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This paper proposes a short-term wind and photovoltaic power forecasting
framework considering time-frequency decomposition based on bidirectional
long short-term memory networks. First, the seasonal and trend decomposition
using loess is applied to the original wind and photovoltaic data for time domain
decomposition, obtaining trend, seasonal, and residual components. Then, the
residual component undergoes variational mode decomposition to further
extract features of different frequencies. Next, the maximum information
coefficient is used to select features, which is highly correlated with wind and
photovoltaic power as input features to the predictionmodel. Finally, the selected
features are input into bidirectional long short-term memory networks for
training and prediction. Experimental validation using actual data from a
photovoltaic station and a wind power station in Hebei Province, China from
July to August 2023, which shows that the proposed method achieves high
accuracy and reliability in photovoltaic and wind power output prediction. The
proposed time-frequency decomposition with the smallest root mean square
error of 0.92 and mean absolute error of 0.58 in photovoltaic prediction, at the
same time, the smallest root mean square error of 67.5 and mean absolute error
of 48.16 in wind power prediction, significantly outperforming other power
prediction methods.
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1 Introduction

1.1 Background and motivations

With the continuous growth of global energy demand and increasing awareness of
environmental protection, the increasing proportion of renewable energy such as wind
power and photovoltaic (PV) generation in power systems is evident. Renewable energy,
characterized by its cleanliness and lack of pollution, is considered a crucial component of
the future power system (Harrou et al., 2024). However, the significant intermittency and
randomness of wind and PV generation make accurate output prediction critical for power
system dispatch and operation (Li et al., 2023; Walczewski and Wöhrle, 2024). Enhancing
the accuracy of wind and PV output prediction can improve power system stability and
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economy, and effectively reduce the need for reserve capacity and
peak regulation (Zhang et al., 2024). In this context, researching
efficient and accurate prediction methods is crucial for the optimal
operation of power systems (Su et al., 2023; Tan et al., 2022).

To address the uncertainty in wind power and PV power
generation output (Zhong et al., 2023), researchers have proposed
various prediction methods, broadly categorized into physical
models and data-driven approaches (Mayer and Yang, 2023).
Physical model methods rely on detailed meteorological data and
complex physical process simulations. While these methods
improve prediction accuracy, their complex computations and
reliance on high-precision meteorological data limit their broad
application (Dong et al., 2023). Conversely, data-driven methods
predict output directly by analyzing and modeling historical data.
Recently, the advancement of big data technology and artificial
intelligence has led to the widespread use of data-driven methods in
predicting wind and PV power generation. However, existing
methods often struggle to capture multi-scale characteristics fully,
limiting prediction accuracy. These methods also show limitations
in handling nonlinear and non-stationary data (Strielkowski et al.,
2023). Developing prediction models that effectively process
complex time series data has thus become a research focus.

1.2 Literature review

To effectively handle complex time series data and improve
prediction accuracy, time domain decomposition, and frequency
domain decomposition techniques have shown significant potential.
Time domain decomposition techniques play a crucial role in time
series analysis by decomposing complex time series data into trend,
seasonal, and residual components, thereby enhancing data
interpretability and prediction model accuracy. The Seasonal and
Trend Decomposition using Loess (STL) method, a widely used time
domain decomposition technique, has been extensively applied in
various fields. Wang et al. (2021) proposed a hybrid algorithm
combining STL and Long Short-Term Memory (LSTM) neural
networks. Using time domain decomposition to eliminate
periodic factors, this method improved the accuracy of short-
term subway passenger flow prediction. The results showed this
method is more effective than single models. Chen et al. (2020)
proposed a bottom-up short-term residential load forecasting
method based on appliance characteristics analysis and multi-task
learning. This study emphasized the importance of identifying and
removing periodic fluctuations through time-domain
decomposition methods for load forecasting.

However, despite the excellent performance of STL-based time-
domain decomposition methods in handling time series data with
significant seasonality and trends, using time-domain
decomposition alone may be insufficient to address the
complexity of wind and PV power output data. These data
typically contain multi-scale features and nonlinear relationships,
which may not be fully captured by time domain decomposition
alone. Time series decomposition algorithms mainly include
Prophet and empirical mode decomposition (Mo et al., 2022;
Dragomiretskiy and Zosso, 2014). To this end, Zhang C. et al.
(2022) proposed a short-term electricity price prediction method
that combines frequency analysis and price spike oversampling. By

employing frequency domain decomposition techniques, the
frequency characteristics of electricity prices are effectively
captured, significantly improving prediction accuracy. Azam and
Younis (2021) proposed a power load and price prediction
framework based on Ensemble Empirical Mode Decomposition
(EEMD) and a multi-head self-attention mechanism. EEMD, as a
frequency domain decomposition method, extracts intrinsic mode
functions from time series, providing more accurate and
interpretable prediction results. Zhang X. et al. (2022) introduced
a hybrid short-term load forecasting method based on Empirical
Wavelet Transform (EWT) and Bidirectional Long Short-Term
Memory neural networks (BiLSTM). EWT, serving as a
frequency domain decomposition tool, effectively extracts multi-
frequency components from load data, providing higher quality
input data for subsequent neural networks, thus improving model
performance. Tan et al. (2022) proposed an ultra-short-term PV
power prediction model based on optimal frequency domain
decomposition and deep learning. Using Fast Fourier Transform
(FFT) for frequency domain decomposition, the model extracts low
and high-frequency components of PV power and combines them
with Convolutional Neural Networks (CNN) for prediction,
significantly enhancing prediction accuracy and time efficiency.
In summary, frequency domain decomposition methods such as
EWT, EEMD, and frequency analysis can effectively extract key
frequency components from time series data, improving the
accuracy and stability of prediction models. However, current
research predominantly focuses on the standalone application of
time or frequency domain decomposition techniques (Wang et al.,
2021; Yan et al., 2021), with limited studies combining both to
leverage their advantages fully. Therefore, it is necessary to explore
integrated time and frequency domain decomposition frameworks.
By combining STL and Variational Mode Decomposition (VMD)
methods, it is possible to comprehensively capture the
characteristics of wind and PV power output data, thereby
enhancing the accuracy and stability of prediction models.

Furthermore, wind and PV power generation are influenced by
various factors such as meteorological conditions, environmental
changes, and equipment status, resulting in data with high
complexity and nonlinear characteristics. Many studies neglect
the feature selection step in their predictions, which can lead to
poor model performance. Feature selection techniques can extract
the most representative features from a large amount of raw data,
reducing redundant information and improving the performance
and computational efficiency of prediction models. Jiang et al.
(2022) proposed an ensemble feature selection method that
effectively addresses the curse of dimensionality commonly
encountered in feature selection processes, significantly
enhancing the accuracy of short-term load forecasting. Lyu et al.
(2022) utilized deep reinforcement learning methods for dynamic
feature selection, improving the accuracy and robustness of PV
irradiance prediction models. Xuan et al. (2021) employed the
random forest method for feature selection and combined it with
a hybrid neural network for frequency domain decomposition and
load forecasting. In summary, traditional feature selection methods,
such as correlation coefficients and mutual information methods,
are often used to measure the relationship between features and
target variables. However, these methods perform poorly in
handling nonlinear relationships. Compared to traditional
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methods, the feature selection method based on the Maximal
Information Coefficient (MIC) can effectively identify and
quantify both linear and nonlinear relationships between
variables. Therefore, it is necessary to consider the necessity of
feature selection to screen features highly relevant to wind and PV
power generation, thereby improving the performance and
reliability of prediction models.

In wind and PV power forecasting, traditional predictionmodels
mainly include time series models and machine learning models.
Time series models such as ARIMA and SARIMA perform well in
handling linear time series but are less effective in dealing with
nonlinear and non-stationary data. Sanjari et al. (2019) proposed a
power prediction model for hybrid PV/wind power systems, using a
combination of Support Vector Machine (SVM) and Markov
models to predict wind power generation. Yang et al. (2024)
introduced a short-term power forecasting method for wind farm
clusters based on a global information adaptive perception graph
convolution network, effectively enhancing prediction performance
by combining Graph Convolution Networks (GCN) and adaptive
perception mechanisms. An et al. (2021) proposed a short-term
wind power prediction method based on a combination of particle
swarm optimization and extreme learning machine models. Fu et al.
(2021) proposed a sky image prediction model based on
convolutional autoencoders for minute-level PV power
prediction. In recent years, deep learning models such as Long
Short-TermMemory (LSTM) (Joshi et al., 2024) and gated recurrent
units (Dey and Salem, 2017) have been widely applied in time series
forecasting due to their strong feature extraction and modeling
capabilities. Pavlov-Kagadejev et al. (2024) proposes an approach
that incorporates signal decomposition techniques with LSTM
neural networks tuned via a modified metaheuristic algorithm,
which is used for wind power generation forecasting. A method
for predicting wind speed with high accuracy based on a novel
weighted ensemble model is proposed by El-Kenawy et al. (2023),
where the weight values are optimized using an adaptive dynamic
grey wolf-dipper throated optimization to improve the wind
power prediction. Stoean et al. (2023) endows the models with
hyperparameter tuning by means of an enhanced version of a
recently proposed metaheuristic, the reptile search algorithm and
improve the effect of solar energy prediction. Sankarananth et al.
(2023) proposes a comprehensive approach combining artificial
intelligence algorithm techniques with metaheuristic
optimization algorithms for anticipating and managing
renewable energy sources in smart grid environments.
Artificial intelligence driven energy forecasting tuned deep
learning framework is proposed by Bacanin et al. (2023),
which builds a robust and accurate system for energy
forecasting. However, these models have high computational
complexity and long training times when dealing with long
sequence data. The BiLSTM model, an improved recurrent
neural network model, significantly enhances time series
prediction by capturing bidirectional temporal dependencies
(Wu, 2021). However, the application of the BiLSTM model in
wind and PV power forecasting has not been fully explored.
Therefore, it is necessary to apply the BiLSTM model to short-
term wind and PV power output forecasting, optimizing the
model structure and algorithm to improve prediction efficiency
and accuracy.

On the basis of mentioned studies, though efforts have been
devoted to the PV-Wind power prediction, the limitations of
research still exist:

(1) The decomposition process ofWind-PV power is simple, only
one of the decomposition methods is considered in the
frequency domain or the time domain, and the
characteristics of the decomposition components are not
fully explored. In addition, the residual component
fluctuates greatly, so the direct prediction effect is difficult.

(2) The input features of prediction model need to be selected,
and the commonly used Pearson correlation is not good at
analyzing the linear and nonlinear relationship between
features and decomposition components.

(3) The most prediction models only consider the past
information in time series, which not consider the forward
and backward information of the input data, so the
fluctuation law of Wind-PV power is not been fully explored.

1.3 Contributions and paper structure

To address these issues, this paper proposes a BiLSTM
prediction framework for short-term wind-PV output based on
time-frequency decomposition. This framework integrates time
domain and frequency domain decomposition techniques,
employs the MIC for feature selection, and uses the BiLSTM
model for prediction, achieving significant improvements in
multi-scale feature capture, feature selection effectiveness, and
long-sequence prediction efficiency and accuracy. The main
contributions of this paper are summarized as follows:

(1) This paper constructs a wind-PV prediction framework that
integrates time domain and frequency domain
decomposition. The framework applies the STL for time
domain decomposition, where the original time series
decompose into trend, seasonal, and residual components.
Subsequently, VMD is applied for the secondary frequency
decomposition of the residual component. This framework
effectively captures multi-domain features, enhancing the
wind-PV prediction accuracy and stability.

(2) This paper proposes MIC to select feature variables, which
highly correlated with wind and PV generation power. The
MIC effectively captures linear and nonlinear relationships
between variables, offering higher robustness and adaptability
compared to traditional correlation coefficient methods. The
input data of prediction model is highly correlated,
significantly enhancing the prediction performance and
reliability.

(3) This paper applies the BiLSTM to short-term wind and PV
power forecasting. The BiLSTM introduces a gating
mechanism that better captures temporal dependencies in
the time sequence, significantly reducing computational
complexity. Compared to traditional RNN, the BiLSTM
demonstrates higher efficiency and accuracy in handling
time sequence data, making it particularly suitable for
wind and PV power generation forecasting tasks with
complex temporal characteristics.
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The structure of this paper is as follows. Section 2 introduces the
time domain decomposition model. Section 3 shows the frequency
domain decomposition model. The feature selection method is
presented in Section 4. Section 5 derives the prediction framework
of Wind-PV power. Besides, the prediction algorithm and evaluation
metrics are introduced. Case study verifies superiority of the proposed
Wind-PV power predictionmethod in Section 6. The conclusions and
future work are summarized in Section 7.

2 Time domain decomposition of
Wind-PV based on STL

Wind and PV power generation, as important renewable energy
sources, are crucial for the stable operation of the power grid and
energy management. However, the power output of these two energy
sources is highly volatile and uncertain, primarily due to changing
weather conditions such as wind speed and PV radiation intensity.
Additionally, wind and PV power generation exhibit significant
seasonal and cyclical characteristics. For instance, PV generation
produces more power in spring and summer due to longer
daylight hours and higher PV intensity, whereas wind power
generation is higher in winter and spring due to stronger wind
speeds. Given these characteristics, decomposing wind and PV
power output is necessary and effective.

To this end, this paper first performs time domain decomposition
on wind-PV power predictions. Time domain decomposition is a
commonly used time series analysis method that can break down
complex time series into multiple relatively simple components. These
components include long-term trends, seasonal components, and
random noise. By decomposing time series data, we can better
understand and model the complex patterns within the data,
thereby improving prediction accuracy. Time domain decomposition
techniques not only help us identify and extract the main trends and
cycles in the data but also isolate the random fluctuations, providing a
foundation for subsequent frequency domain analysis and modeling.

2.1 STL method

STL is a powerful time series decomposition method widely
applied in time series analysis. This method independently models
the trend and seasonal components of a time series, achieving high
accuracy in capturing long-term trends and seasonal fluctuations.

The core idea of the STL method is to decompose a time series
into three components: Trend, Seasonal, and Residual, using locally
weighted regression. The advantage of this method lies in its
flexibility, allowing it to adapt to seasonal variations of different
frequencies and amplitudes. This makes STL particularly suitable for
handling wind-PV time series data with complex seasonality and
nonlinear trends.

2.2 Time domain decomposition steps based
on STL

The mathematical expression for STL decomposition is shown
in Equation 1 (Wang et al., 2021):

Xt � Tt + St + Rt (1)
where Xt is the original time series of wind and PV power
generation, Tt represents the trend component, St denotes the
seasonal component, and Rt is the residual component.

2.2.1 Trend component extraction
The trend component reflects the long-term variation trend of

wind and PV time series. It is a smoother part of the data and is
typically used to capture the fundamental direction of the data. The
trend extraction is achieved through locally weighted regression
(Loess). Loess is a non-parametric regression method that fits a low-
degree polynomial to the data points in the vicinity of each data
point to obtain a smooth trend curve. Its mathematical expression is
shown in Equation 2:

Tt � Loess Xt( ) (2)

2.2.2 Seasonal component extraction
The seasonal component captures the periodic fluctuations in

the time series, representing the repetitive part that reflects seasonal
or cyclical characteristics. The specific method involves fitting
periodic patterns to the detrended data to obtain the seasonal
component St. The extraction process can be represented as
shown in Equation 3:

St � 1
n
∑n
i�1

Xt − Tt( ) (3)

where n is the period length, and Xt − Tt represents the detrended
data. The extraction of seasonal components usually involves
segmenting the data, with each segment corresponding to a
complete period. By calculating the average value of each
segment or fitting a periodic model, the seasonal fluctuations can
be effectively extracted.

2.2.3 Residual component extraction
The residual component contains the random noise and short-

term fluctuations in the time series, representing the part that cannot
be explained by the trend and seasonal components. In practical
applications, analyzing and processing the residual component is
crucial for improving the accuracy of the prediction model. The
extraction process can be represented as shown in Equation 4:

Rt � Xt − Tt − St (4)

3 Frequency domain decomposition of
Wind-PV based on VMD

After time domain decomposition, although we can separate the
trend and seasonal components from the time series, the residual
component still contains a large number of high-frequency
components and random noise, representing strongly non-
stationary elements. Directly predicting this component often
results in significant errors. Additionally, these high-frequency
components may contain useful information that needs to be
further extracted and analyzed. Frequency domain decomposition
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is an effective method that transforms signals into the frequency
domain, allowing better capture of different frequency components
in the time series.

VMD is an adaptive, non-recursive modal decomposition
method that can decompose complex signals into multiple finite
bandwidth modes with different center frequencies, exhibiting
strong noise resistance. Compared to traditional Empirical Mode
Decomposition (EMD), VMD offers better stability and adaptability,
and can more accurately capture frequency information in signals.

3.1 VMD method

The core idea of VMD is to solve a variational problem to
decompose the signal into several modes, each corresponding to a
center frequency and having minimal bandwidth. VMD iteratively
optimizes by simultaneously updating the modal functions and their
corresponding center frequencies until convergence. The mathematical
model of VMD is shown in Equation 5 (Azam and Younis, 2021):

min uk{ }, ωk{ } ∑
k

∂t δ t( ) + j

πt
( )*uk t( )[ ]e−jωkt

������� �������22⎧⎨⎩ ⎫⎬⎭ (5)

where uk is the kth modal function, ωk is its corresponding center
frequency, and δ(t) is the Dirac function.

3.2 VMD decomposition steps

Through the VMD, the signal Xt is decomposed into several
modes uk(t), each having narrowband characteristics. The goal of
VMD is to find the optimal modal functions uk and corresponding
center frequencies ωk such that the bandwidth of each mode
is minimized.

The iterative optimization process involves first initializing the
modal functions and center frequencies, then alternately updating
the modal functions and center frequencies until convergence. The
specific optimization process includes:

3.2.1 Initialization
Set the number of modes K, and initialize the modal functions uk

and center frequencies ωk.

3.2.2 Modal function update
Update the modal functions uk while keeping the center

frequencies ωk fixed which are shown in Equations 6, 7:

uk t( ) � argminuk
∂t δ t( ) + j

πt
( )*uk t( )[ ]e−jωkt

������� �������22 (6)

uk t( ) � argminuk
∂t δ t( ) + j

πt
( )*uk t( )[ ]e−jωkt

������� �������22 (7)

3.2.3 Center frequency update
Update the center frequencies ωk while keeping the modal

functions uk fixed as shown in Equation 8:

ωk � argminωk
∂t δ t( ) + j

πt
( )*uk t( )[ ]e−jωkt

������� �������22 (8)

3.2.4 Convergence check
Check if the modal functions and center frequencies have

converged. If not, return to step 2) and continue iterating.
In summary, by performing frequency domain decomposition

on the residual components of historical wind and PV data, useful
information can be further extracted, improving the accuracy of
power output predictions.

4 Feature selection of Wind-PV
prediction model based on MIC

In short-term power output forecasting for wind and PV power
generation, it is essential to choose appropriate features to input into
the prediction model in addition to considering the data after time
and frequency domain decomposition. Feature selection is a crucial
step in machine learning that directly affects the model’s
performance and prediction accuracy. Common features for wind
and PV power generation data include historical power output data,
meteorological data (such as temperature, wind speed, and PV
radiation intensity), and other related factors (such as radiation
amount, PV angle, and weather conditions).

The MIC is a non-parametric statistical method used to measure
the mutual information between two variables. Unlike traditional
correlation measures like Pearson or Spearman, which are limited to
detecting linear relationships between variables, MIC is capable of
identifying both linear and nonlinear associations. This is particularly
important in the context of wind and PV power forecasting, where the
relationship between input features (such as meteorological data) and
power output is often complex and nonlinear.

The core idea of the MIC method is to use a grid search to find
the maximum amount of information between variables to measure
their correlation. Specifically, the MIC method can capture various
relationships between variables, including linear, nonlinear, and
periodic, making it suitable for complex data structures.

The specific MIC feature selection steps are (Wen et al., 2019):

4.1 Data collection

For wind power forecasting, collect features such as wind speed,
temperature, historical wind power output, and weather data. For
PV forecasting, collect features such as radiation amount, PV angle,
historical PV power output, and weather conditions.

4.2 Mutual information calculation

Use the mutual information formula to calculate the mutual
information between each pair of features and the target variable
which are shown in Equation 9.

I X;Y( ) � ∑
x∈X

∑
y∈Y

p x, y( )log p x, y( )
p x( )p y( ) (9)

where I(X;Y) is the mutual information between X and Y, X is the
feature to be selected, and Y is the wind or PV power output. x and y
are the values of feature X and output Y, respectively. p(x, y) is the
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joint probability distribution, while p(x) and p(y) are the marginal
probability distributions.

4.3 MIC calculation

Use the MIC formula to calculate the maximum information
coefficient between each pair of features and the target variable
which are shown in Equation 10.

ωk � argminωk
∂t δ t( ) + j

πt
( )*uk t( )[ ]e−jωkt

������� �������22 (10)

where X represents the feature to be selected, such as wind speed,
temperature, radiation amount, and PV angle, and Y represents the
target variable, i.e., wind or PV power output.

4.4 Feature selection

Select the features with the highest correlation to the target
variable as inputs to the prediction model. For example, for wind
power forecasting, choose wind speed, temperature, and other
highly correlated features. For PV forecasting, select radiation
amount, PV angle, and other highly correlated features.

In summary, feature selection plays a critical role in short-term
power output forecasting for wind and PV power generation. By
using the MIC method, the most highly correlated features with the
target variable can be effectively selected, significantly improving the
performance and accuracy of the prediction model.

5 Wind-PV power prediction model
and framework

5.1 Theory and methods of the BiLSTM
prediction model

After completing time domain decomposition, frequency
domain decomposition, and feature selection, we need to

construct an effective prediction model to forecast the short-
term power output of wind and PV power generation.
Currently, deep learning methods have shown excellent
performance in handling time series prediction tasks.
Specifically, the BiLSTM model combines LSTM with
bidirectional structural information of the data, leveraging its
ability to uncover the intrinsic patterns of time series data from
both past and future moments, making it highly effective in time
series prediction tasks.

As shown in Figure 1, the BiLSTM model introduces a
bidirectional temporal information transmission structure,
allowing it to analyze forward information while
simultaneously extracting future backward information. This
enhances the model’s ability to perceive the features of the
time series both before and after the current moment, thereby
establishing better dependencies over long sequences of time.
Wind and PV power outputs are significantly influenced by
meteorological factors. When weather data changes, the
BiLSTM model, which combines forward and backward
temporal correlations, shows higher sensitivity to such
changes, thereby improving the accuracy of PV and wind
power time-series predictions.

The basic architecture of the BiLSTM model includes a forward
LSTM and a backward LSTM, allowing it to simultaneously explore
the temporal characteristics of both forward and backward data
sequences. The forward computation process of the BiLSTM neural
network is shown in Equation 11:

hft � H xt, hft−1( ) (11)

where xt is input feature matrix and hft is the forward hidden state,
and H represents the computation process of the LSTM network.

The backward computation process of the BiLSTM neural
network is shown in Equation 12:

hbt � H xt, hbt−1( ) (12)
where hbt is the backward hidden state, and H represents the
computation process of the LSTM network.

The final output of the BiLSTM model is shown in Equation 13:

ht � wfthft + wbthbt (13)

where wft and wbt are the weights of the forward and backward
hidden layer outputs, respectively.

The LSTM network contains three logical units: the input gate,
forget gate, and output gate, which control the output of the memory
unit. The specific computation processes are as follows shown in
Equations 14–19:

it � σ Wi xt, ht−1( ) + bi( ) (14)
ft � σ Wf xt, ht−1( ) + bf( ) (15)
ot � σ Wo xt, ht−1( ) + bo( ) (16)

Ct � tanh Wc xt, ht−1( ) + bc( ) (17)
ct � it · Ct + ft · ct−1 (18)
hft/bt � ot · tanh ct( ) (19)

where xt is input feature matrix, σ and tanh are the activation
functions. i, f, o present input, forget and output gate, respectively.W

FIGURE 1
BiLSTM network structure (Wu, 2021).
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and b are the weights and biases of the respective gates, and ct
represents the state of the memory storage unit, which is the core
of the LSTM.

Theoretically, this bidirectional capability allows BiLSTM to
better model complex temporal dependencies, such as cyclical
weather patterns and abrupt changes in power output. In wind
and PV systems, future conditions (e.g., changes in sunlight intensity
or wind speed) can influence the current output, just as past
conditions do. BiLSTM’s structure makes it well-suited to learn
from these bidirectional temporal dependencies, thereby improving
prediction accuracy. While GRU offers computational efficiency,
BiLSTM’s enhanced contextual understanding aligns better with the
intricate dynamics of renewable energy output, making it a more
robust choice for this application.

5.2 Overall Wind-PV prediction framework

In summary, as shown in Figure 2, to achieve short-term power
output forecasting for wind and PV power generation, this paper
integrates time domain decomposition, frequency domain
decomposition, the MIC, and the BiLSTM model into a unified
prediction framework. First, the original wind and PV data are
subjected to time domain decomposition to extract trend, seasonal,
and residual components. Then, the residual component undergoes
VMD to extract modal functions of different frequencies. Next, the
MIC method is used to select features highly correlated with power
output. Finally, the selected features are input into the BiLSTM
model for training and prediction.

5.3 Prediction error evaluation metrics

To evaluate the performance of the prediction model, various
typical prediction error evaluation metrics are used, including Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE)
(Sanjari et al., 2019).

RMSE is shown in Equation 20:

RMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2√
(20)

MAE is shown in Equation 21:

MAE � 1
n
∑n
i�1

∣∣∣∣∣∣∣∣∣yi − ŷi

∣∣∣∣∣∣∣∣∣ (21)

where yi is the actual value, ŷi is the predicted value, and n is the
number of samples.

It is worth noting that the inclusion of these alternative metrics
would not alter the feasibility or overall performance of the
proposed method.

6 Case study

This paper utilizes actual historical data from a typical PV
station and wind power station in Hebei Province, China for
short-term wind and PV power output prediction. The data from
the PV and wind stations in Hebei Province were selected because
Hebei is known for its significant deployment of wind and solar
energy systems, making it representative of typical renewable energy
generation conditions in China. The data range from July to August
2023. In addition to wind and PV output data, meteorological data
such as PV radiation, wind speed, and temporal data like weekdays
and hours are used. Among them, the time resolution of the data is
15 min, week is displayed according to the date, from number 1 to 7,
and hour is from number 1 to 24. First, the data are preprocessed by
using quartile method to eliminating outlier and linear interpolation
to fill in missing data. Then, the load, meteorological, and temporal
data are normalized by the min-max normalization method as
shown in Equation 22:

x′ � x − xmin

xmax − xmin
(22)

where x is the normalized feature data, ranging from 0 to 1, x is the
original feature variable, and xmax and xmin are the maximum and
minimum values of the feature variable, respectively.

6.1 Results of time domain decomposition
based on STL

Fully utilizing the PV and wind power data, considering the
inherent temporal characteristics of wind-PV output data, the STL
method is employed to extract these features. Figures 3, 4 show the
time domain decomposition results for PV and wind power output,
respectively.

From Figure 3, it can be seen that the trend component of PV
output exhibits fluctuations. For instance, there is a downward

FIGURE 2
Overall Wind-PV prediction framework.
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FIGURE 3
Time domain decomposition results for PV output.

FIGURE 4
Time domain decomposition results for wind power output.
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trend on July 21 and July 22, followed by an upward trend.
Between July 29 and July 31, the PV output shows a decreasing
trend, then stabilizes. This reveals the trend patterns in PV
output. The seasonal component shows periodic fluctuations
with a small variation pattern, reflecting the baseline power of
PV output. The residual component has strong volatility and
randomness with highly uncertain waveform patterns. Figure 4
shows that the complex original wind power output is
decomposed into a smoother trend component, a periodic
seasonal component, and a random residual component.
Therefore, STL decomposition can extract regular trend and
seasonal components from complex original sequences,
effectively enhancing the learning and training efficiency of
wind-PV prediction models.

6.2 Results of frequency domain
decomposition based on VMD

The residual component significantly influences wind-PV power
output prediction. This paper uses VMD to perform frequency
domain decomposition on the residual component, extracting its
characteristic patterns and obtaining different modal forms of
residual power, thus reducing the uncertainty of the residual
component. Figures 5, 6 show the frequency domain
decomposition results of PV and wind residual components,
respectively, when the number of modal features is 3.

From the decomposed modes 1 to 3, it is evident that the
frequency and volatility of the components increase progressively.
Mode 1, with the highest proportion, represents the trend changes of

FIGURE 5
Frequency domain decomposition results for PV residual component.

FIGURE 6
Frequency domain decomposition results for wind residual component.
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the residual component. Modes 2 and 3 reflect the fluctuation
patterns of the residual component at different frequencies.
Therefore, modes 1 to 3 can be used as input features for the
wind-PV prediction model, reflecting the uncertainty and inherent
frequency domain patterns of the residual component to a certain
extent, thereby fitting future residual fluctuations.

6.3 Prediction model input feature selection
based on MIC

Based on the time-frequency decomposition of the original
wind-PV data, time-frequency data reflecting the operational
characteristics of wind-PV power were obtained. The features

considered in this paper include internal features like historical
wind-PV data and time-frequency data, as well as external
features such as PV radiation, wind speed, weekdays, and
hours. MIC is used to select features highly correlated with
the original wind-PV and time-frequency data as input
features for the prediction model.

The MIC analysis results, as shown in Figure 7, indicate that the
correlation between the original PV data and weekdays is low, while
the correlation between the original wind data and its historical
internal features is low, with a weak correlation with temporal
features. This suggests that the original wind-PV data contain
complex and coupled features, making it difficult for MIC to
directly analyze the accurate correlation between internal and
external features. On the other hand, using the decoupled trend

FIGURE 7
Feature Correlation Analysis Results based on MIC. (A) PV (B) Wind.
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and seasonal components, which represent the temporal scale
changes of the original wind-PV data, allows MIC to better
explore the correlation between decomposition components and
features. This paper selects internal and external features with MIC
values greater than 0.3 as input features for the prediction model.
For PV seasonal components, historical seasonal power, PV
radiation, and hour are used as input features for the seasonal
component prediction model. For wind seasonal components,
historical seasonal power and hour are used as input features.
For PV trend components, historical trend power, PV radiation,
and weekdays are used as input features. For wind trend
components, historical trend power, wind speed, and weekday
are used as input features. The residual component’s certainty is
high, so it does not undergo MIC correlation analysis. Instead,
historical data of the residual component and modal features
obtained from VMD frequency domain decomposition are used
as input features for the residual component prediction model.

6.4 Time-frequency decomposition
prediction experiment for Wind-PV power

To verify the effectiveness of the proposed wind-PV time-
frequency decomposition prediction method, the following three
prediction cases are set up for experimentation:

Case 1: Using the BiLSTM model, input the features selected by
MIC to directly predict the original wind-PV output data
without decomposition.

TABLE 1 Hyperparameter range for BiLSTM prediction model.

Hyper parameters Number of neurons Batch size

Range [8,16,32,64] [48,96]

FIGURE 8
Wind-PV power prediction results.

TABLE 2 Prediction errors of Wind-PV models.

Experiments RMSE/kW MAE/kW

Case 1 in PV Forecasting 3.28 2.05

Case 2 in PV Forecasting 2.56 1.63

Case 3 in PV Forecasting 0.92 0.58

Case 1 in Wind Power Forecasting 124.27 98.37

Case 2 in Wind Power Forecasting 89.79 67.58

Case 3 in Wind Power Forecasting 67.50 48.16
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Case 2: Using the BiLSTM model, input the features selected by
MIC to predict the seasonal, trend, and residual
components of wind-PV data decomposed in the
time domain.

Case 3: Using the BiLSTM model, input the features selected by
MIC to predict the seasonal and trend components of

wind-PV data decomposed in the time domain. The
residual component undergoes frequency domain
decomposition using VMD, and the obtained modal
features are used as input for the residual component
prediction.

The BiLSTM model built in this paper uses the tanh activation
function, with one hidden layer and a learning rate of 0.01. The
hyperparameter settings of are determined by GridSearch method.
The core principle is to cross validate each set of parameters by
traversing parameter grid, and evaluate the performance of each
set of parameters according to scoring metrics. Finally, the
parameter combination that makes the score index optimal is
selected as the final hyperparameter configuration. Cross-
validation is performed using the grid method based on the
parameter range in Table 1 to select the optimal
hyperparameters for the prediction model.

Figure 8 and Table 2 show the wind-PV prediction results for the
different experimental cases mentioned above. From the figures, it
can be seen that Case 3’s PV and wind power outputs best fit the
original wind-PV output curves. The average RMSE and MAE
values for PV and wind power predictions in Case 1 are 3.28 and
124.27, and 2.05 and 98.37, respectively. Due to the smaller power
base of PV output, the prediction error is lower compared to wind

FIGURE 9
Wind-PV power prediction results.

TABLE 3 Prediction errors of Wind-PV models.

Experiments RMSE/kW MAE/kW

XGBoost in PV Forecasting 2.84 2.03

LSTM in PV Forecasting 1.38 0.86

GRU in PV Forecasting 2.17 1.37

BiLSTM in PV Forecasting 0.92 0.58

XGBoost in Wind Power Forecasting 97.20 75.89

LSTM in Wind Power Forecasting 78.72 55.26

GRU in Wind Power Forecasting 82.87 62.78

BiLSTM in Wind Power Forecasting 67.50 48.16
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power. Additionally, it can be seen from the table that Case 2’s wind-
PV prediction error is lower than Case 1, indicating that
decomposing wind-PV output data into three time-domain
components allows the BiLSTM to better learn the temporal
variation patterns of the load. Finally, it is evident that Case 3
achieves the minimum RMSE prediction errors of 0.92 for PV and
67.50 for wind power, with MAE values of 0.58 and 48.16.
Compared to Case 2, this indicates that using only historical
residual values as input features makes it difficult for the
prediction model to directly learn the highly random residual
component patterns. However, decomposing the residual
component using VMD and using the extracted modal features
as input for the residual component prediction model simplifies the
complex residual fluctuations, improving the prediction accuracy of
both the residual component and the overall wind-PV power output.

In conclusion, the time-frequency decomposition method
effectively captures the fluctuation patterns in wind-PV time
series, enhancing the accuracy of wind-PV power output prediction.

6.5 Comparison experiment with various
prediction models

Based on time-frequency decomposition and MIC feature
selection, Figure 9 and Table 3 show the wind-PV prediction
results for different models. From the figures, it is clear that the
proposed BiLSTMpredictionmodel has a strong generalization ability
for time series. Compared to LSTM, the RMSE andMAE errors of PV
output through the proposed BiLSTM decreased by an average of
0.46 and 0.28, respectively, while the RMSE and MAE errors of wind
power output through the proposed BiLSTM decreased by 11.22 and
7.04, respectively. GRU, being a simplified version of the gated state, is
simpler compared to LSTM, thus limiting the fitting effect of the
wind-PV prediction model. In addition, XGBoost has limited ability
to mine the time-series data of wind and PV power, so the prediction
error RMSE andMAE is the largest in PV with 2.84 and 2.03. Besides,
the prediction error RMSE and MAE is the largest in wind power by
XGBoost with 97.20 and 75.89. In summary, the BiLSTM prediction
model framework proposed in this paper comprehensively considers
the variations of wind-PV sequences in both time and frequency
domains, deeply exploring the implicit long-term and short-term
dependencies in the wind-PV time series, thereby exhibiting superior
prediction performance.

7 Conclusion

The proposed wind and PV power output forecasting
framework based on time-frequency decomposition and BiLSTM
effectively improves the accuracy of wind and PV power generation
forecasting by combining time domain and frequency domain
decomposition techniques. The attention mechanism in BiLSTM
and probability prediction of PV and wind power can be carried out
in the future research work. The specific conclusions are as follows:

1) By extracting trend and seasonal components using the STL
method and applying VMD to decompose the residual
component in the frequency domain, regular features can

be extracted from complex original data, enhancing the
learning efficiency and accuracy of the prediction model.

2) TheMICmethod effectively selects features highly correlated with
wind and PV power output, improving model performance. The
results indicate that selecting appropriate input features is crucial
for enhancing the prediction accuracy of the model.

3) Compared to traditional LSTM and GRU, the BiLSTM
demonstrates higher accuracy and reliability in handling
time series forecasting tasks for wind and PV power
generation. This is relying on the BiLSTM ability of
consider both past and future relationships in the time
series, capturing temporal features more accurate.

Several other enhancements could be explored in future research.
These include integrating ensemble learning techniques to combine
the strengths of multiple models, applying multivariate forecasting to
jointly predict power generation from various sources, and utilizing
data augmentation methods, such as GANs, to improve model
generalization with limited data. Additionally, enhancing model
interpretability through explainable AI techniques like SHAP or
lime could provide more transparency in decision-making.
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