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Regarding the monitoring and control technology of pumped storage power
stations, the monitoring methods for the operating parameters of the turbines in
pumped storage power stations were first analyzed, including the monitoring
locations and methods for pressure and vibration, as well as the analysis of the
reasons for special operating conditions; Secondly, the operationmonitoring and
fault diagnosis system of pumped storage power stations was summarized and
introduced, including the commonly used monitoring systems, fault diagnosis
principles, and application situations. Finally, the development trend of turbine
monitoring technology and fault diagnosis was discussed.
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1 Introduction

In the context of global energy structure transformation, pumped storage power plants
play a crucial role in the power system (Zhang et al., 2024a). As renewable energies such as
wind and solar power becomemore widely used, the balance between supply and demand in
the power system faces unprecedented challenges (Jia et al., 2024). With their unique ability
to shift loads and generate power, pumped storage plants not only effectively mitigate the
impact of intermittency and volatility associated with renewable energy sources but also
provide quick-response reserve capacity to ensure grid stability and reliability (Zhou
et al., 2024).

The pump-turbine, as the core equipment of pumped storage plants, plays a vital role in
ensuring the plant’s overall performance through its efficient and stable operation. The
development of monitoring technologies not only allows for real-time monitoring of
equipment status and prevention of failures but also optimizes operational strategies
through data analysis, thereby improving the efficiency of the plant (Xiang et al., 2024).
Currently, both pumped storage technology and monitoring technologies have made
significant progress. Digital and intelligent monitoring systems are becoming more
prevalent, including vibration monitoring, real-time analysis of performance
parameters, and fault diagnosis, which greatly enhance the plant’s maintenance and
operation capabilities (Wang, 2024; Xu et al., 2024). However, technical bottlenecks still
exist, such as resonance issues under extreme operating conditions, untimely detection and
control during operations, and the effective mining and application of monitoring data.

This article aims to discuss the monitoring and control technologies of pumped storage
plants. It begins by analyzing the monitoring of parameters such as pressure and vibration.
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Subsequently, it introduces the monitoring systems for these data
and the forms of fault diagnosis. Finally, it explores the development
trends of turbine monitoring technologies and fault diagnosis.

2 Pumped storage hydropower plants
and pump-turbines

Pumped storage hydropower plants employ a clever mechanism
for energy conversion and storage, with their basic operation mode
consisting of two phases: pumping and power generation, as
illustrated in Figure 1. During periods of low electricity demand
or surplus power, the plant uses this excess power to pump water
from the lower reservoir to the upper reservoir, converting electrical
energy into potential energy stored in the water. When electricity
demand increases, the water is released back to the lower reservoir,
flowing through turbines to generate electricity, thus converting the
stored potential energy back into electrical energy for use by
consumers. This mechanism endows pumped storage
hydropower plants with excellent peak-load regulation
capabilities, enabling them to respond quickly to changes in grid
loads, particularly in grids with high proportions of renewable
energy sources. It plays a significant role in enhancing grid
stability and promoting the transition to a more
sustainable energy mix.

3 Pump-turbine operation monitoring
technology

3.1 Vibration monitoring

Pump-turbine operation monitoring technology is crucial for the
maintenance and predictive diagnostics of hydropower station
equipment (Li et al., 2024a). The vibration monitoring of pump-
turbines is a key aspect as the characteristics of vibration can reflect

the health status of the internal structure of the turbine. During the
startup phase of pumping operations at the Yixing power station
(Jiangsu province, China), abnormal vibrations occurred in the guide
vanes, leading to damage. The core issue was related to slippage in the
friction device connecting the upper and lower arms, weakening control
over the guide vane and causing one of them to lose control and collide
with the stationary guide vane (Nennemann and Parkinson, 2010).
Similarly, during the startup process for power generation at the
Tianhuangping power station (Zhejiang province, China), the unit
faced significant challenges, including severe vibrations in the top
cover and abnormal high-pressure pulsations in the bladeless area,
which directly led to the failure of grid connection attempts (Hao et al.,
2024; Xu et al., 2021; Liao et al., 2022). In the Zhanghewan power station
(Hebei province, China), the power station building floor experienced
unusually intense vibrations accompanied by significant noise. Further
investigation revealed that the vibrations were due to dynamic
interference between the bladeless area of the pump-turbine and the
building structure, causing resonance effects (Yu et al., 2024a; Wang
et al., 2024).

Vibration monitoring includes the monitoring of parameters
such as acceleration, velocity, and displacement, which reflect the
vibration condition of the unit in real time (Yu et al., 2024b). For
pumped storage power stations that frequently switch between
energy storage and power generation modes, Li et al. (2019) used
the Zhanghewan pumped storage power station as an example to
discuss the causes and impacts of local structural vibrations. Force
balance type sensor, piezoelectric sensor and pressure fluctuation
sensor were placed at the vertical directions of vaneless area, inlet of
spiral case, and under the head cover to monitor major excitation
sources and the natural frequencies of the structure. It was
concluded that during the design phase, it is necessary to ensure
that there is no overall structural resonance or resonance between
local structures and excitation sources to guarantee the stable
operation of the hydropower station.

To study the vibration conditions at different locations within
the power station more intuitively, Lian et al. (2024) studied the

FIGURE 1
Schematic diagram of pumped storage power station.
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vibration of the units at the Changlong Pumped Storage Power
Station (Zhejiang province, China). The sensors were placed at
upper reservoir, near the horizontal and lower flat tunnel, and
near the units. The results indicate that the vibration acceleration
under pumping conditions was greater than that under power
generation conditions, and the vibration acceleration increased
with the increase of power.

3.2 Pressure monitoring

Pressure monitoring is another key method for assessing the
operational status of pump-turbine equipment through the
measurement of pressure distribution within the turbine (Zhang
et al., 2024b; Khalfaoui et al., 2024). Pressure distribution
measurements typically utilize pressure sensors (such as pressure
gauges, transducers, etc.) to collect real-time pressure data at critical
points of the equipment, such as the inlet, outlet, and blade gaps, to
analyze the operational state of the pump-turbine (Fang et al., 2023).
Previous studies have shown that the magnitude of pressure
pulsations is closely related to the tongue gap (Parrondo-Gayo
et al., 2002). Long et al. (2024) set up a micro pumped storage
test platform equipped with inlet and outlet pressure monitors. The
pressure measurement range was 0–1.6 MPa with an accuracy of
0.2% full scale (FS). The system can display pressure values in real
time. Guo et al. (2024) studied the pressure fluctuations in the
turbine by installing six pressure sensors from the spiral inlet to the
tailrace outlet. Pressure measurements were taken under four
different load conditions. The signals for pressure measurement
were sampled at a frequency of 1,200 Hz to capture some high-
frequency components. Furthermore, based on numerical
simulation results, previous studies have found that the frequency
amplitude of volute pressure pulsations increases due to cavitation
in centrifugal pumps (Tan et al., 2013; Wang et al., 2015).

3.3 Remote monitoring and fault
diagnosis systems

Remote monitoring and fault diagnosis systems for pump-
turbines are an essential part of modern management in
hydropower plants. Bently Nevada’s Data Manager 2000 is an
advanced data management system that can achieve remote
monitoring of hydroelectric station equipment operation data
through its network module. ALARM’s monitoring system,
which has been applied in multiple projects, features intelligent
alarm functionality. This system can monitor changes in key
parameters and automatically trigger alarm mechanisms when
preset thresholds are exceeded. Siemens’ SIMATIC PCS 7 is an
advanced process control system that integrates data acquisition,
process control, and alarmmanagement, providing a comprehensive
remote monitoring solution. Schneider Electric’s EcoStruxure Power
Monitoring Expert supports remote monitoring and data analysis,
helping users optimize the performance of their power systems and
promptly identify potential issues. ABB’s 800xA DCS can integrate
multiple subsystems to enable centralized monitoring and control of
all critical processes in hydroelectric stations. GE Digital’s Historian
Software can efficiently collect and store large volumes of data and

provides powerful analytical tools to help users gain insights into
equipment operational status. Currently, the most widely used
system remains the SCADA (Supervisory Control and Data
Acquisition) system, due to its good applicability and maturity. It
is widely used in various fields such as power and oil. The structure
of the fourth-generation SCADA system is shown in Figure 2
(Borhani et al., 2024).

Fault diagnosis relies on steps such as data acquisition, feature
extraction, and pattern recognition to assess the health status of the
turbine and provide maintenance recommendations. Qualitative
analysis for fault diagnosis, while relatively simple, has limited
practicality. Zhang et al. (2020) coupled hydraulic systems with
unit systems and proposed a transient model for multi-unit pumped
storage systems. Analysis of the dynamic characteristics of the
pumped storage system showed that transient performance could
be improved by altering themovement patterns of guide vanes.With
the maturation of artificial intelligence technologies, data-driven
fault diagnosis methods have seen rapid development (Li et al.,
2024b). Kumari and Rajchelliah (2024) employed MATLAB/
Simulink establishing a model of 250 MW hydropower station
and achieved fault detection and speed estimation. The
effectiveness of the established model has also been verified
through experiments. The fault diagnosis and control of the
model can respond quickly within 20 m. Dao et al. (2024)
proposed a water turbine fault diagnosis model based on
Bayesian optimization (BO) and deep learning, which combines
convolutional neural network (CNN) and long short-term memory
(LSTM) methods. The experimental results show that the proposed
BO-CNN-LSTM model achieves an accuracy of over 90% in the
diagnosis of hydraulic turbine faults. Introducing the BO algorithm
to optimize CNN-LSTM from the perspective of acoustic vibration
signals can provide useful supplements to existing hydraulic turbine
fault diagnosis. Sun et al. (2024) proposed a fault diagnosis method
for hydraulic turbines based on Wasserstein Generative Adversarial
Networks (WGAN). A case study using Unit 3 of the SK Power
Station in China was conducted to validate the effectiveness of the
fault diagnosis method. Liu et al. (2024) proposed a health condition
assessment method for hydropower stations based on machine
learning. The system collected vibration signals from critical
components using the PSTA-2100. These signals were
transmitted to the monitoring system via TCP/IP and Modbus
485 protocols. The effectiveness of this method was ultimately
validated at Unit 6 of the upstream Dadu River Hydropower Station.

4 Future trends

With advancements in detection and artificial intelligence
technologies, future turbine monitoring systems will become
more intelligent.

1. Design Level: Big data, finite element analysis, and artificial
intelligence (AI) will enhance system safety and stability. AI
can assist in optimizing parameters like material selection and
component dimensions, using historical data and
predictive modeling.

2. Detection and Data Collection: Advanced and reliable
measurement techniques will be developed, including
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miniaturized, intelligent, and networked sensors
such as laser and fiber optic sensors, which hold
significant potential.

3. Monitoring Systems and Fault Diagnosis: The architecture and
functions of intelligentmonitoring systems based on the Internet
of Things, big data, and artificial intelligence, along with their
applications in fault prediction and performance evaluation, will
become key areas of research. By integrating AI algorithms with
IoT-generated data, these systems will provide advanced
analytics, enabling early detection of potential failures and
improving the overall performance of hydropower facilities.

5 Conclusion

With the large-scale construction of pumped storage power
stations, their monitoring and fault diagnosis systems have attracted
considerable attention. This paper provides an overview of turbine
monitoring and fault diagnosis systems. Based on accurate monitor
method and AI, faults could be predicted in advance, improving
operational efficiency and ensuring safe operation of power plants.
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The structure of the fourth-generation SCADA system.
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