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The generation of renewable energy encounters numerous obstacles, chiefly
the unpredictability of renewable sources. When new energy generation
prediction is lower than expected, it needs to be supplemented by other energy
sources, which may lead to instability in the power grid if the deviation is large.
When the prediction of new energy generation exceeds expectations, it will lead
to energy waste. To address these issues, this paper proposes a Deep Neural
Network-based fusion framework, which can improve the prediction accuracy
of new energy and achieve a low-carbon, economical, and stable power grid.
Within this structure, feature engineering is conducted initially. Subsequently, a
combination of traditional tree algorithms like the Gradient Boosting Decision
Tree, linear approaches such as the Least Squares Method, and nonlinear
neural networks, for instance, Recurrent Neural Networks, are employed for
individual model regression purposes. In the final step, both the original time-
series data and the outcomes from the individual models are integrated into
a deep neural network to derive the ultimate forecasting outcomes. By using
our method, the electricity cost has been reduced by 26.5% and the carbon
emissions have been decreased by 14.2%. Experiments have been carried out
using actual community data, confirming the effectiveness of the proposed
approach. The findings indicate that the integration of DNN with traditional and
modern machine learning techniques can significantly improve the forecasting
of renewable energy generation. This advancement contributes to the creation
of a more sustainable, economical, and stable power grid.

KEYWORDS

deep neural network, ensemble, forecasting, new energy generation, planning and
scheduling, power grid

1 Introduction

New energy refers to energy sources that are both sustainable and generate minimal
adverse environmental impacts upon usage. This category of energy offers numerous
advantages over traditional energy forms Jacobson et al. (2017). A predominant feature
of new energy is its cleanliness and environmentally friendly characteristics; it does
not emit substantial pollutants or greenhouse gases, thus reducing atmospheric, aquatic,
and terrestrial pollution and conserving the natural ecosystem. Moreover, new energy
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is characterized by its seemingly inexhaustible reserves,
encompassing resources such as solar, wind, and hydro power.
These resources are indefinitely accessible and capable of meeting
consistent, long-term energy demands. Another significant aspect
is that new energy contributes to the diversification of energy
portfolios, decreases reliance on fossil fuels, and enhances the
security and sustainability of energy supplies. Additionally, the
continuous progress and innovations in new energy technologies
present opportunities for economic and social development, acting
as a driving force for progress. Fundamentally, the adoption of
new energy marks a critical step towards transforming energy
systems, offering substantial, long-lasting benefits for the sustainable
advancement of human society.

Forecasting in the field of new energy utilizes advanced
technologies and analytical methods to predict future trends
and capacities in energy development Muralitharan et al. (2018).
This forecasting offers several advantages. Firstly, it empowers
governments and businesses to formulate informed energy strategies
and policies that promote sustainable growth and facilitate the
transition to new energy sources Kumar and Sharma (2019).
Additionally, it assists utility companies and energy distributors in
anticipating demand and capacity needs, thus improving energy
allocation and management efficiency while enhancing resource
utilization. Moreover, new energy forecasting provides crucial
insights for investors, informing their decisions and strategic
allocations within the new energy sector Moriarty and Honnery
(2016). It also plays a significant role in stabilizing and ensuring
the reliability of energy infrastructures by reducing imbalances
between supply and demand, minimizing energy waste, and
lessening environmental impact. However, forecasting in this
area also faces numerous challenges. It is significantly influenced
by natural factors, including climate and weather conditions,
which can result in prediction errors. In conclusion, while new
energy forecasting is essential for driving sustainable development,
optimizing energy management, and guiding investment decisions,
it must also address various challenges and limitations Turner
(2008); Shahzad et al. (2016); Ihsan et al. (2019).

Predicting the output of alternative energy sources is
essential for the operational management of virtual power
plants (VPPs) Olivares et al. (2014); MacDougall et al. (2016);
Tan et al. (2021). A VPP integrates and controls a network of
decentralized energy resources, such as solar and wind power
plants, using sophisticated information technologies IRENA,
2019. The production of electricity from these renewable sources
is greatly influenced by weather and environmental conditions,
resulting in considerable fluctuations and uncertainties in their
output. By accurately forecasting the generation of renewable
energy, VPP managers receive valuable insights into expected
energy supply from distributed resources for the upcoming
period. This allows them to more effectively orchestrate the
VPP’s internal mechanisms—encompassing generation, energy
storage Wang et al. (2021), and demand response strategies.
Such strategic coordination substantially improves the system’s
overall performance and reliability by aligning energy production
with demand. Moreover, precise forecasts of renewable energy
production mitigate operational risks within the power market,
enhance the profitability of energy transactions Creutzig et al.
(2015), and foster the adoption of sustainable energy practices.

These advancements are crucial for optimizing the energy mix and
propelling the transition towards a low-carbon economy. Although
renewable energy production is estimated with high accuracy in
VPP or portfolio structures, negative or positive deviations may
occur in real time. In this respect, energy storage systems are needed
as an imbalance reducer Çiçek and Erdinç (2021, 2022).

The use of tree models Friedman (2001) in new energy
forecasting is rapidly gaining popularity. Rooted in decision
tree principles, these models create a predictive framework by
segmenting data into a branching structure, which allows for
effective forecasting Ke et al. (2017). In the context of new energy,
these models utilize historical energy data along with additional
factors such as weather conditions and time-related variables
to estimate future trends in energy production and usage. One
significant advantage of tree models is their ability to handle non-
linear dynamics. As generation and consumption patterns in new
energy are influenced by various factors, many of which interact
in complex, non-linear ways, tree models excel in understanding
these intricate relationships, thereby improving the accuracy of
their predictions. Furthermore, these models effectively analyze the
interactions among different variables. In new energy forecasting
scenarios, various factors may have either combined or individual
impacts, a relationship effectively captured by the structure of
tree models, which adds to their predictive accuracy. Overall, the
application of tree models in the new energy sector proves to be
a robust and adaptable tool. Their capacity to navigate non-linear
relationships and variable interdependencies Chen and Guestrin
(2016), along with their strong interpretative abilities, provides
valuable support for informed decision-making and strategic
planning in the evolving landscape of new energy.

The Least SquaresMethodDoe and Smith (2023) is a commonly
used mathematical method with a wide range of applications in
renewable energy forecasting. This model transforms the prediction
problem into a least squares problem, allowing for effective
estimation of future renewable energy production or consumption
Smith andDoe (2023); Johnson and Lee (2023). In renewable energy
forecasting, the Least Squares Method can establish a mathematical
model based on historical data and relevant factors to predict
future renewable energy production or consumption. By seeking
the solution that minimizes errors, this model can find the best-
fitting curve, accurately predicting future renewable energy demand
or supply. The application of the Least Squares Method in renewable
energy forecasting offers several advantages. Firstly, the model can
handle large amounts of historical data and fit it to improve the
accuracy of the predictions. Secondly, the Least Squares Method
can consider multiple factors that influence renewable energy, such
as weather conditions and economic development, providing a
more comprehensive prediction of renewable energy production
or consumption. Additionally, the Least Squares Method can
adjust model parameters to meet different forecasting requirements,
enhancing the flexibility and reliability of the predictions.

RNN (Recurrent Neural Network) Graves (2013) stands
as a potent machine learning paradigm extensively employed
across various domains, notably in renewable energy forecasting.
Renewable energy forecasting encompasses the prediction of
renewable energy sources’ output or consumption, such as wind
and solar energy, facilitating enhanced planning for energy supply
and demand. The utilization of RNN network models for renewable
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energy forecasting capitalizes on their proficiency in handling
time series data Chung et al. (2014). Notably, the output or
consumption of renewable energy often demonstrates pronounced
time-dependent characteristics, including the diurnal variation
patterns in solar energy production or the seasonal fluctuations
in wind energy generation. RNN is adept at capturing these time
dependencies through its capacity to remember past input data and
forecast future energy output or consumption drawing on observed
patterns. Distinctively, RNN network models Athiwaratkun and
Stokes (2017); Gruber and Jockisch (2020) process input data
iteratively at each time step, transferring state information from one
step to the next.This sequence empowers the formation of amemory
for the time series data. Such a memory mechanism positions RNN
as a dynamic tool for modeling the temporal dynamics of renewable
energy, enabling predictions of future energy output or consumption
based on historical data.

The aforementioned models exhibit certain constraints when
deployed for predicting new energy outcomes. Firstly, tree-
based models are susceptible to overfitting, particularly in
scenarios involving extensive datasets with numerous features.
This susceptibility can engender models that are unduly intricate,
lacking in the capability to generalize. Secondly, the handling
of continuous variables by tree models is somewhat deficient,
frequently necessitating the discretization of these variables, which
may lead to a loss of information. The Least Squares Method
presupposes a linear correlation between the predictors and the
response variable. Consequently, its effectiveness is diminished
in modeling non-linear relationships, rendering it less capable in
addressing non-linear challenges within new energy forecasting.
Although recurrent neural network (RNN)models boast formidable
abilities in modeling the complexities inherent in new energy
prediction issues, they are hampered by protracted training
durations. This is particularly evident when processing large-scale
datasets, thereby demanding considerable computational resources
and time investments. Furthermore, the architectural and parameter
configuration of RNN models is intricate, often requiring a series of
experimental adjustments to procure satisfactory achievements.

The use of deep neural network (DNN) Muralitharan et al.
(2018) models in new energy forecasting leverages their
sophisticated data processing and pattern recognition abilities,
allowing them to identify features and relationships within complex
datasets and provide accurate predictions. In this context, neural
network models construct a multi-layer network of neurons to
learn and model the relationship between input features and the
evolving trends in energy production. By training and optimizing
these models with substantial historical data, they can effectively
capture the non-linearities and complexities associated with new
energy development, which enhances both prediction accuracy
and reliability Covington et al. (2016). Furthermore, through
backpropagation algorithms, neural network models continuously
refine their parameters, thereby improving their predictive
performance. Their inherent flexibility and adaptability enable
them to manage large-scale and high-dimensional datasets, making
them ideal for a wide range of new energy prediction applications.
The deployment of these models not only yields precise energy
demand forecasts for decision-makers but also aids in optimizing
resource allocation and fostering sustainable development in the
new energy sector.

To obtain more accurate predictions of new energy, we first
performed feature engineering on the relevant information. Then,
we used traditional tree model Gradient Boosted Decision Trees
(GBDT), linear model LR, non-linear neural network RNN for
regression prediction in individual models. Finally, we further fused
the original time series features and the outputs of individualmodels
through a DNN network to obtain the final prediction results. Our
main contributions mainly include.

• We proposed a fusion prediction method based on the DNN
network, which can combine the advantages of different types
of models and improve the accuracy of new energy prediction.
• We conducted detailed analysis experiments, providing

insights into the impact of different features on end-to-end
power scheduling and the impact of new energy prediction
accuracy on scheduling. This provides a solid foundation for
effective power scheduling.
• We performed extensive experimental validation on real

datasets, confirming the effectiveness of the proposed
framework.

The organization of the paper is outlined as follows: The
second section delineates the problem under investigation. In
the third section, we introduce the specific methods employed
in our study. The fourth section is dedicated to presenting the
experiments conducted and analyzing their outcomes. Finally, the
paper culminates with the Conclusion, where we summarize the key
findings of our research.

2 Problem statement

The aim of this study is to develop a deep learning-based
approach for predicting the generation or consumption of renewable
energy sources, referred to as the New Energy Prediction (NEP)
task. In the NEP task, we consider a set of input variables denoted
as X = {X1,X2,…,Xn}, where each variable Xi represents a specific
feature related to the energy generation or consumption process.The
goal is to predict the output variable Y, which represents either the
amount of renewable energy generated or consumed within a given
time frame.

The NEP task poses several challenges due to the complex
and dynamic nature of renewable energy sources. Firstly, the input
variables X may include factors such as weather conditions, time
of day, and historical energy generation/consumption patterns,
among others. These variables can exhibit non-linear relationships,
making traditional prediction methods inadequate. Additionally,
renewable energy sources are subject to various uncertainties, such
as intermittent generation and demand fluctuations, which further
complicate the prediction task.

To address these challenges, deep learning models offer a
promising solution by leveraging their ability to automatically learn
hierarchical representations from rawdata. By training a deep neural
network on historical data, we can capture the underlying patterns
and dependencies within the input variables to improve the accuracy
of renewable energy prediction.

The proposed NEP task holds significant importance in various
domains. For renewable energy providers, accurate predictions can
help optimize energy production and distribution, resulting in
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FIGURE 1
Forecasting structure of proposed framework.

improved efficiency and reduced operational costs. Furthermore,
policymakers and grid operators can benefit from reliable forecasts
to ensure the stable integration of renewable energy sources into the
existing power grid.

In this paper, we will explore different traditional and deep
learning-based architectures and techniques to tackle the NEP task.
Moreover, traditional models, such as tree-basedmodels like GBDT,
have the advantage of handling discrete features, and they can
also handle large discrete values relatively well. Linear regression
methods like LSM can handle continuous values with patterns,
but they lack the ability to handle outliers. RNNs can handle
sequential patterns and features reasonably well. By combining
these models, their advantages can complement each other. By
evaluating the performance of thesemodels on real-world renewable
energy datasets, we aim to provide insights into the effectiveness of
combiningmodels for accurate and reliable new energy predictions.

3 Framework

3.1 Framework

As shown in Figure 1, the first step is to perform feature
engineering on the features. Then, single-model modeling is
conducted, including tree model GBDT, linear model LSM, and
non-linear model RNN. Finally, we utilize the non-linear model
DNN to ensemble all the results. Below, we will provide detailed
introductions for each part.

3.2 Feature engineering

When conducting the New Energy Prediction (NEP) task, it is
necessary to preprocess the features so that the prediction model
can use them directly. The features include continuous values
and discrete values. For continuous values, we perform outlier
processing to avoid the collapse of the model caused by some
abnormal data. The processing logic is as follows:

x′ =
{{{{
{{{{
{

α∗median (X) , ifx ≥ α∗median (X)

β∗median (X) , ifx ≤ β∗median (X)

x, else

(1)

where α and β are super parameters (Equation 1). median(X)
denotes the median value of X.

For discrete value features, we perform one-hot encoding. For
example, forMonday, we use the vector [1,0,0,0,0,0,0], where the first
element is one and the others are 0, representing Monday. This can
be applied to other discrete features as well. The specific data will be
introduced in the dataset of the experiment. The main features are
listed as follows.

• The user demand in past days;
• The new energy generation in past days;
• The radiance of solar in past days;
• Time information such as hour, weekday, month, etc.,;
• Further and past weather data, such as humidity, temperature;

Specifically, all the inputs for the following models are
meticulously prepared in the Feature Engineering Section,
encompassing both continuous and discrete features. As for
the other parameters, they are initially set through a process
of random initialization, subsequently undergoing updates via
gradient descent learning.

3.3 GBDT

GBDT (Gradient Boosting Decision Tree) is a powerful tree-
based model that combines the principles of gradient boosting and
decision trees. Unlike traditional decision tree models that make
predictions independently, GBDT builds an ensemble of trees in a
sequentialmanner, where each subsequent tree corrects themistakes
made by the previous ones. This iterative process helps to gradually
improve the model’s accuracy.

The principal concept underpinning the Gradient Boosting
Decision Tree (GBDT) revolves around the strategy of reducing a
loss function through the sequential integration of weak learners,
specifically decision trees, aimed at the negative gradient of the
said loss function. These trees are meticulously designed to forecast
the negative gradient residuals appertaining to the antecedent trees,
thereby acting as the “pseudo-residuals”. Thereafter, the ensuing
trees are amalgamated into the ensemble, meticulously crafted to
augment the predictive accuracy of the trees that preceded them, and
this cycle is perpetuated until a point of convergence is reached.

TheGBDTalgorithmcan be formulated in theNEP task by using
the following equations Friedman (2001).

• Calculation of pseudo-residuals: For a loss function L(Y,F(X)),
whereY is the true label, such as the solar generation of the next
hour, and F(X) is the predicted value, the pseudo-residuals (r)
can be computed as the negative gradient of the loss function
with respect to the predicted value: r = − ∂L(Y,F(X))

∂F(X)
.

• Building a decision tree: Each decision tree is trained to predict
the negative gradient residuals (r) of the previous trees. The
tree splits the data based on certain features and thresholds to
minimize the loss function.
• Updating the ensemble: The predicted values of the previous

trees are summed up, and the negative gradient residuals (r)
are added to obtain the updated ensemble prediction.
• Learning rate: To prevent overfitting and improve

generalization, a learning rate parameter η is introduced to
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control the contribution of each tree to the ensemble. The
learning rate shrinks the impact of each tree by multiplying it
with η before adding it to the ensemble.

By combining multiple weak learners through these iterative
steps, GBDT creates a strong predictive model that is capable of
capturing complex relationships and achieving high accuracy.

3.4 LSM

The Least Squares Method (LSM) represents a statistical
approach employed for the estimation of parameters within a
regression model, ensuring an optimal fit to the data points
observed. Its primary objective is to minimize the aggregate of the
squared disparities between the values predicted by the model and
those actually observed. This technique finds significant application
in the domain of renewable energy, most notably in scenarios such
as predicting the output of energy production from solar panels or
wind turbines.

To model the prediction problem in the context of renewable
energy, we can utilize the least squares method to estimate the
parameters of a regression model. The model equation can be
represented as Doe and Smith (2023):

y = a0 + a1x1 + a2x2 +⋯+ anxn (2)

Where y represents the corresponding label, which is the
target energy production or user load demand. a0,a1,…,an are
the coefficients to be estimated, representing the impact of each
independent variable on the prediction task. x1,…,xn are the
independent variables, which can be factors like time of day,
temperature, wind speed, or solar radiation.

The goal of the least squares method is to find the values of
a0,a1,…,an in Equation 2 that minimize the sum of the squared
differences between the predicted energy production and the actual
energy production.This is achieved by solving the normal equations:

XTXA = XTy (3)

Where X is the design matrix, containing the values of the
independent variables. XT is the transpose of X. A is the vector
of coefficients to be estimated. y is the vector of observed energy
production values or user load demands in Equation 3. The
solution to the normal equations provides the estimated values
for a0,a1,…,an, which can then be used to predict the energy
production for future observations.

3.5 RNN

Recurrent Neural Network (RNN) is a type of neural network
model that is specifically designed to handle sequential data. Unlike
traditional feedforward neural networks, RNNs have the ability to
take into account the temporal dependencies present in the data,
making them suitable for various time series analysis tasks, including
predicting new energy problems.

At the heart of a Recurrent Neural Network (RNN) lies
the recurrent layer, designed to feed information back into the

network from previous time steps. This architecture empowers
the network with an internal memory capability, facilitating the
capture and utilization of information from past inputs in the
processing of current inputs. Such a memory mechanism proves
particularly beneficial in addressing new challenges within the
energy sector, where understanding and predicting patterns in
energy consumption or generation are significantly enhanced by
insights from historical data.

Mathematically, an RNN can be described as
follows Graves (2013):

ht = f (Wxxt +Whht−1 + b) (4)

where xt is the input feature mentioned in Feature Engineering
section, ht represents the hidden state at time step t, Wx and Wh are
weight matrices that determine how the current input and previous
hidden state contribute to the hidden state at the current time step,
and b is the bias term in Equation 4. The function f(.) is a non-
linear activation function, such as the sigmoid or hyperbolic tangent
function, which introduces non-linearity into the model.

To tackle forecasting issues in new energy scenarios, the
RecurrentNeuralNetwork (RNN) can be effectively trained utilizing
historical energy data. In this context, the input sequence is
composed of prior energy observations, while the target sequence
represents predictions about future energy scenarios. Through the
iterative refinement of weights and biases, employing methods such
as backpropagation through time, the RNN is equipped to discern
the temporal patterns and relationships inherent in the dataset. This
capability enables the RNN to deliver precise forecasts regarding
future energy consumption or generation, by leveraging its learned
insights from past data trends.

3.6 DNN

The Deep Neural Network (DNN) stands as a formidable and
extensively utilizedmodel within the realm ofmachine learning. It is
meticulously crafted to address sophisticated issues associated with
pattern discernment, classification, and prognostication. Diverging
from traditional shallow neural networks, the DNN is composed
of numerous layers of interconnected artificial neurons. This multi-
layered architecture empowers it to unravel complex relationships
and distill high-level representations from unprocessed input data.

A notable deployment of DNN is in forecasting challenges
related to new energy quandaries. Harnessing its prowess to learn
and generalize from voluminous datasets, the DNN can adeptly
delineate the intricate interconnections amongst myriad factors
influencing energy forecasting. The process begins with the infusion
of input features pertinent to the energy issue at hand, including
historical energy usage data, meteorological conditions, and more,
into the DNN’s input layer.

The key formulas used in DNN for energy prediction include
Feedforward Equation:

z =Wx+ b (5)

a = f (z) (6)
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In Equations 5, 6, x represents the input features,W denotes the
weight matrix, b represents the bias vector, and f(z) represents the
activation function. The feedforward equation calculates the output
of each neuron in the network.

Backpropagation Equation:

δ (L) = ∇a (L)∗ f′ (z (L)) (7)

δ (l) = (W (l+ 1))T∗δ (l+ 1)∗ f′ (z (l)) (8)

In the backpropagation equation, δ represents the error term,
∇a(L) denotes the gradient of the loss function, f′(z) represents the
derivative of the activation function, and l indicates the layer in the
network. These equations (Equations 7, 8) are used to propagate the
error backwards through the layers, allowing themodel to adjust the
weights and biases for better predictions.

DNN provides a versatile and robust method to tackle emerging
challenges in energy forecasting by adeptly utilizing past data for
its learning process. Its capability to discern intricate associations
and perform advanced abstractions enables it to deliver precise and
dependable forecasts, thus supporting decisions in the novel energy
domain. It is important to point out that the input for DNN takes
into account not just essential attributes but also encompasses the
results produced by the previously mentioned model.

4 Experiments

4.1 Dataset

We use a real-world dataset from the city of Fontana,
California. This dataset1 includes the electricity dispatch
records for 17 buildings over the course of a year Vázquez-
Canteli et al. (2019, 2020). The electricity usage data for these
buildings provides detailed information about energy consumption,
including the electricity consumption for each building and peak
power demands. These data provide an in-depth understanding
of the city’s energy system, enabling researchers to explore energy
usage patterns in buildings, analyze energy consumption trends, and
develop more efficient energy management strategies. Additionally,
the dataset also includes weather data for the region, such as
temperature, humidity, and solar density. This weather data is
crucial for studying the impact of weather conditions on the city’s
energy system, as weather conditions can affect building energy
consumption patterns and energy demand.

4.1.1 Metric
Mean Absolute Percentage Error (MAPE) is frequently

employed as an evaluation metric for gauging the precision of
forecasts in the realm of new energy. MAPE assesses the forecast’s
accuracy by determining the average percentage discrepancy
between forecasted figures and their actual counterparts. This
specific calculation entails computing the absolute percentage
deviation for each predicted datum relative to its actual value,
followed by computing the mean of these values. The values of

1 www.aicrowd.com/challenges/neurips-2022-citylearn-challenge/

MAPE may vary from 0 to positive infinity, with a value near to 0
symbolizing a forecast of higher accuracy. The formula for MAPE is
provided as follows:

MAPE = 1
n

n

∑
i=1
|
yi − ŷi
yi
| × 100% (9)

where n is the number of observations in Equation 9, yi is the actual
label value, and ŷi is the predicted value.

In addition, to reflect the overall impact of forecasting on
scheduling Nosratabadi et al. (2017), we have added indicators for
scheduling. The scheduling indicators include two components: the
carbon emissions (Equation 10) and the price cost (Equation 11) of
electricity scheduling. The formula is as follows:

CEmission =
T

∑
t=1
(

I

∑
i=1

max(Ei,t,0)) ⋅ ct, (10)

CPrice =
T

∑
t=1

max(Edist
t ,0) ⋅ pt, (11)

CAverage_Cost = (CEmission +CPrice)/2, (12)

for each building i, the electricity demand is Ei,t = Li,t − Pi,t +Ai,t,
and Li,t is the load demand, Pi,t is the solar generation, Ai,t is the
scheduling value from the schedulingmodel.The electricity demand
of the district is Edist

t = ∑
I
i=1Ei,t. ct denotes the carbon emission for

each electrical unit, and pt denotes the price. The smaller the better
for both forecasting and scheduling metric. The production of every
unit of electricity necessitates the use of a specified quantity of
energy and results in a certain level of carbon emissions; for instance,
generating thermal power requires the emission of carbon dioxide.
Hence, the aggregate electricity usage multiplied by the carbon
emissions per electricity unit gives the total carbon emissions, which
is referred to as Emission Cost. The carbon emission intensity for
each unit of electricity is a determinable figure accessible from
the dataset. In a similar manner, multiplying the cost per unit of
electricity by the total electricity consumed yields the overall cost,
which is termed the Price Cost.

4.1.2 Evaluating models

We evaluate the following methods both in new energy
prediction task and scheduling task.

• GBDT Friedman (2001): A strong baseline of tree model.
• LSMDoeandSmith (2023):A classical baseline of linearmodel.
• RNN Graves (2013): Recurrent neural networks, a strong

baseline of neural network models.
• DNN: Ensemble, our proposed method.

In scheduling task, the schedulingmodel is SAC.Weonly replace
the new energy prediction part on scheduling task. For eachmethod,
we conducted ten experiments and reported their average values.

4.2 Results

From theMAPE values reported in table 1, it is evident that each
algorithm exhibits varying levels of prediction precision regarding
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TABLE 1 The performance of all models in the next 6 h. Take the average
value of each point in a year.

Methods MAPE of future hours

1 2 3 4 5 6

GBDT 0.438 0.504 0.521 0.528 0.529 0.531

LSM 0.446 0.511 0.528 0.534 0.538 0.541

RNN 0.436 0.500 0.516 0.522 0.526 0.528

Ensemble 0.431 0.496 0.511 0.518 0.523 0.525

the forthcoming 6-h span of new energy power generation. In
terms of numbers, the Ensemble method surpasses the trio of other
approaches for each hourly forecast, with MAPE figures initiating
at 0.431 and incrementally rising to 0.525. This indicates that
the integration of multiple predictive models can furnish stronger
and more precise forecasts, particularly for challenges marked by
significant nonlinearity and dependencies over time.

Following suit is the RNN (Recurrent Neural Network)
approach, with itsMAPE numbers beginning at 0.436 and escalating
to 0.528. The RNN possesses inherent strengths in forecasting time
series by employing preceding data to forecast future events, which
proves especially crucial for erratic energy generation types like solar
and wind energy. The close second-place performance of the RNN
method unveils its aptitude in managing time-series information.

The GBDT (Gradient Boosting Decision Tree) records MAPE
values fluctuating from 0.438 to 0.531. GBDT stands out in
capturing nonlinear and intricate data correlations butmay not have
the natural affinity for time-series data management as do RNN
algorithms, which are specifically tailored for such tasks.

Lagging behind is the LSM (Linear Statistical Model), with its
MAPE values spanning from 0.446 to 0.541. This suggests that
linear models might not adequately grasp all pertinent dynamics
and tendencies amid complex andnonlinear characteristics. LSMfits
scenarios where data connections are fairly transparent, and linear
premises prevail. However, in the complex forecasting of new energy
power generation, LSM does not measure up to the effectiveness of
nonlinear modeling approaches.

In summary, Ensemble models leverage the combined
capabilities of various models to yield more precise forecasts
across a diverse range of scenarios; RNNs, with their inherent
suitability formanaging time series data, excel in this domain;GBDT
demonstrates proficiency in modeling nonlinear relationships,
though it might not achieve the same level of effectiveness as RNNs
in time series challenges; whereas LSM holds restricted utility and
falls short in accurately predicting outcomes within complex time
series scenarios.

Referring to the data presented in table 2 regarding the
effectiveness of power dispatch, it is evident that different algorithms
display varied capabilities concerning carbon emission costs,
electricity costs, and their averaged expenses. The Ensemble
approach stands out as superior across all metrics, achieving an
average cost (Equation 12) of 0.797, a carbon emission cost of
0.858, and an electricity cost of 0.735. This clearly illustrates the

TABLE 2 Evaluation of scheduling effectiveness across all buildings.
Lower values are preferred, indicating relative usage compared to no
scheduling.

Methods Scheduling performance

Average Cost Emission Price

GBDT 0.812 0.867 0.757

LSM 0.822 0.878 0.766

RNN 0.804 0.860 0.747

Ensemble 0.797 0.858 0.735

beneficial collective impact and the potential to augment power
dispatch efficiency achievable through the integrated employment
of multiple models.

Following closely is the RNN, which manifests an average cost
of 0.804, a carbon emission cost of 0.860, and an electricity cost of
0.747. The advantages of RNNs in tackling time series predictive
challenges are similarly observable in the cost management realm of
power dispatch, where it secures a position right after the Ensemble
method. By predicting renewable energy outputs more accurately,
the RNN can contribute to substantial cost reductions.

The GBDT approach trails slightly behind the RNN, posting
an average cost of 0.812, a carbon emission cost of 0.867, and an
electricity cost of 0.757. LSM, on the other hand, occupies the last
rank across everymeasured parameter, with its average cost at 0.822,
carbon emission cost at 0.878, and electricity cost at 0.766. This
underscores the notion that ultimate success in intricate tasks such as
power dispatch correlates strongly with the preciseness of renewable
energy forecasts.

These findings underscore the critical role of accurate renewable
energy generation forecasts in ensuring effective power dispatch.
The Ensemble method, through its superior predictive accuracy,
is able to minimize costs significantly in real-world scheduling
scenarios. Conversely, when prediction accuracy falters, as seenwith
LSM, the outcomes of power dispatch tend to be less favorable,
highlighting the importance of accurate forecasting in optimizing
power dispatch strategies.

4.3 Ablation studies

To better demonstrate the effectiveness of the model, we
conducted two parts of ablation experiments: Analysis of Features
and Analysis of DNN Layers. The analysis of the Features section
aims to explore the validity of each feature and to assess their impact
on the final results. The Layers experiments are designed to guide us
in choosing optimal experimental configurations, helping to prevent
overfitting that may occur due to an excessively large network.

4.3.1 Analysis of features
To assess the influence of certain features on the comprehensive

scheduling process, feature ablation experiments were conducted.
As shown in Figure 2, omitting features such as past demand,
energy generation, solar irradiance, time, and weather conditions
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FIGURE 2
Analysis of online data augmentation. By removing the features of past
demand, energy generation, radiance of solar, time, and weather
(denoted A, B, C, D and E), the overall performance deteriorates. In the
chart, the blue bar represents Emission Cost, and the red bar
represents Price Cost.

FIGURE 3
Effect of different number of network layer.

(labeled A, B, C, D, and E respectively) leads to a marked decline
in overall performance. Among these, the weather feature stands
out for its significance. The removal of weather data results in
a noticeable increase in Price Cost, from 0.735 to approximately
0.77, and a direct uptick in Carbon Emission Cost from 0.858 to
about 0.88.This observation aligns with intuitive understanding that
possessing advance knowledge of weather conditions enables the
making of relatively accurate forecasts for solar power production,
thus facilitatingmore effective advance scheduling.This finding also
indicates that future efforts could focus on further modeling of
weather conditions or obtaining more detailed weather information
to enhance scheduling outcomes.

4.3.2 Analysis of DNN layers
Furthermore, the effect of network depth on the neural network’s

performance was investigated. According to Figure 3, it was
observed that the performance initially enhances with an increase
in the number of network layers, but eventually plateaus or even
declines. A plausible explanation for this phenomenon might be
the insufficiency of data, leading to underfitting when the network
expands beyond a certain size, thereby negatively influencing the
overall efficacy. Moving forward, efforts will be geared towards
amassing a larger dataset and undertaking more comprehensive
experiments to delve deeper into this aspect.

5 Conclusion

This paper proposes a deep learning based approach for
predicting renewable energy generation. The goal is to improve
prediction accuracy to optimize energy production, distribution
and grid integration. We use real-world electricity usage data from
17 buildings in Fontana, California over 1 year. The data includes
electricity consumption, peak demands, and weather information.
For feature engineering, we perform outlier processing and one-hot
encoding on the input features like past energy data, weather, time,
etc. Individual regression models like GBDT, LSM, RNN are first
applied. Then a DNN model is used to fuse the original time series
features and outputs of individual models to get the final prediction.
Experiments show RNN performs best individually, while the
proposed DNN fusion approach achieves the best MAPE for 6 h
ahead solar forecasting. The better renewable energy prediction also
leads to better performance on end-to-end electricity scheduling, in
terms of cost and emissions. In summary, the DNN based fusion
approach combines multiple models to improve renewable energy
forecasting accuracy and provide better scheduling strategies.
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