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To enhance the transmission capabilities in power system scheduling, this paper
develops a unit commitment model that incorporates dynamic transmission line
capacities and proposes an efficient solving algorithm. A multi-scenario unit
commitment model that integrates dynamic transmission line capacities is
introduced, using quantile regression to construct a data-driven capacity
increase model based on historical environmental data. The model is solved
using Lagrangian relaxation and the Alternating Direction Method of Multipliers
(ADMM) to decouple dynamic constraints, allowing the dual problem to be
decomposed into sub-problems and solved iteratively. The proposed model
and algorithm are validated using the IEEE-118 and IEEE-300 test cases,
demonstrating their effectiveness in handling dynamic transmission line
capacities and improving scheduling performance.The approach provides a
robust and flexible solution for power system scheduling, enhancing reliability
and economic efficiency.
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1 Introduction

With the rapid advancement of the global energy transformation, the extensive
penetration of renewable energy, notably wind and solar power, presents formidable
hurdles to the adaptability and steadiness of electrical grids. Amidst this evolving
landscape, the attainment of carbon neutrality has emerged as a collective aspiration for
the global community (Li et al., 2019; Xu et al., 2024; Zhu and Li, 2024). This ambition,
however, intensifies the congestion plaguing power system transmission lines, standing as a
cardinal impediment to the efficacious assimilation of renewable energies (Elavarasan et al.,
2020; Kroposki, 2017). Framed within this context, the principal endeavor of unit
commitment (UC) dilemmas that contemplate renewable energy paradigms centers on
ascertaining the operational status of power plants across distinct intervals within the
scheduling horizon. The overarching aim is to curtail operational expenditures whilst
concurrently honoring safety protocols under multifarious scenarios of renewable energy
production and upholding network flow restrictions. Deliberations on UC frameworks and
their resolutions bear considerable weight in maximizing the potential for renewable energy
integration and materializing aspirations of carbon emission reductions, an area that has
garnered profound scholarly attention from researchers across the globe over extended
periods (Han et al., 2023; Yuan et al., 2024).
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In essence, the UC problem is pivotal for day-ahead dispatch
and ensuring the operational security of power systems. Ongoing
studies pertaining to Security-Constrained Unit Commitment
(SCUC) predominantly concentrate on the reformulation of
model (Ding et al., 2017; Du et al., 2019; Meus et al., 2018;
Morales-España and Tejada-Arango, 2019), the management of
transmission line constraints (Xavier et al., 2019; Lee et al.,
2014), and methodologies aimed at expediting the resolution of
SCUC problems (Yang et al., 2022; Xu et al., 2020; Lu et al., 2020). By
employing strategies such as unit clustering and splitting the
decision-making process into two distinct stages, the formulation
of the SCUC problem becomes increasingly detailed and all-
encompassing. The application of techniques like temporal
decomposition, which separates the problem temporally, and
dynamic programming algorithms, which efficiently solve
problems by breaking them down into simpler subproblems,
leads to a substantial improvement in the speed and effectiveness
of finding solutions to SCUC challenges. While these investigations
have tackled a myriad of challenges, they fall short in a significant
aspect: the prevalent use of rudimentary static transmission line
constraints in modeling. Such an approach falls short in managing
the transient overloading hazards stemming from the intermittent
nature of renewable energy sources. Additionally, the static
transmission line capacity settings tend to err on the side of
caution, curtailing the transmission reach of electric power
produced by units with lower operating costs, thereby eroding
the economic feasibility of the resultant SCUC solutions. As a
result, in light of the escalating dimensions of power systems and
the heightened imperative for cost-effectiveness in SCUC decisions,
there exists a pressing requirement for research endeavors focused
on augmenting the capacities of transmission lines and amplifying
the transmission aptitude of power system network.

Regarding the mitigation of transmission line congestion,
prevailing solutions predominantly encompass power flow
regulation (Zhang et al., 2021; Peng et al., 2024; Yao and Zhang,
2024) and adjustments within the electricity market dynamics
(Tosatto et al., 2020; Ye et al., 2016; Sun et al., 2020). These
studies primarily introduce supplementary mechanisms aimed at
modulating power flows within the electrical grid and alleviating
congestion on transmission lines, without fundamentally escalating
the intrinsic capacity of the lines themselves. To rectify this
deficiency, the notion of dynamic line rating (DLR) has been
conceptualized and advocated. In reality, the capacity of
transmission lines is inherently fluid, fluctuating in response to
atmospheric and environmental shifts. Dynamic line ratings afford
the capability of real-time estimation, factoring in a plethora of
relevant parameters, thereby circumventing the financial burden
associated with physical line expansions. Their implementation is
pivotal in ameliorating instances of line congestion and fortifying
the transmission efficacy of power systems.

Present methodologies for attaining dynamic augmentation of
transmission line capacities are predominantly grounded in physical
models, a domain explored in depth across various academic works
(Kim and Morcos, 2013; Dawson and Knight, 2018; Douglass et al.,
2016; Cheng et al., 2021). These researches excel in providing real-
time simulations of transmission line dynamic capacities.
Nonetheless, the reliance on physical models necessitates access
to a plethora of line-specific physical parameters, a requirement that

often entails substantial investments in terms of human and
financial resources, thus limiting practical applicability. Contrary
to the resource-intensive real-time simulations underpinned by
physical models, data-driven modeling strategies demand merely
the acquisition of meteorological parameters pertinent to the
geographical locale housing the transmission line. Once gathered,
these data can be harnessed within regression methodologies to
compute the coefficients integral to the model. An additional
advantage is that the resultant dynamic transmission line
capacity models are typically articulated as mathematical
expressions, facilitating their seamless integration into analyses
spanning a multitude of power system concerns. Over the recent
past, this approach has progressively captured the interest and focus
of the scholarly realm (Liu et al., 2023; Bhattarai et al., 2018;
Morozovska et al., 2021; Kirilenko et al., 2021).

Consequently, integrating data-driven dynamic capacity
models into SCUC problems enables the introduction of
dynamic transmission line capacities by leveraging historical
data on weather and environmental parameters. This
integration can substantially decrease operational costs of the
system, underscoring its significant research merit. Yet, the
inherent complexity of SCUC models as mixed-integer
programming problems makes them arduous to resolve. The
integration of dynamic transmission line constraints only
exacerbates this complexity. At present, predominant
approaches to accelerate the problem-solving process entail
the utilization of decomposition algorithms (Muralikrishnan
et al., 2020; Trivedi et al., 2015; Feng et al., 2023), converting
the issue into a linear programming problem (Qu et al., 2023; Qu
et al., 2024; Ding et al., 2022), and leveraging smart algorithms
(Zhu and Gao, 2020; Baziar et al., 2021; Ponciroli et al., 2020).
Note that reference 34 proposes a convex hull representation for
the SCUC problem, converting it into a linear programming
problem. This approach ensures the accuracy of the solution
while enabling rapid acquisition of the SCUC solution. However,
in scenarios accounting for dynamic transmission line
constraints, variables exhibit pronounced interconnectivity,
posing challenges to decoupling efforts. Moreover, intricate
constraints obstruct the transformation of the model into one
involving solely continuous variables.

To address the inadequacies and challenges prevalent in
contemporary research, this article introduces an innovative
SCUC model for power systems that explicitly incorporates the
dynamic capacity of transmission lines. Grounded in the thermal
equilibrium equation governing the line, a predictive model for
transmission line temperature is formulated employing
superquantile regression techniques, subsequently morphing into
a dynamic transmission line capacity model. Building upon this
novel foundation, a bespoke algorithm is devised to tackle the model
at hand. Anchored in the core iterative architecture of the
Lagrangian relaxation algorithm, the problem is decomposed into
a series of single-unit subproblems. Leveraging the fundamental
tenet of the Alternating Direction Method of Multipliers (ADMM),
the dynamic transmission line constraints are meticulously
decoupled, facilitating an iterative resolution of each
subproblem’s variables via alternating multipliers, culminating in
the comprehensive resolution of the model. The main contributions
of this paper can be summarized as follows:
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1. A stochastic optimization model for power system multi-
scenario SCUC that takes into account dynamic
transmission line capacities is proposed. In parallel with
addressing the uncertainty associated with renewable energy,
we have employed a data-driven methodology to formulate a
dynamic transmission line capacity model, seamlessly
embedding it within the UC model.

2. An algorithm tailored to solve this model, anchored in the
principles of Lagrangian relaxation and the Alternating
Direction Method of Multipliers (ADMM), has been
conceived. Through the strategic decomposition of the
problem and the decoupling of the dynamic transmission
line model, our algorithm facilitates an efficient and swift
resolution of the overarching problem.

The overall structure of this paper is as follows: firstly, in Section
2, the formulations of UC and dynamic line rating model are given.
Secondly, the proposed algorithm for solving the D-SCUCmodel are
given in Section 3. And in Section 4, two UC cases are employed to
demonstrate the advantages of D-SCUC model and proposed
solving algorithm. Finally, we summarize the full text in Section 5.

2 Concept and model of SCUC
considering dynamic capacity increase
of transmission lines

2.1 Multi-scenario SCUC model

The main task of SCUC is to determine the start-stop state of the
unit in each period of the scheduling cycle, and its goal is to
minimize the operating cost under the premise of satisfying the
coupling constraints of the system and the physical constraints of
the single unit (Ding et al., 2021). The system coupling constraints
include power balance constraints, system rotation reserve
constraints, transmission line capacity constraints, etc. The single
unit operation physical constraints include unit start-stop logic
constraints, ramp constraints, and minimum start-stop time
constraints (Ju et al., 2023). The model is presented as follows:

min ∑T
t�1

∑
i∈Gen

Cu
i ui,t + Cd

i di,t( ) +∑
s∈S

∑
i∈Gen

π s( )fi pi,t,s, xi,t( )⎛⎝ ⎞⎠ (1)

∑
i∈Gen

pi,t,s + ∑
i∈Re

Pre
i,t,s � ∑

b∈Bus

Db,t (2)

∑
i∈Gen

xi,tPi
max ≥ ∑

i∈Gen
pi,t,s + Pres

t ,∀t ∈ 1, T[ ]Z (3)

∑
b∈Bus

∑
i∈Gen

HPTDF
l,t pi,t,s + ∑

b∈Bus

∑
i∈Re

HPTDF
l,t Pre

i,t,s − ∑
b∈Bus

HPTDF
l,b Db,t

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

≤Fl
max, l ∈ Lines,∀t ∈ 1, T[ ]Z (4)

xi,t − xi,t−1 � ui,t − di,t, i ∈ Gen, t ∈ 2, ..., T{ } (5)

∑t
τ�t−Ton

i +1
ui,τ ≤xi,t, t ∈ Ton

i , ..., T{ } (6)

∑t
τ�t−Toff

i +1
di,τ ≤ 1 − xi,t−Toff

g
, t ∈ Toff

i , ..., T{ } (7)

xi,tPi
min ≤pi,t,s ≤ xi,tPi

max, i ∈ Gen, t ∈ 1, ..., T{ }, s ∈ S (8)
pi,t,s − pi,t−1,s ≥ − xi,tR

down
i − di,tR

shut
i , i ∈ Gen, t ∈ 2, ..., T{ }, s ∈ S

(9)
pi,t,s − pi,t−1,s ≤xi,tR

up
i + ui,tR

start
i , i ∈ Gen, t ∈ 2, ..., T{ }, s ∈ S (10)

Equation 1 constitutes the objective function, targeting the
minimization of aggregate start-up and shut-down costs for
generating units alongside the expectation of operational
expenses across diverse scenarios, aiming for their absolute
minimum. The objective function f is typically a quadratic
function of the generator output and does not include cross-
terms with the start-up and shut-down variables of the units.
During the computation, this function is generally piecewise
linearized. Equations 2–4 delineate the system constraints,
encompassing the requirement for power balance, the stipulation
for system reserves, and the static transmission line limitations,
respectively. Equation 5 articulates the logical constraints that
dictate the interrelation between the start-up and shut-down
states of the units. Equations 6, 7 serve to uphold the condition
that the uninterrupted operation period of each unit surpasses the
stipulated minimum durations. Equation 8 imposes that the output
levels of the units remain confined within predefined upper and
lower bounds, concurrently adhering to the constraints imposed by
their operational statuses. Lastly, Equations 9, 10 are dedicated to
ensuring that the ramp-up and ramp-down rates of the units do not
transgress the established maximum limits, and that the generation
output during these transitional periods remains within the
prescribed safety margins.

2.2 Dynamic capacity increase model of
transmission lines

As the foundational elements for the DLR model and the
superquantile regression model, rather than the focal points of
this paper, the heat balance equation and polynomial regression
are described in the Supplementary Appendix.

Although QR is already versatile and widely used for quantifying
risk, its capabilities can be expanded by using super quantile
regression (SQR) to estimate the cumulative tail behavior of a
random variable. Unlike QR, which focuses on quantifying the
risk based on the probability of undesirable events, SQR provides
insight into the magnitude of these events. This feature is
particularly valuable in applications where understanding the
consequences of undesirable events is necessary.

The α-super quantile function of a continuous random variable
y is defined as its tail expectation. In relation to the quantile function
(46), the upper-tail α-super quantile function can be expressed in
Equation 11:

Qs
α y( ) � E y

∣∣∣∣y≥Qα y( )( ) � 1
1 − α

∫1
α

Qβ y( )dβ (11)

Similar to other regressions, the linear SQR model is an
estimator of the conditional α-super quantile of y in Equation 12:

yα � Qs
α y
∣∣∣∣x( ) � xTβα (12)

Frontiers in Energy Research frontiersin.org03

Dai et al. 10.3389/fenrg.2024.1479347

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1479347


where yα is the estimated upper-tail α-super quantile; α is the super
quantile level of the random variable; βα is the model parameter
vector. The lower tail α-super quantile function and its
corresponding regression model can be defined similarly. As SQR
is evolved from QR, it benefits from the ability to determine its
model parameter vector βα by solving a linear
programming problem.

Based on the concept of HBE and several regression models, the
dynamic capacity increase model is constructed. In the modeling
process, a quantile regression model is used to quantify the temporal
characteristics of conductor temperature. This model mainly
forecasts the α-quantile Tt

α of conductor temperature at time
period t based on the input vector of environmental parameters
for the previous k time periods. The input vector consists of weather-
related parameters, including wind speed Ws, wind direction angle
Wa, ambient temperature Ta, solar radiation Qs and conductor
temperature It. Specifically, the input vector has the following form:

xt �
1, I2, I,Ws,Wa,Ta,Qs[ ]T

Ws+Wa,Ws+Ta,Ws+Qs,Wa+Ta,Wa+Qs,Ta+Qs[ ]T
Ws+Ws,Wa+Wa,Ta+Ta,Qs+Qs[ ]T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

In Equation 13, I (Xu et al., 2024), I, Ws, Wa, Ta and Qs are all
row vectors representing the current and previous k time periods’
conductor current and quadratic terms, wind speed, wind direction
angle, ambient temperature, and solar radiation, respectively, as
shown below:

I2 � I2t−1, . . . , I
2
t−k[ ]

I � It−1, . . . , It−k[ ]
W s � Ws,t−1, . . . ,Ws,t−k[ ]
Wa � Wa,t−1, . . . ,Wa,t−k[ ]
Ta � Ta,t−1, . . . , Ta,t−k[ ]
Qs � Qs,t−1, . . . , Qs,t−k[ ]

(14)

It can be seen that Equation 13 includes several cross-product
terms of row vectors. These cross-product terms can better explore
the dependencies between input parameters. By more effectively
modeling the correlations between these parameters, these cross-
terms enhance the influence of hyper-parameters on estimation.

Based on this, the construction of the big data-based model
follows similar steps. The quantile regression model for a given risk
level is obtained by solving an optimization model. The input vector
xt of the model is constructed based on past predicted data of
weather parameters and conductor current, as shown in Equation
13, with the actual conductor temperature values yi = Ti being
regressed as the output value. Afterwards, to estimate the super-
quantile of conductor temperature at time t, the input vector is
substituted into the traditional regression model to calculate the α-
super-quantile of predicted conductor temperature. The resulting
super-quantile model has the closed form shown in Equation 15:

Tα
t � β0α +∑k

j�1
βt−j,2α I2t−j +∑k

j�1
βt−j,1α It−j +∑k

j�1
Ft−j,∀t ∈ k, T[ ]Z (15)

Tt
α is the estimated α-quantile temperature of the transmission

line at time t, and the remaining variables correspond to the
variables in Equations 13, 14. According to the mathematical
model, the conductor temperature is not only related to the

current passing through the transmission line in the current time
period, but also to the current in the previous time periods, which
reflects the temporal variation characteristics of the
conductor’s capacity.

When using the equation to represent a specific transmission
line which requires dynamic capacity increase, the model takes the
following form:

Tl,t,s � β0α +∑k
j�1
βt−j,2I2l,t−j,s +∑k

j�1
βt−j,1Il,t−j,s

+∑k
j�1
Fl,t−j,s,∀t ∈ k, T[ ]Z,∀l ∈ Lined, s ∈ S (16)

where Tl,t,s is the α-hyperquantile of the estimated temperature of
the transmission line at the time period t, and the remaining
variables correspond to the variable contents of the Equations 13,
14. The model describes the functional relationship between current
and temperature of conductor and provides model support for the
SCUC model.

2.3 The dynamic security constrained unit
commitment model (D-SCUC)

On the basis of the transmission line temperature prediction
model shown in Equation 16, it is modified to embed dynamic
transmission line constraints into SCUC model. The resulting
dynamic transmission line constraint is as follows.

β0α +∑k
j�1
βt−j,2p2

l,t−j,s +∑k
j�1
βt−j,1pl,t−j,s

+∑k
j�1
Fl,t−j,s ≤Tl

max,∀t ∈ k, T[ ]Z,∀l ∈ Lined,∀s ∈ S (17)

where Tl
max is the maximum temperature of the selected

transmission line l, and the meaning of other variables is the
same as that of Equation 16 From the DC power flow theory
and the resulting power transfer distribution factor (PTDF), the
relationship between the wire current and the transmission line
power can be calculated as follows:

pl,t,s � ∑
b∈Bus

∑
i∈Gen

HPTDF
l,t pi,t,s + ∑

b∈Bus

∑
i∈Re

HPTDF
l,t Pre

i,t,s − ∑
b∈Bus

HPTDF
l,b Db,t

(18)
Above all, the dynamic security-constrained unit commitment

model (D-SCUC) is described in the following form, which
combines the dynamic line capacities with the SCUC model:

min ∑T
t�1

∑
i∈Gen

Cu
i ui,t + Cd

i di,t( ) +∑
s∈S

∑
i∈Gen

π s( )fi pi,t,s, xi,t( )⎛⎝ ⎞⎠ (19)

s.t. 2( ) − 4( ), 5( ) − 10( ) (20)
17( ) − 18( ) (21)

As evidenced by Equations 19–21, the optimization model
encompasses both integer and discrete variables, with quadratic
components featured in both the objective function and the dynamic
transmission line constraints. This configuration presents significant
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computational difficulties when applied to large-scale systems. In
response to these challenges, we propose a solution algorithm
predicated on an enhanced Lagrangian relaxation methodology.

3 Modified Lagrangian relaxation
method for D-SCUC

Given that the proposed D-SCUC model is inherently a Mixed
Integer Programming (MIP) problem, the conventional branch-
and-bound method incurs significant computational time and
memory overhead, with the complexity exacerbated by the
inclusion of dynamic capacity expansion models. In this paper,
we propose an innovative solution algorithm for the UC model that
incorporates dynamic transmission line capacity, which combines
Lagrangian Relaxation with the Alternating Direction Method of
Multipliers (ADMM). The essence of the algorithm lies in
decomposing the dual form of the original problem into a series
of smaller, more manageable subproblems, while leveraging the
ADMM to efficiently handle coupling variables associated with
dynamic transmission line constraints. This strategy dramatically
reduces the scale of discrete variables, effectively addressing issues of
lengthy computation times and high memory consumption, thereby
enabling the solvability of large-scale, complex D-SCUC models.

More precisely, with regard to the system constraints that link
the variables of different generating units within the model,
Lagrangian multipliers are introduced to formulate a min-max
dual problem from the primary optimization task. This facilitates
the disentanglement of variables across individual units. Upon this
groundwork, the dual problem’s solution entails calculating both the
values of the unit variables and the associated Lagrange multipliers
pertinent to system constraints. This dual pursuit is executed
through an alternating iterative procedure, wherein, particularly
for constraints concerning the dynamic augmentation capabilities of
transmission lines, the ADMM is harnessed. This ensures the
decoupling and computation of unit variables throughout the
iterative process. The detailed formulation of dual problem and
the iteration algorithm are discussed as follows.

The crux of the Lagrangian Relaxation Algorithm lies in the
strategic introduction of Lagrange multipliers to relax challenging,
highly-coupled constraints within the model. This transformation
retains tractable constraints while constructing the Lagrangian
function and its dual problem. The overarching goal is to derive
high-quality approximate solutions to the original problem. Owing
to the presence of complex, tightly-coupled constraints associated with
dynamic transmission line capacities that defy straightforward
relaxation, the Alternating Direction Method of Multipliers
(ADMM) is employed. This methodology ensures convergence
during the iterative process by adeptly handling the inter-unit
coupling variables. By partitioning the problem into more
manageable subproblems and iteratively solving them in an
alternating fashion, ADMM facilitates the computation of unit
variables while maintaining consensus across the entire system. This
approach not only addresses the issue of high variable coupling but also
enhances the scalability and efficiency of solving large-scale
optimization problems, particularly those prevalent in power systems
characterized by dynamic transmission line constraints.

3.1 Formulation of dual problem

Based on the aforementioned D-SCUC model, it is evident that
the system constraints—power balance, reserve requirements and
line flow limits—couple all unit variables together. Conversely, unit-
specific constraints are separable by unit. Thus, the application of the
Lagrangian Relaxation method becomes feasible for relaxing these
system constraints. This relaxation transforms the original problem
into a collection of decoupled single-unit subproblems, each
pertaining to an individual generator without inter-unit
dependencies.

3.1.1 Dual problem (DP)
The Dual problem is formulated in Equations 22–24.

max
λ,μ,ρ1 ,ρ2

min
p,x,u,d

L λ, μ, ρ1, ρ2( )
� max

λ,μ,ρ1 ,ρ2
min
p,x,u,d

∑T
t�1

∑
i∈Gen

Cu
i ui,t + Cd

i di,t( ) +∑
s∈S

∑
i∈Gen

π s( )fi pi,t,s, xi,t( )⎛⎝ ⎞⎠
+∑T
t�1
∑
s∈S

λt,s − ∑
i∈Gen

pi,t,s − ∑
i∈Re

Pre
i,t,s + ∑

b∈Bus

Db,t
⎛⎝ ⎞⎠

+∑T
t�1
∑
s∈S

μt,s − ∑
i∈Gen

xi,tPi
max + ∑

i∈Gen
pi,t,s + Pres

t
⎛⎝ ⎞⎠

+ ∑
l∈Lines

∑T
t�1
∑
s∈S

ρ1l,t,s pl,t,s − Fl
max( )

+ ∑
l∈Lines

∑T
t�1
∑
s∈S

ρ2l,t,s −pl,t,s − Fl
max( ) (22)

s.t. 5( ) − 10( ) (23)
17( ) − 18( ) (24)

Firstly, non-negative multipliers λ, μ, and ρ₁, ρ₂ are
respectively introduced for the power balance constraint (2),
the reserve requirement constraint (3), and the static
transmission line capacity constraint (4), (17). This leads to
the formulation of the corresponding Lagrangian functions,
from which the dual problem, denoted as Dual Problem (DP)
and illustrated in Equation 31, is derived. It is noteworthy that
this dual problem comprises separable unit-specific constraints.
However, it includes quadratic terms related to line flows that
prevent the decoupling of unit variables, thus precluding a direct
dual decomposition to solve the subproblems.

A detailed exposition follows, delineating the methodology
employed for addressing the dynamic transmission line
constraints, along with an outline of the algorithmic procedures
that facilitate their management within the overarching
optimization framework.

3.2 Dynamic transmission line constraint
handling and iterating process

Dynamic transmission line constraints involve quadratic terms
of line flows, making it difficult to decouple them using conventional
methods. Therefore, this paper proposes an ADMM-based approach
to address the issue of coupling caused by transmission line
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constraints, enabling the iterative solution of the D-SCUC model
proposed in this article.

3.2.1 Introduction to ADMM algorithm
The Alternating Direction Method of Multipliers (ADMM) is

employed to address situations in dual problems where the objective
function is separable, yet variables are coupled through constraints. At
its core, ADMM embodies the strategy of iteratively fixing one variable
while solving for another, thereby facilitating the decoupling of variables
and subproblems during the optimization process.

As an example, consider the convex problem in Equation 25:

min x1 ,x2 f1 x1( ) + f2 x2( ),
s.t. A1x1 + A2x2 � b.

(25)

The problem’s structure allows the objective function to be
decomposed into distinct components f1 and f2, although the
variables remain interconnected due to the presence of linear
constraints. Subsequently, we outline the iterative format
characteristic of the ADMM method. Initially, the augmented
Lagrangian function pertinent to the optimization problem is
defined in (Equation 26):

Lρ x1, x2, λ( ) � f1 x1( ) + f2 x2( ) + λT A1x1 + A2x2 − b( )
+ ρ

2

������A1x1 + A2x2 − b
����22 (26)

In this context, ρ > 0 denotes the coefficient of the quadratic
penalty term, and λ represents the vector of Lagrange multipliers
associated with the constraints. Typically, the Lagrangian function
method proceeds with iterative updates in the manner shown in
Equation 27:

xk+1
1 , xk+1

2( ) � argmin
x1 ,x2

Lρ x1, x2, λ
k( ),

λk+1 � λk + αρ A1x
k+1
1 + A2x

k+1
2 − b( ) (27)

The above expression represents the two primary steps involving
optimization over variables and multipliers respectively, during the
kth iteration. However, considering that jointly optimizing over x1
and x2 in the first step can sometimes be challenging, minimizing
with respect to one variable while keeping the other fixed might be
simpler. As a result, we can contemplate alternating minimization
over x1 and x2, which constitutes the fundamental concept of the
ADMM. The iterative scheme can be summarized in Equation 28:

xk+1
1 � argmin

x1

Lρ x1, xk
2, λ

k( ),
xk+1
2 � argmin

x2

Lρ xk+1
1 , x2, λ

k( ),
λk+1 � λk + αρ A1x

k+1
1 + A2x

k+1
2 − b( )

(28)

From the aforementioned iterative steps, it is clear that the first step
involves fixing x2 and λ, and then minimizing with respect to x1; the
second step fixes x1 and λ, and minimizes with respect to x2; the third
step updates the Lagrange multiplier λ. Unlike unconstrained
optimization problems, the ADMM method is applied to constrained
optimization problems. Therefore, the convergence criteria of the
algorithm should rely on the optimality conditions for constrained
problems, namely, the Karush-Kuhn-Tucker (KKT) conditions.
Generally speaking, assessing the convergence of the algorithm
requires monitoring whether two residuals are sufficiently small:

0 ≈ rk
���� ���� � A1xk

1 + A2xk
2 − b

���� ����
0 ≈ sk

���� ���� � AT
1A2 xk−1

2 − xk
2( )���� ���� (29)

The expressions in Equation 29 represent, respectively, the
primal feasibility and the dual feasibility of the problem.

Together, primal and dual feasibility, along with complementary
slackness and stationarity conditions, constitute the KKT conditions,
which are necessary for a point to be a local optimum in a constrained
optimization problem. Monitoring these residuals during the iterative
process of an algorithm such as ADMM is critical for assessing
convergence to an optimal solution.

3.2.2 Reformulation of dual problem
Following the central philosophy of the ADMM algorithm, it is

evident that within the objective function’s separable structure, the
alternating solution mechanism involves fixing the variables
pertaining to other subproblems while solely addressing the
variables relevant to the current subproblem. This process
facilitates the decoupling of subproblems. Nonetheless, specific to
the D-SCUC model and its dual counterpart introduced herein, the
landscape is characterized by a separable objective function
juxtaposed against coupled constraints. Consequently, an
approach mirroring the foundational concept of ADMM can be
implemented, enabling problem dissection amidst the intricacies
posed by constraint coupling. This strategy ensures that despite the
interdependencies enforced by constraints, the problem can still be
effectively decomposed and managed through an iterative process
akin to ADMM, ultimately aiming for an optimized solution.

The above statement highlights the practical considerations
involved in dealing with dynamic transmission line constraints
within an optimization framework. Rather than directly integrating
these constraints into the Lagrangian through dual multipliers, which
would escalate computational complexity, a decoupling strategy is
employed. This involves separating the dynamic transmission line
constraints and integrating them into the respective subproblems
associated with individual generating units. By doing so, the
problem becomes more tractable for iterative solution methods, such
as those employed in distributed optimization schemes. Each
subproblem Subproblem-i is then designed to handle the specific
constraints and objectives pertinent to the ith generating unit during
τ-th iteration, streamlining the overall optimization process.

Subproblem-i

max
λ,μ,ρ1 ,ρ2

min
p,x,u,d

∑T
t�1
Cstart

i ui,t
τ( ) + Cshut

i di,t
τ( ) +∑

s∈S
π s( )fi pi,t,s

τ( ), xi,t( )
+∑T
t�1
∑
s ∈ S

μt,s
τ−1( ) − λt,s

τ−1( )( )pi,t,s
k −∑T

t�1
∑
s∈S

μt,s
τ−1( )xi,tpi

max

+ ∑
l∈Lines

∑T
t�1
∑
b∈Bus

∑
s∈S

ρ1 τ−1( )
l,t,s − ρ2 τ−1( )

l,t,s( )HPTDF
l,t pi,t,s

τ( )

(30)
s.t. 5( ) − 10( ) (31)

β0α +∑k
j�1
βt−j,2p′ τ( )2

l,t−j,s +∑k
j�1
βt−j,1p′l,t−j,s τ( )

+∑k
j�1
Fl,t−j,s ≤Tl

max,∀t ∈ k, T[ ]Z,∀l ∈ Lined,∀s ∈ S (32)
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p′l,t,s τ( ) � ∑
b∈Bus

HPTDF
l,t ∑

g∈Gen
g< i

pg,t,s
τ( ) + pi,t,s

τ( ) + ∑
g∈Gen
g> i

pg,t,s
τ−1( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ∑
b∈Bus

∑
i∈Re

HPTDF
l,t Pre

i,t,s − ∑
b∈Bus

HPTDF
l,b Db,t

(33)
In Equation 30, terms that are not dependent on the variables of

the subproblem have been abstracted away; these can be
reintroduced post-subproblem resolution to retrieve the solution
to the overarching problem. It becomes apparent that, relative to the
dual problem (DP), this particular subproblem enacts a substantial
modification to the dynamic transmission line constraints
(specifically Equations 17, 18). The corresponding modifications
to the aforementioned two constraints are illustrated in Equations
32, 33. At the τ-th iteration phase, within the power flow
computation pertaining to the ith subproblem, there’s utilization
of the solution set for generator variables emanating from the
subproblems indexed from 1 through i-1, all within the current
iteration. Conversely, for the generator output variables indexed
from i + 1 to the terminal ones—those whose subproblem solutions
have yet to be derived in the current round—the solutions are drawn
from the preceding iteration. While this operational methodology
may yield less precise line flow calculations, it nonetheless
safeguards compliance with the dynamic transmission line
constraints and facilitates the convergence of the overarching
iterative procedure.

However, It must be emphasized that, considering
uncertainties stemming from the choice of initial solutions
and step lengths among other factors, during the iterative
process, there is a significant risk that the transmission line
constraints will not be satisfied. This violation could lead to
the failure in finding feasible solutions for the subproblems. To
mitigate this challenge, a penalty factor denoted as ql,t,s is
integrated into the algorithmic framework. This factor’s index
is directly linked to the power flow computations executed at
every iteration. With the addition of this penalty factor, the
adjusted formulation of the subproblem takes on the following
appearance shown in Equations 34–36:

Subproblem-i

max
λ,μ,ρ1 ,ρ2

min
P,x,u,d

∑T
t�1
Cstart

i ui,t
τ( ) + Cshut

i di,t
τ( ) +∑

s∈S
π s( )fi pi,t,s

τ( ), xi,t( )
+∑T
t�1
∑
s ∈ S

μt,s
τ−1( ) − λt,s

τ−1( )( )pi,t,s
k −∑T

t�1
∑
s∈S

μt,s
τ−1( )xi,tpi

max

+ ∑
l∈Lines

∑T
t�1
∑
b∈Bus

∑
s∈S

ρ1 τ−1( )
l,t,s − ρ2 τ−1( )

l,t,s( )HPTDF
l,t pi,t,s

τ( )

+ ∑
l∈Lined

∑T
t�1
∑
s∈S

mql,t,s (34)

β0α +∑k
j�1
βt−j,2p′ τ( )2

l,t−j,s +∑k
j�1
βt−j,1p′l,t−j,s τ( ) +∑k

j�1
Fl,t−j,s ≤Tl

max

+ ql,t,s,∀t ∈ k, T[ ]Z,∀l ∈ Lined,∀s ∈ S (35)
s.t. 5( ) − 10( ), 33( ) (36)

In Equation 34,m is the penalty coefficient used to control the
weight of the penalty factor. The introduction of the penalty
factor serves to penalize the violation of transmission line
constraints, encouraging the iterative procedure to gravitate
towards solutions that adhere closely to these constraints. This
adjustment is pivotal in ensuring that the iterative method
remains effective and robust, capable of delivering feasible
solutions despite the inherent complexities and uncertainties
within the optimization problem.

Upon establishing the aforementioned subproblem
optimization model Subproblem-i, the subsequent section will
delineate the iterating process for solving the overall dual problem.

3.2.3 Iterating process
From the previous exposition on the ADMM algorithm, it is

clear that the overall solution process involves an iterative procedure
for variables and dual multipliers. Building upon this foundation,
the following sections will detail the comprehensive solution process
for the D-SCUC model proposed in this paper, along with the
criteria for assessing convergence.

In the insight gleaned from the prior section, it becomes clear
that each iteration within the subproblems employs the dual
multipliers’ values garnered from the preceding iteration.
Consequently, establishing the initial values of these dual
multipliers assumes paramount importance. Two methodologies
are viable for initializing the dual multipliers: they can
commence identically at zero across the board, or one can opt
for relaxing all integer variables present in the primal problem into
continuous counterparts. This relaxation facilitates the computation
of initial values for the multipliers that correspond to the constraints
of the system. Rigorous experimentation has substantiated that both
strategies are endowed with commendable attributes of
convergence.

On the other hand, the updating of multipliers is also of great
importance. The formula for calculating the residuals is as
follows shown in Equations 37–40:

gbal
t,s � − ∑

i∈Gen
pi,t,s − ∑

i∈Re
Pre
i,t,s + ∑

b∈Bus

Db,t (37)

gre
t,s � ∑

i∈Gen
pi,t,s + Pres

t − ∑
i∈Gen

xi,tPi
max (38)

gline+
l,t,s � pl,t,s − Fl

max (39)
gline−
l,t,s � −pl,t,s − Fl

max (40)

Herein, gbalt,s, g
re
t,s, g

line+
l,t,s and gline-l,t,s present the subgradients

associated with the active power balance constraint, the reserve
constraint, and the maximum transmission capacity constraints for
line l under scenario s, respectively. The power flow pl,t,s on line l at
time period t under scenario smay be consulted following Equation
18. The method for updating the dual multipliers is as follows:

λ τ+1( )
t,s � λ τ( )

t,s + α1gbal
t,s

μ τ+1( )
t,s � μ τ( )

t,s + α2gre
t,s

ρ1 τ+1( )
l,t,s � ρ1 τ( )

l,t,s + α3gline+
l,t,s

ρ2 τ+1( )
l,t,s � ρ2 τ( )

l,t,s + α4gline−
l,t,s

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (41)

where α1-α4 refer to the step sizes used in the iterative procedure.
Typically, to reduce the oscillatory behavior that can occur during
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iterations, an adaptive subgradient iteration algorithm is utilized.
This type of algorithm decreases the step size incrementally with
each iteration, helping to stabilize the convergence of the
optimization process.

In terms of the problem’s convergence criteria, consideration
is given to both the relative duality gap between the primal and
dual formulations and the magnitude of the residuals. Post-each
iteration, scrutiny is applied to ascertain if the residual indicative
of the power balance constraint, delineated in Supplementary
Equation A46, is adequately minute, alongside verifying the
fulfillment of inequalities articulated in Supplementary
Equations A47–A49. Moreover, leveraging the solution
procured from the recent iteration, discrete computations are
conducted to derive solutions for both the primal and dual
problems, followed by a comparative analysis to evaluate if the
gap between them is sufficiently diminutive. Upon the
satisfaction of all aforementioned stipulations, one can deduce
that a satisfactory solution to the underlying problem has
been attained.

In summary, the overall problem-solving process proceeds
as follows:

1. Determine the initial values of the multipliers λ(0)t,s, μ
(0)

t,s,
ρ1(0)l,t,s, ρ2(0)l,t,s and set the conditions for iteration termination;

2. In the τ-th iteration, utilizing the multiplier valuesλ(τ−1)t,s,
μ(τ−1)t,s, ρ1(τ−1)l,t,s, ρ2(τ−1)l,t,s, calculate the single-unit
subproblems Subproblem-i individually;

3. Based on the solutions to the subproblems, compute the
residual gbalt,s, verify whether the constraints of the primal
problem are satisfied, and calculate the duality gap;

4. If the convergence criteria are met, terminate the computation
and return the results;

5. Otherwise, update the multipliers according to Equation 41,
and return to step 2 to continue the iteration.

The pseudo-code is shown in Table 1 for solving the proposed
D-SCUC model.

4 Case studies

To validate the effectiveness of the proposed model and method,
this section conducts computational verification on the IEEE-118
system and the IEEE-300 system. The computer configuration used
for these calculations includes an AMD Ryzen™ 9 7900X CPU
running at 4.7 GHz, with 32 GB of RAM. The algorithm is
implemented in Python, wherein the Lagrangian relaxation
framework and iterative algorithm are realized using Python.
Subproblems are constructed and solved utilizing the Gurobi API.

4.1 Dynamic line rating model validation

In the research conducted herein, the IEEE 118-bus system was
selected as the test case, encompassing a network topology featuring
118 nodes, inclusive of 54 generation units, interconnected via
177 transmission lines, and serving 91 loads, thereby furnishing
the dataset for the SCUCmodel. Aiming to investigate the impact of
the dynamic capacity augmentation model on system operation
expenses and the alleviation of transmission line congestion, a
prototypical single-scenario representation of renewable energy
from a provincial context was employed. This scenario entailed
the modification of select conventional thermal power units from
the baseline case to renewable energy installations, with their
respective power generation levels being predetermined.

Additionally, an analytical computation is performed on the
SCUCmodel that incorporates dynamic transmission line capacities.
Parameters pertinent to transmission lines within this dynamic
capacity augmentation framework are derived through the
resolution of a planning model, leveraging historical data specific
to the region. In the course of practical computations, dynamic
capacity constraints are enforced on transmission lines
encompassed within the set denoted as Lined, whereas static
transmission line constraints persist for alternative conductors. A
selection of various upper bound values for transmission line
temperatures is made, with the ensuing outcomes delineated
in Table 2.

The quartet of columns—Tmax, fval, ∑Pline and n—respectively
denote the maximum designated transmission line temperature, the
computed operational expenditure, the cumulative power across
transmission lines, and the aggregate count of intervals wherein
transmission line loading surpasses the static constraint threshold.
As per the tabulated insights, within the temperature setting

TABLE 1 Calculation procedures for solving D-SCUC.

Solving D-SCUC model procedures

1 Initialize Lagrange multipliersλ(0)t,s, μ
(0)

t,s, ρ
1(0)

L,t,s, ρ
2(0)

L,t,s, maximum iteration
count iter_max, and duality gap threshold ε

2 while τ < iter_max

3 Based on λ(τ−1)t,s, μ
(τ−1)

t,s, ρ
1(τ−1)

L,t,s, ρ
2(τ−1)

L,t,s, solve the subproblems
Subproblem-i and obtain the values of the subproblem variables

4 if gap ≥ ε

5 Solve the Lagrangian Dual problem, update the Lagrange multipliers

6 else break

7 endif

8 τ = τ + 1

9 endwhile

10 Based on the dual solution, perform feasible solution recovery to obtain a
feasible solution for the original problem

TABLE 2 Calculation results under different temperature.

Tmax/°C fval/($) ∑Pline/MW n

75 2,142,780.7 173,515.9 3

80 2,138,921.7 175,814.1 42

85 2,137,076.1 176,261.8 44

90 2,135,248.6 176,229.7 44

95 2,133,804.7 176,455.7 44

100 2,132,563.4 176,603.7 44
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spectrum from 75°C to 100°C, the operational cost exhibits a
sequential diminution from 2,142,780 to 2,132,563, paralleled by
a progressive escalation in the total transmission line load
summation from 173,515 to 176,603, and a rise in the tally of
congestion instances from 3 to 44. Moreover, under the temperature

settings delineated above, a heatmap encompassing both congested
conduits and those benefiting from dynamic capacity enhancements
is illustrated in Figure 1. The interpretation of grid squares mirrors
that of Figure 2, wherein a deepening hue signifies an elevation in
power magnitude. A comparative analysis with Figure 2 reveals that

FIGURE 1
Heatmaps of Congested Lines and Capacity-Increased Lines under Different Temperatures. (A) 75°C heatmap. (B) 80°C heatmap. (C) 85°C
heatmap. (D) 90°C heatmap. (E) 95°C heatmap. (F) 100°C heatmap.

FIGURE 2
Heatmap of transmission line blockage periods under static transmission line constraints.
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an upsurge in the prescribed temperature correlates with a marked
proliferation of time segments characterized by elevated
transmission line loads, concomitant with an augmentation in
transmission line loads themselves.

4.2 Validation of the proposed
solving algorithm

In this section, we address the proposed Lagrangian
Relaxation algorithm to validate its efficacy in resolving the
D-SCUC model that incorporates dynamic transmission line
capacity enhancements. The IEEE-300 bus system serves as
the platform for simulation calculations, featuring a network
topology comprising 69 generating units, 60 transformers,
304 transmission lines, and 185 load nodes. Following the
approach outlined previously, a portion of the conventional
thermal power units are substituted with renewable energy
counterparts. A selection of various representative renewable
energy scenarios from a specific locale is employed for the
computation of the D-SCUC model under multiple scenarios.
The parameters for the transmission line models are obtained
through training with historical data.

Initially, for test cases encompassing a scenario count
spanning from 1 to 8, computations are executed employing
both the Gurobi Mixed Integer Programming (MIP) solver and
the Lagrangian Relaxation framework. Concerning the
Lagrangian Relaxation algorithm, a dual gap threshold of
0.01 is utilized, signifying that once the dual gap dips
beneath this threshold, a solution of sufficient quality is
deemed to have been attained. The magnitudes of the
calculated operating costs and corresponding relative errors
are delineated in Table 3. The quartet of columns within the
table signifies the scenario quantity, the outcomes derived from
the MIP solver, the results emanating from the Lagrangian
Relaxation framework, and the relative error, respectively. As
evidenced, under differing counts of renewable energy
scenarios, the discrepancies between solutions procured via
the Lagrangian Relaxation algorithm and those yielded by the
solver remain confined within a margin of 0.5%, indicative of
the high-caliber approximations delivered by the proposed
Lagrangian Relaxation algorithm.

Building upon the validation of algorithmic accuracy, this study
contrasts the temporal performance of two algorithms and explores
their respective solution velocities in relation to the quantity of
scenarios. Pertaining to the aforementioned eight resolution
contexts, graphical representation delineates the correlation
between scenario count and computational duration for both
algorithms, illustrated in Figure 3.

From the graph, it can be observed that when the number of
scenarios is small, the Lagrangian Relaxation algorithm takes more
time than theMixed Integer Programming (MIP) method. However,
as the number of scenarios increases, the time complexity of theMIP
method rises significantly with the increase in scenarios, whereas, in
contrast, the solution time for Lagrangian Relaxation grows at a
relatively slower pace. This phenomenon aligns with the
characteristics of both solving algorithms.

In Gurobi’s implementation of the MIP method, branch-and-
cut techniques are typically employed, which involve partitioning
and contracting the feasible region to find a more precise range for
the problem’s feasible domain, thus facilitating the solving process.
Since this algorithm involves the generation of branches, its solution
space grows exponentially with the increase in variables, resulting in
slower solution times when dealing with a large number of scenarios.

On the other hand, the Lagrangian Relaxation algorithm
decouples the D-SCUC subproblems across multiple scenarios.
While an increase in the number of scenarios does add
complexity to the subproblems, they remain greatly simplified
compared to their original form, and thus the solution time does
not drastically increase. Theoretically, it has been proven that the
iteration time for the Lagrangian Relaxation algorithm is
approximately linearly related to the number of variables.
Consequently, the Lagrangian Relaxation algorithm is better
suited for solving large-scale, multi-scenario SCUC problems.

Lastly, with regard to the iterative procedure of the Lagrangian
algorithm, its iteration curve is illustrated in Figure 4.

As depicted in the chart, following a specific number of
iterations, both the values of the original (primal) problem
and its dual counterpart converge to a particular interval.
Nonetheless, there is n’t a strict inequality with the primal

TABLE 3 Results of the Lagrangian relaxation algorithm and solver solution.

ns fMIP/($) fLR/($) Error/%

1 11,992,969.19 11,956,370.72 0.305

2 11,784,213.09 11,841,147.91 0.483

3 11,607,140.42 1,1,661,939.07 0.472

4 11,380,743.99 1,1,382,029.81 0.011

5 11,345,635.16 11,383,590.27 0.334

6 11,456,971.39 11,488,012.64 0.271

7 11,519,464.80 11,565,099.56 0.396

8 11,367,551.74 11,352,994.41 0.128

FIGURE 3
The relationship between the number of scenarios and the
solution time.
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being greater than the dual. This is attributable to the nature of
the subgradient algorithm, which during its iterative process,
cannot ensure a strict adherence to a descent direction. This
characteristic is directly influenced by the choice of the step size
at each iteration.

5 Conclusion

To address the issues of poor economic performance and
high computational time expenditure in power system UC
models due to low transmission line capacities, this paper
presents a SCUC model for power systems that takes into
account dynamic line rating enhancements, along with an
ADMM-based solution algorithm specifically designed for this

model. The model employs data-driven modeling for
transmission lines to depict the temporal coupling between
line temperature and load, thus effectively increasing the
transmission line capacity. By utilizing the Lagrangian
relaxation framework, the dual problem of the model is
formulated and decomposed into subproblems for iterative
resolution, tackling the computational overhead challenge in
solving SCUC problems.

The proposed model and algorithm have been applied to the
IEEE-118 and IEEE-300 test systems. Test results demonstrate that
the D-SCUC model considering dynamic line rating improvements
can significantly boost transmission line efficiency and reduce
system operational costs. Furthermore, the proposed algorithm
exhibits notable improvements in computational efficiency
compared to conventional solvers.

FIGURE 4
The convergence of the Lagrangian relaxation algorithm under different scenarios. (A) 1 scenario converging process. (B) 2 scenarios converging
process. (C) 3 scenarios converging process. (D) 4 scenarios converging process.
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Nomenclature

Indices and sets

I Indices for units

T Indices for time periods

s Indices for scenarios

b Indices for buses

l Indices for transmission lines

Gen Set of thermal units

Re Set of renewable units

Bus Set of Nodes

S Set of scenarios

L Set of transmission line

Lines Set of transmission line with static capacity

Lined Set of transmission line with dynamic capacity

Parameter and constants

T Number of time periods

Cu
i Startup cost for unit i

Cd
i Shutdown cost for unit i

Pre
i,t,s Power output of renewable energy unit i at time period t,

under scenario s

Db,t Load demand on bus b during time period t

Pmax
i, Pmin

i Upper and lower limits of the power output for thermal unit i

Fmax
l Maximum power flow on transmission line l

HPTDF
l,t Power transfer distribution factor

Ton
i, Toff

i Minimum Start-up time and down time periods for thermal unit i

Rup
i, Rdown

i Maximum ramp up and down limit for thermal unit i

Rstart
i, Rshut

i Maximum power output during startup and shutdown for thermal unit i

Functions and variables

ui,t, di,t Startup and shutdown variable of thermal unit i in time period t

xi,t Status variable of thermal unit i in time period t

Pi,t,s Power output variable of thermal unit i in time period t under scenario s

f Running cost function of thermal unit i

π Scenario probability function
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