactions. A DES sharing 1 kW h of electricity and
one sharing 10 kW h should be paid different fees and receive
different benefits. The value allocation mechanism proposed in
this paper can effectively identify the value and contribution
of different DESs and allocate benefits according to their
contribution rates.

Figure 4 shows the cost reduction for different DESs under
M2 and M3 settlements. Under the M2 settlement, all DESs
have the same cost reduction of $0.41. However, under the
M3 settlement, the cost reductions for all DESs range from
$0.36 to $0.44. The difference in cost reductions among DESs
stems from their contributions to the distributed energy market,
that is, the value of surplus electricity shared or consumed
by the DESs.

Under theM3 settlement, a significant positive correlation exists
between the market value contribution rates of all DESs and the
surplus electricity contributed or consumed. This indicates that
the more a DES participates in market transactions, the higher its
contribution and value to the market; therefore, it should receive
a higher level of benefits. In contrast, under the M2 settlement,
the contribution rates of all DESs are unrelated to their market
participation levels and are all equal to 0.08.

Therefore, the distributed energy market model proposed
in this paper can significantly improve the overall benefits of
the aggregator and DESs. The value allocation mechanism can
effectively identify the value and contribution of DESs and allocate
corresponding benefits.

3.4 Analysis of the profit rate impact of the
aggregator

The impact of the aggregator profit rate on the operation,
clearing, and settlement of the distributed energymarket is explored
in this section. In the value allocation mechanism proposed in
this paper, the aggregator profit rate affects its income level.
Simultaneously, as the total benefit of the distributed energy
market is fixed, the aggregator profit rate also affects the cost
reduction of DESs.

Figure 5 shows the net benefits of the aggregator and DESs
settled according to M3 as the aggregator profit rate increases. As
the aggregator profit rate increases, the aggregator obtains higher
benefits, whereas the cost reduction for DESs after participating in
the market gradually decreases. The market value contribution rate
of DESs can be directly derived from the slope of the cost reduction
for different DESs.

Furthermore, under different profit rates, the total benefit
generated by the distributed energy market remains constant at
$5.13. This verifies that the different settlement methods (M2 and
M3) only affect the allocation of benefits among DESs and do not
affect the operation of the distributed energy market.

The proposed distributed energy trading market model and
value allocation mechanism have the potential to significantly
impact grid stability and renewable energy adoption in the long
term. By incentivizing the efficient use of DERs and promoting load
shifting, the model could enhance grid stability and reliability over
time. The fair value allocation mechanism may accelerate renewable
energy adoption by encouraging investment in distributed resources
like rooftop solar and small-scale wind turbines. Improved energy
efficiency and increased use of energy storage systems could
facilitate the higher penetration of variable renewable energy
sources. As the market evolves, it could lead to more sophisticated
products and services, potentially improving the overall system
resilience.

4 Conclusion

In conclusion, a novel market value allocation mechanism
designed to incentivize the active participation of DERs within
smart buildings in market operations is presented in this study.
The proposed framework, orchestrated by an aggregator, integrates
independent operation and market trading models for DERs.
The distributed energy market clearing model is fundamentally
an optimization problem aimed at minimizing costs for both
the aggregator and all DERs, subject to power balance, market
clearing, and DER operational constraints. The introduction of
the market value contribution rate concept provides a quantitative
assessment of the contribution of each DER, defining it as the
proportion of economic value created by an individual DER
relative to the total value generated by all market participants.
This metric serves as a foundation for a Nash bargaining model,
culminating in a market value allocation mechanism that ensures
individual rationality for both the aggregator and DERs. An
empirical analysis based on a system of 10 DERs demonstrates the
mechanism efficacy in identifying and quantifying the contributions
of different market participants, leading to a fair distribution of
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social welfare. By reducing transaction costs and eliminating the
need for DER bidding, this mechanism significantly enhances
the market operational efficiency. Furthermore, the aggregator-
led response to main-grid price signals enables DERs to provide
substantial power support during peak load periods, thereby
improving grid stability and resource utilization. This research
contributes to the advancement of distributed energy markets and
offers valuable insights for policymakers and market operators
in designing effective and equitable market structures for the
integration of DERs.

In future works, the research will focus on developing dynamic
pricing mechanisms, assessing long-term impacts on grid stability
and renewable energy adoption, integrating blockchain technology
for enhanced security, and exploring machine learning applications
for market optimization. Additionally, scalability studies will be
conducted to ensure the model applicability in larger, more complex
energy systems.
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