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With the rapid development of 5G base station construction, significant energy
storage is installed to ensure stable communication. However, these storage
resources often remain idle, leading to inefficiency. To enhance the utilization of
base station energy storage (BSES), this paper proposes a co-regulation method
for distribution network (DN) voltage control, enabling BSES participation in grid
interactions. In this paper, firstly, an energy consumption prediction model based
on long and short-term memory neural network (LSTM) is established to
accurately predict the daily load changes of base stations. Secondly, a BSES
aggregation model is constructed by using the power feasible domain maximal
inner approximation method and Minkowski summation to evaluate the charging
and discharging potential and adjustable capacity of BSES clusters. Subsequently,
a BSES demand assessment and optimal scheduling model for low voltage
regulation in DN is developed. This model optimizes the charging and
discharging strategies of BSES to alleviate low voltage problems in DN. Finally,
the simulation results effectively verify the feasibility of the proposed optimal
scheduling method of BSES for voltage regulation in DN.
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1 Introduction

In recent years, advancements in new energy technologies have progressed rapidly, and
the proportion of new energy sources such as wind energy and solar energy has been
increasing. The landscape of large-scale new energy consumption remains unclear,
necessitating urgent adjustments in flexible resource allocation. As the best flexible
resource, energy storage can control the input and output of power and energy at
different time scales, thereby improving the stability and operation characteristics of
high-proportion new energy power systems, promoting flexible dispatching of power
grids, and solving the adverse effects of large-scale grid-connected clean energy.
However, its widespread adoption is impeded by high costs. Meanwhile, China has
clearly proposed to speed up the development of new infrastructure. Operators of 5G
base stations have invested in constructing numerous communication facilities and
configured extensive energy storage batteries to ensure the stability and reliability of
communication. However, the growing strength and stability of the distribution system
have significantly enhanced the energy supply reliability of 5G base stations, making the
redundant 5G BSES devices idle for a long time. Therefore, considering the unique backup
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power supply requirements of energy storage resources at
communication base stations, it is urgent to investigate the
influence of the communication load characteristics on the
backup power demand and deeply explore the schedulable
potential of the backup energy storage. This will enable the
efficient utilization of idle resources at 5G base stations in the
collaborative interaction of the power system, fostering mutual
benefit and win-win between the power grid and the
communication operators.

The research on 5G base station load forecasting technology can
provide base station operators with a reasonable arrangement of energy
supply guidance, and realize the energy saving and emission reduction of
5G base stations. Currently, the research primarily focuses on statistical
learning methods and machine learning techniques (Shang et al., 2022).
In (Morosi et al., 2013), the exponential smoothing technique is used to
predict the traffic in all coverage areas of the base station. In (Pan et al.,
2015), a Block Regression (BR) model for base station traffic prediction
considering the time correlation of base station load is proposed.
Although the proposed model boasts low complexity and the
mathematical formula is clear and easy to understand, it suffers from
poor scalability as it constructs only a single model for all base stations.
Moreover, the prediction results using these statistical learning models
are not satisfactory when dealing with long-term problems, especially
when predicting violently fluctuating base station network traffic data
(Cheng et al., 2023). For the machine learning load forecasting model, a
neural network load forecasting trainingmethod based on themaximum
correntropy criterion (NTPMCC) is proposed in (Qu et al., 2013). This
method takes into account the nonlinear characteristics of network load,
but the overall improvement in prediction accuracy is moderate.
Reference (Qu et al., 2019) introduces a base station load forecasting
model that leverages spatio-temporal characteristics. To achieve this, a
clustering algorithm based on artificial neural networks is employed to
establish specific models for various types of base stations. Additionally,
in reference (Stolojescu-Crisan, 2012), the StationaryWavelet Transform
(SWT) method is introduced during the data preprocessing stage. This
method is combined with the Auto-Regressive Integrated Moving
Average (ARIMA) model and Artificial Neural Networks (ANNs) to
accomplish the load forecasting tasks. While the above-mentioned base
station load forecasting method cannot shield the interference caused by
the drastic fluctuation of 5G base station load data, which leads to a large
static error in the prediction results, so there is an urgent need to study a
more efficient and applicable base station load prediction method to
effectively improve the base station load prediction accuracy.

Addressing the efficient utilization of flexible resources in 5G base
stations, literature (Ye, 2021; Yin et al., 2022) proposes installing
photovoltaic systems to enhance energy storage capabilities.
However, for the existing 5G base stations that have been
completed, the measure of reinstalling photovoltaic devices is
difficult to implement. Several scholars have proposed a dynamic
clustering method of energy storage utilizing virtual power plant
technology to address the challenge that the energy storage of
communication base stations with a large number and wide
distribution is difficult to schedule (Suo et al., 2022; Yang et al.,
2020). Nevertheless, the energy storage model is too simplified, and
the spatial and temporal differences between BSES are ignored in order
to improve the solution efficiency. Other studies have deeply explored
the adjustable capacity of energy storage, and proposed energy storage
resource aggregation optimization methods (Yang et al., 2023; Yu et al.,

2023). Reference (Sajjad et al., 2016) pointed out that the idea of
describing the feasible region of energy storage resource cluster
operation can be divided into two kinds: top-down and bottom-up.
Among them, top-down refers to the direct construction of the feasible
region of cluster operation through data analysis and probabilistic
modeling. From bottom to top, it refers to describing the feasible
domain of a single resource first, and then aggregating multiple
independent operating domains into a unified whole. Following a
top-down approach, reference (Sajjad et al., 2016) estimates the
flexibility level according to the probability of changing the collective
behavior of aggregated users. Reference (Ma et al., 2013) developed a
flexibility standard based on reinforcement learning methods to
distinguish different load types, thereby assessing the total
adjustment potential of resources. The current mainstream research
tends to be bottom-up, considering the shortcomings of complexity,
uncertainty, high computational cost and poor interpretability in
constructing feasible regions directly through data analysis and
probabilistic modeling. Following a bottom-up approach, reference
(Müller et al., 2019) pointed out that the flexibility of each resource
is mathematically regarded as a feasible region bounded by polytope,
and the essence of the flexibility aggregation problem is the Minkowski
sum of polytope provided by all flexible resources. However, the above
method is not feasible in practical solution. As the dimension of the
polyhedron increases, both the number of vertices and the permutations
and combinations grow exponentially. This results in a phenomenon
known as dimension explosion (Barot and Taylor, 2017; Althoff et al.,
2010), significantly escalating the computational complexity of
Minkowski summation. In (Müller et al., 2019), the zonotope set
was proposed to aggregate distributed resource flexibility. The
internal approximation method of the power feasible region ensures
the feasibility of themodel solution, but it also entails varying degrees of
flexibility loss. The above research focuses on aggregating multiple
flexible resources in the power system, but does not systematically
investigate aggregation methods as backup resources for BSES.
Therefore, it is necessary to thoroughly consider the characteristics
of the standby power supply of the BSES resources, conduct in-depth
research on its dynamic aggregation method, and quantitatively
evaluate the power adjustment ability of the BSES cluster.

Research on 5G BSES in the power system focuses on integrating
with the operation and dispatching of the DN (Li et al., 2022). The
primary objective is to support the DN in integrating new energy
consumption (Liang et al., 2023), peak shaving, valley filling (Yang
et al., 2023), and optimizing economic dispatching (Chai et al., 2014).
In (Jia et al., 2023), research focuses on mobile energy storage
technology aimed at enhancing the consumption of distributed
energy within station areas, which improves the consumption rate
of new energy and ensures the stable and reliable operation of the DN
in the station area. Reference (Zhang et al., 2023) proposed a model to
optimize the energy storage configuration of 5G base stations. The
objective is to alleviate the pressure of peak load on the power grid by
minimizing the total investment over the battery system’s entire
lifecycle. Reference (Han et al., 2021) proposed a Stackelberg game
collaborative optimization method for DN and 5G mobile network
based on demand response. The DN operator (DNO) acts as the
leader, selecting an optimal interactive electricity price to reduce peak-
valley differences in net load. Themobile network operator (MNO), as
a follower, adjusts its energy costs by responding to the electricity price
set by the DNO. In (Zhou and Xu, 2021), the mobile BSES system is
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used to provide local reactive power support. A day-ahead reactive
power scheduling model is proposed, considering the system and the
conventional reactive power compensation device, aimed at
minimizing the node voltage deviation in the active DN. The
above research works have established methods for BSES to
participate in DN optimization and dispatch from different
perspectives, but there is a lack of research related to making full
use of BSES resources to participate in voltage regulation of DNs.

In summary, the existing research on 5G BSES lacks a BSES co-
regulation method based on aggregation technology for voltage
regulation of DNs. Therefore, in order to fill the above research
gaps, this paper firstly proposes a BSES aggregation model taking
into account the base station energy consumption prediction, and
then proposes a BSES co-regulation method for the voltage
regulation of base stations in distribution grids, which makes full
use of the large amount of idle energy storage resources in 5G base
stations and realizes the mutual benefits of telecommunication
operators and power grids. The main contributions of this paper
are as follows.

• The specific composition of 5G base station energy
consumption is analysed, and a 5G base station energy
consumption prediction model based on long short-term
memory (LSTM) is constructed.

• Considering the power supply characteristics of BSES backup
supply, we constructed a BSES aggregation model taking into
account the energy consumption prediction of 5G base stations,
and quantitatively evaluated the maximum adjustable capacity
and charging/discharging potential of BSES.

• A BSES co-regulation method based on BSES aggregation
technology for voltage regulation of DNs is proposed to
quantitatively assess the minimum energy storage
regulation capacity required for voltage regulation of DNs
and optimize the charging and discharging strategy of each
BSES based on the balanced charge state scheduling method of
energy storage.

The rest of this paper is organized as follows: In Section 2, it
proposes a method for predicting 5G base station energy
consumption using LSTM and constructs a BSES aggregation
model considering this prediction. In Section 3, it proposes a
coordinated control method of BSES for low voltage governance
of DN based on BSES aggregation technology. In Section 4,
simulations are performed on a real distribution network test
system. The conclusion is put forward in Section 5.

2 BSES aggregation method
considering energy consumption
prediction

2.1 5G base station energy consumption
analysis and prediction model

2.1.1 5G base station energy consumption model
To meet the communication requirements of large capacity and

low delay, the commissioning of new equipment has significantly
improved the performance of 5G base stations compared with the

previous generation base stations. At the same time, the new
equipment has altered the power load characteristics of base
stations. In the 5G technology framework, the 5G base station
comprises macro and micro variants. The micro base station
serves indoor blind spots with minimal power consumption. The
macro base station exhibits greater potential for demand response.
This section primarily analyzes the current mainstream commercial
5G macro base stations.

The load of a 5G base station primarily consists of
communication equipment and auxiliary components. The
communication equipment mainly includes Active Antenna Unit
(AAU) and Base Band Unit (BBU). AAU is a combination of radio
frequency unit and antenna array of 5G base station. Its main
functions include converting baseband digital signal into analog
signal, modulating it into high frequency radio frequency signal, and
then amplifying it to enough power to be transmitted through the
antenna. AAU is the most energy-consuming equipment in 5G base
stations, accounting for up to 90% of their total energy consumption.
Auxiliary equipment includes power supply equipment, monitoring
and lighting equipment. The power supply equipment manages the
distribution and conversion of electrical energy among equipment
within the 5G base station. During main power failures, the energy
storage device provides emergency power for the
communication equipment.

A set of 5G base station main communication equipment is
generally composed of a baseband BBU unit and multiple RF AAU
units. Equation 1 serves as the base station load model:

PBS � Pmain + Pstatic (1)
where PBS is base station load; Pmain is the base station main
equipment load power and Pmain � PBBU + n · PAAU, PBBU is the
baseband unit power, n is the number of active antenna elements,
PAAU is the active antenna unit power and its size is mainly related to
the base station communication load; Pstatic is the base station
auxiliary equipment load power, including the base station
environment equipment, transmission equipment and monitoring
equipment load power, and the power remains constant.

The load change of base station mainly depends on the
communication behavior of users, exhibiting significant time
correlation and random fluctuations. As a special deep recurrent
neural network, the LSTM network can basically smooth the
interference caused by fluctuation to the training model, making
it suitable for base station energy consumption prediction with large
fluctuations in time series data.

2.1.2 LSTM-based energy consumption prediction
model for 5G base stations

The LSTMmodel is an advanced extension of the Recurrent Neural
Network (RNN)model, specifically designed to handle sequence data. It
addresses the long-term dependency problem, enabling it to better
capture long-term dependencies in sequence data. This allows the
model to effectively learn patterns and features in temporal data.

According to the energy consumption characteristics of the base
station, a 5G base station energy consumption prediction model
based on the LSTM network is constructed to provide data support
for the subsequent BSES aggregation and collaborative scheduling.
The prediction flow chart is shown in Figure 1, and the specific
prediction process is as follows.
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Step (1) The data is collected and preprocessed. After deleting the
abnormal data, the data is normalized according to Equation
2. Then, the processed data set is divided into training set and
test set according to a certain proportion.

Pbs � P − Pmin

Pmax − Pmin
(2)

where Pbs is the normalized historical input data; P is the historical
input data before normalization; Pmin is the minimum value of the
historical input data before normalization; Pmax is the maximum
value of the historical input data before normalization.

Step (2) The LSTM model is created and the training set sample
data is imported into the LSTM load forecasting model
for training. The specific LSTM model principle can be
referenced in (Fu, 2020).

Step (3) The test set sample data is imported into the trained
model for 5G base station load forecasting, and

compared with the actual 5G base station load to
calculate the evaluation index of the model. The root
mean square error eRTS, average relative error eAR,
maximum relative error eMR and relative error eR are
used as the evaluation indexes of prediction effect. The
calculation formula is as Equations 3–6:

eRTS �
������������
1
n
∑n
i�1

yi − ŷi( )2√
(3)

eAR � 1
n
∑n
i�1

yi − ŷi

yi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣ (4)

eMR � max
yi − ŷi

yi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣( ) (5)

eR � yi − ŷi

yi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (6)

where yi is the actual load value; ŷi is the load prediction value; n is
the number of data sets.

2.2 BSES aggregation method

2.2.1 Operational model of individual BSES
The feasible domain of a single BSES power can be described as:

Fj � pES
j ∈ RT

EES
j,t � δjEES

j,t−1 + pES
j,tΔt,∀t ∈ τ

−pES,−
j,t ≤pES

j,t ≤p
ES,+
j,t ,∀t ∈ τ

EES,−
j,t ≤EES

j,t ≤EES,+
j,t ,∀t ∈ τ

∣∣∣∣∣∣∣∣∣∣∣∣∣
⎧⎪⎪⎨⎪⎪⎩

⎫⎪⎪⎬⎪⎪⎭ (7)

where pESj is the output power of the BSES j at each moment in the
time period T, while pESj � [pES

j,1, p
ES
j,2,/, pES

j,T]; EES
j,t is the battery

residual energy state of the BSES j at time t; δj is the self-discharge
efficiency of the BSES j; pES

j,t is the input power of the BSES j at time t,
pES
j,t > 0 indicates charging, pES

j,t < 0 indicates discharging,; is
charging/discharging intervals for BSES j; τ � 1, 2,/, T{ },
denotes a moment in time T; pES,−

j,t is the maximum discharge
power of the BSES j; pES,+

j,t is the maximum charge power of the BSES
j; EES,−

j,t is the value of the minimum energy state allowed for the
BSES j at time t, with respect to the load size and minimum supply
time at time t, EES,−

j,t � t dminP
d
t , P

d
t is the predicted power of the base

station energy consumption at time t, is the minimum power supply

FIGURE 1
Flowchart of 5G base station load prediction based on LSTM.

FIGURE 2
The principle of the maximum inner approximation method in
the feasible domain of aggregation power.
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time of the base station load, and the general minimum power
supply time is 3 h; and EES,+

j,t is the maximum energy state value of
the BSES j allowed at time t.

To facilitate the derivation of the subsequent equations,
Equation 7 can be written in the following compact form, as
illustrated in Equation 8.

Fj � pES
j ∈ RT

∣∣∣∣∣Mjp
ES
j ≤Nj{ } (8)

where Mj, Nj are expressed as Equations 9, 10, respectively:

Mj � diag I( ); diag −I( );A−1
j Bj;−A−1

j Bj( ) (9)
Nj � pES,+

j ; pES,−
j ;EES,+

j − A−1
j Cj;−EES,−

j + A−1
j Cj( ) (10)

where I � [1, 1,/, 1]T ∈ RT×1, where pES,+j , pES,−j , EES,+
j ,

EES,−
j ∈ RT×1, represent maximum charging power vector, the

maximum discharging vector, the maximum energy state vector
and the minimum energy state vector of the BSES j in T period,
respectively. Aj, Bj, Cj are expressed as Equations 11-13,
respectively:

FIGURE 3
Topology of 22-node distribution network system.

TABLE 1 Line parameters.

Line Length (km) Resistance (Ω/km) Reactance (Ω/km) Current capacity (A)

0–10 13.173 0.13 0.358 503

10–16 4.176 0.91 0.38 90

16–18 1.364 0.91 0.38 90

10–20 4.266 0.91 0.38 90

20–22 4.635 0.91 0.38 90

FIGURE 4
Load curve of each node.
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Aj �

1 0 0 / 0
−δj 1 0 / 0
0 −δj 1 / 0

..

. ..
. ..

.
1 ..

.

0 0 0 / 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

Bj � diag I( )Δt (12)
Cj � δjE

ES
j,0, 0, 0/, 0[ ]T (13)

whereAj, Bj ∈ RT×T, Cj ∈ RT×1. δj is the self-discharge efficiency of
the BSES j. EES

j,0 is the initial capacity state of energy storage.

2.2.2 BSES aggregation model
To reduce decision-making complexity at the distribution

network operator level, BSES aggregators need to aggregate the
operational feasible regions of all BSES units to form the operational

feasible region of the BSES cluster. The aggregated operational
feasible region represents the adjustable range of the flexible
resources when all BSES units are simultaneously controlled. The
mathematical essence of the feasible region aggregation problem is
the Minkowski sum (M-Sum). The aggregation calculation process
is as follows.

The expression for the aggregated power when the number of
BSES units is N is presented in Equation 14.

pagg
i,t � ∑N

j�1
pES
j,t ,∀t ∈ τ (14)

The aggregated feasible domain F can be expressed as
Equation 15:

F � ∪
j∈N

Fj (15)

where ∪ is denoted as Minkowski summation; N : � [1, 2,/N].
However, when the number of energy storage units in the base

station is high, the number of sets and dimensions involved in the
operation increases, and the planes describing the boundary of the
feasible domain increase exponentially, which leads to the difficulty of
the Minkowski summation and makes the solution of its aggregated
power feasible domain non-computable. Therefore, in order to reduce
the computational complexity, this paper adopts an aggregated power
feasible domain maximal inner approximation method (Zhao et al.,
2017), whose principle schematic is shown in Figure 2.

The feasible region aggregation problem is characterized by large
computational scale and strong temporal coupling. The exact feasible
region of the aggregate is often difficult to compute and typically
requires approximation of the feasible region for individual objects
first. Initially, a basic power feasible regionF0 is selected and subjected
to scaling and translation to fit the power feasible regions of each BSES
unit. Then, the Minkowski sum is performed. This method effectively
addresses the computational complexity of the aggregated feasible
region. The fitted power feasible region is represented as Equation 16:

FIGURE 5
Convergence of training set error for 5G base station energy
consumption prediction.

FIGURE 6
5G base station load forecast for three consecutive days.
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φjF0 + μj � yj

∣∣∣∣∣yj � φjξ + μj,∀ξ ∈ F0{ } (16)

where φj is the scaling factor; μj is the translation factor,
μj ∈ RT, RT denotes the T-dimensional real number space;
yj denotes the power feasible domain of the BSES at each
moment; ξ denotes the baseline power feasible domain at
each moment.

The expression of F0 is as follows:

F0 � PES
0 ∈ RT

EES
0,t � δ̂EES

0,t−1 + pES
0,tΔt,∀t ∈ τ

−p̂ES,−
0,t ≤pES

0,t ≤ p̂
ES,+
0,t ,∀t ∈ τ

Ê
ES,−
0,t ≤EES

0,t ≤ Ê
ES,+
0,t ,∀t ∈ τ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
⎧⎪⎪⎨⎪⎪⎩

⎫⎪⎪⎬⎪⎪⎭ (17)

where δ̂, p̂ES,−
0,t , p̂ES,+

0,t , Ê
ES,−
0,t , Ê

ES,+
0,t are the average values of the

corresponding parameters for all BSES.
Equation 17 can be written in a compact form, as show in

Equation 18:

F0 � pES
0 ∈ RT

∣∣∣∣M0p
ES
0 ≤N0{ } (18)

where Μ0 and N0 are expressed as Equations 19, 20, respectively:

M0 � diag I( ); diag −I( );A−1
0 B0;−A−1

0 B0( ) (19)
N0 � p̂ES,+

0 ; p̂ES,−
0 ; Ê

ES,+
0,t − A−1

0 C0;−ÊES,−
0,t + A−1

0 C0( ) (20)

where B0 � Bn, A0’s expression is as Equation 21:

A0 �

1 0 0 / 0
−δ̂ 1 0 / 0
0 −δ̂ 1 / 0
..
. ..

. ..
.
1 ..

.

0 0 0 / 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (21)

where A0 ∈ RT×T. δ̂ is the average values of self-discharge efficiency
of all BSES.

Scaling and translation of F0 is used to fit each BSES power
feasible domain Fn, when φj is maximum, the fitted BSES power
feasible domain Fj is optimal, and the optimal parameters φ*

j and μ
*
j

can be obtained by solving the optimization problem as shown in
Equation 22:

maximize
φj ,μj

φj

s.t. φjF0 + μj ⊂ Fj

φj ≥ 0

(22)

Let ϕj � 1
φj
, ηj � −ϕjμj, based on Farkas’ theorem, the above

optimization problem expression can be transformed into
Equation 23:

minimize
ϕj,ηj ,G

ϕj

s.t. GM0 � Mj

GN0 ≤ ϕjNj +Mjηj

(23)

By solving the above optimization problem, the parameters φj

and μj can be obtained, so that the feasible domain of BSES
aggregation power can be obtained as Equation 24:

Fagg � pagg
t ∈ RT

Eagg
i,t � δiE

agg
i,t−1 + pagg

i,t Δt,∀t ∈ τ
−pagg,−

i,t ≤pagg
i,t ≤pagg,+

i,t ,∀t ∈ τ
Eagg,−
i,t ≤Eagg

i,t ≤Eagg,+
i,t ,∀t ∈ τ

∣∣∣∣∣∣∣∣∣∣∣⎧⎪⎨⎪⎩ ⎫⎪⎬⎪⎭ (24)

where each boundary parameter is expressed as Equations 25-28:

pagg,−
i � φp̂ES,−

0 − μ (25)
pagg,+
i � φp̂ES,+

0 + μ (26)
Eagg,−
i � φÊ

ES,−
0 − A−1Bμ (27)

Eagg,+
i � φÊ

ES,+
0 + A−1Bμ (28)

where φ � ∑
j∈Ωi

φ*
j, μ � ∑

j∈Ωi

μ*j; Ωi denotes the set of BSES belonging

to aggregator i.

3 5G BSES co-regulation method for voltage
regulation in DNs

This chapter aims to study 5G BSES participation in DN
coordinated scheduling methods for optimal operation in low-
voltage scenarios. It first establishes a DN model and introduces

FIGURE 7
Charging and discharging potential of aggregated energy storage
for 10 base stations over 24 time periods.

FIGURE 8
Energy state boundaries of aggregated energy storage for
10 base stations over 24 time periods.
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a quantitative assessment method for low-voltage regulation
demand, which guides base station operators in coordinating
with the DN. The chapter then proposes a cooperative
scheduling method for BSES, optimizing its charging and
discharging strategies to regulate DN voltage and improve grid
safety and stability.

3.1 DN modeling

3.1.1 DN topology model
Since the DN is a radial structure, the DN topology containing

N nodes is defined as G � (N , E), where N � 1, 2, ..., N{ } and E
represent the set of nodes and the set of lines, respectively. The
substation is denoted as node 0. In addition to the substation, each
node i has a unique parent node πi and a set of child nodes directly
connected to it, which are denoted by Ci. Without loss of
generality, the node index is encoded in such a way that the
index of each node is always greater than the index of its

parent node, πi < i. In addition, the line pointing from a node
πi to node i is labeled as line i. Therefore, the branch numbering
E � 1, 2, ..., N{ } can be consistent with the node numbering. Let A0

be an N × (N + 1) dimensional node association matrix. It can be
expressed as Equation 29:

A0
ij �

−1 j � i
1 j � πi

0 j ≠ i, πi

⎧⎪⎨⎪⎩ (29)

where if j � πi, A0
ij = 1 indicates that node j is the parent of node i

and there is a line connecting node i to node j. If A0
ij = 0, it indicates

that node j is not the parent of node i. A0 is divided into two parts, a
and A, where a represents the first column of A0, which is the
correlation matrix of node 0. A is a full-rank matrix, and therefore A
is invertible.

3.1.2 DN branch-circuit current modeling
For a radial DN, the following tidal equations are used to

represent the branch-circuit tidal models (Li et al., 2019).

FIGURE 9
Voltage amplitude of BSES before participation in dispatch for 24 time periods.

FIGURE 10
Voltage amplitude after participation of BSES in dispatch for 24 time periods.
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Pi − P2
i + Q2

i

V2
πi

ri + pi � ∑
j∈Ci

Pj ∀i ∈ N /0 (30)

Qi − P2
i + Q2

i

V2
πi

xi + qi � ∑
j∈Ci

Qj ∀i ∈ N /0 (31)

V2
πi
− V2

i � 2 riPi + xiQi( ) − r2i + x2
i( )P2

i + Q2
i

V2
πi

∀i ∈ ε (32)

Equations 30, 31 represent the active and reactive power balance
at node i, respectively, and Equation 32 represents the voltage link
between two neighboring nodes, Where pi and qi denote the active
and reactive power injected at node i, respectively; Pi and Qi denote
the active and reactive power circulating on branch i, respectively; ri
and xi denote the resistance and reactance of line i, respectively; and
Vπi and Vi denote the voltage magnitude of the parent node and the
child node i, respectively.

Since the original branch-current models (30)–(32) are non-
convex, the convex optimization solution method cannot be directly
applied. To ensure the efficient solution of the problem, after
approximating, and neglecting the higher terms of the equations,

the linear branch-current model can be obtained as shown in
Equations 33–35.

Pi − ∑
j∈Ci

Pj � −pi ∀i ∈ N /0 (33)

Qi − ∑
j∈Ci

Qj � −qi ∀i ∈ N /0 (34)
Vπi − Vi � riPi + xiQi ∀i ∈ ε (35)

3.2 BSES demand assessment model for
voltage regulation in DNs

3.2.1 Objective function
When the distribution network system experiences excessive

load, certain nodes may encounter low voltage issues. These issues
can be addressed by aggregators scheduling the charging and
discharging actions of 5G BSES, effectively adjusting the flexible
active load of the 5G base stations. From the perspective of the power
grid, the aim is to resolve low voltage problems with minimal energy
storage adjustment requirements. Therefore, the objective function
is to minimize the energy storage adjustment demand F at each node
of the base station over a day, as shown in Equation 36.

F � ∑T�24
t�1

∑Ne

i�1
pagg
i,t

∣∣∣∣ ∣∣∣∣ (36)

where T is 24 time periods in a day;Ne denotes the number of node’s
aggregated energy storage (AES); pagg

i,t denotes the output power of
node i’s AES in time period t.

3.2.2 Restrictive condition
3.2.2.1 Linear branch flow model

Pi,t − ∑
j∈Ci

Pj,t � −pi,t ∀i ∈ N /0 (37)

Qi,t − ∑
j∈Ci

Qj,t � −qi,t ∀i ∈ N /0 (38)
Vπi ,t − Vi,t � riPi,t + xiQi,t ∀i ∈ ε (39)

Equations 37-39 represent the linear power flow constraints of the
line where pi,t and qi,t denote the active and reactive power injected
into node i at time t; Pi,t andQi,t denote the active and reactive power
circulating on branch i at time t; ri and xi denote the resistance and
reactance of line i; Vπi ,t and Vi,t denote the voltage magnitude of the
parent node and the child node i at time t, respectively.

3.2.2.2 Nodal power balance constraints

pi,t � −pd
i,t − pagg

i,t (40)
qi,t � −qdi,t (41)

Equation 40 ensures the load active power balance of node i;
Equation 41 ensures the load reactive power balance of node I, where
pd
i,t and q

d
i,t denote the load active power and reactive power of node i

at time t respectively; pagg
i,t denote the AES output power of node i

at time t.

FIGURE 11
24 time periods of AES regulation requirements at each node.

FIGURE 12
Charging and discharging of internal BSES at node 22 for
24 time periods.
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3.2.2.3 Node voltage constraints

V
i
≤Vi,t ≤ �Vi (42)

Equation 42 ensures that the node voltage of the DN does not
exceed the limit. Where V

i
and �Vi are the maximum and minimum

values allowed for the nodal voltage, respectively.

3.2.2.4 Line transmission power capacity constraints

P2
i,t + Q2

i,t ≤ S2i,t (43)

where Si,t is denoted as the maximum value of the apparent power
allowed to flow through branch i. In order to facilitate the solution, it
is necessary to linearize the line transmission power capacity
constraint, as shown in Equation 44. Equation 44 ensures that
the transmission power of the DN line does not exceed the limit.�

2
√ − 1( )Pi,t + Qi,t ≤ Si,t�
2

√
Pi,t −

�
2

√ − 2( )Qi,t ≤
�
2

√
Si,t�

2
√

Pi,t +
�
2

√ − 2( )Qi,t ≤
�
2

√
Si,t�

2
√ − 1( )Pi,t − Qi,t ≤ Si,t
− �

2
√ − 1( )Pi,t + Qi,t ≤ Si,t

− �
2

√
Pi,t −

�
2

√ − 2( )Qi,t ≤
�
2

√
Si,t

− �
2

√
Pi,t +

�
2

√ − 2( )Qi,t ≤
�
2

√
Si,t

− �
2

√ − 1( )Pi,t − Qi,t ≤ Si,t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(44)

3.2.2.5 The power and energy state constraints of the AES

Eagg
i,t � δiE

agg
i,t−1 + pagg

i,t Δt (45)
−pagg,−

i,t ≤pagg
i,t ≤pagg,+

i,t (46)
Eagg,−
i,t ≤Eagg

i,t ≤Eagg,+
i,t (47)

Equations 45-47 indicates the operational constraints of AES where
Eagg
i,t denotes the residual energy state of the AES i at time t; δi denotes

the self-discharge efficiency of the AES i; Δt denotes the charging or
discharging time period of the AES; pagg,+

i,t denotes the maximum
charging power of the AES; pagg,−

i,t denotes the maximum discharging
power of the AES; Eagg,+

i,t denotes the maximum permissible energy
state value of the AES i at time t; Eagg,−

i,t denotes the minimum
permissible energy value of the AES i at time t.

3.3 Cooperative scheduling model of BSES
for voltage regulation in DNs

Building on the BSES demand assessment model for low voltage
regulation in distribution networks, the power adjustment demand for
aggregated BSES at each network node has been calculated. However,
the individual BSES output at each node remains unknown. To address
this, an optimized scheduling model is proposed, which balances the
state of charge and optimizes BSES charging and discharging strategies
to mitigate low voltage issues in the distribution network.

3.3.1 Objective function
Charging and discharging is carried out with the goal that the

SOC of each base station’s energy storage state of charge is close to

0.5 after scheduling, to realize the fair distribution of power among
each base station’s energy storage resources, as shown in Equation 48.

F � ∑N
j�1
∑T
t�1

SOCES
j,t − 0.5

∣∣∣∣∣ ∣∣∣∣∣ (48)

where N denotes the number of BSES inside the node; T denotes the
BSES scheduling time period; SOCES

j,t �
EES
j,t

EB
j
denotes the SOC state of

BSES j inside the node at time t, EES
j,t denotes the remaining energy

state of BSES j inside the node at time t, and EB
j denotes the rated

capacity of BSES j inside the node.

3.3.2 Restrictive condition
3.3.2.1 Energy storage energy balance constraints

The sum of the node’s internal BSES energy should be balanced
with the node’s AES energy value, as described in Equation 49.

∑N
j�1
EES
j,t � Eagg

i,t (49)

3.3.2.2 Energy storage energy state constraints

EES
j,t � δj · EES

j,t−1 + pES
j,tΔt (50)

EES,−
j,t ≤EES

j,t ≤EES,+
j,t (51)

Equation 50 illustrates the relationship between the energy stored in
BSES j and its input power, Equation 51 shows the upper and lower
bounds of energy stored in BSES j where δj denotes the self-
discharge efficiency of the BSES j; pES

j,t denotes the output power
of the BSES j at time t; Δt denotes the BSES charging or discharging
time period; EES,−

j,t denotes the minimum energy state value allowed
by the BSES j at time t; and EES,+

j,t denotes the maximum energy state
value allowed by the BSES j at time t.

3.3.2.3 Energy storage power balance constraints

∑N
j�1
pES
j,t � pagg

i,t (52)

−pES,−
j,t ≤pES

j,t ≤pES,+
j,t (53)

Equation 52 ensures the power balance of AES, Equation 53 enforces
the lower and upper bounds to the power input of BSES jwhere pES,+

j,t

indicates the maximum charging power of the BSES; pES,−
j,t indicates

the maximum discharging power of the BSES j.

4 Simulation results

4.1 System data

To validate the effectiveness of the proposed method, a
simulation analysis was conducted using a 22-node distribution
network in a specific region. The network topology is shown in
Figure 3, and the line parameters are listed in Table 1. The nodes are
uniformly distributed, with the maximum and minimum node
voltages set at 1.05 p. u and 0.95 p. u, respectively. The typical
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daily load curve is depicted in Figure 4. In this region, the
communication base stations are equipped with energy storage
systems with a rated capacity of 48 kWh and a maximum
charge/discharge power of 15.84 kW. The self-discharge
efficiency is set at 0.99, and the state of charge (SOC) is allowed
to range between a maximum of 0.9 and a minimum of 0.1.

4.2 5G BSES energy consumption prediction
model results and analysis based on LSTM

The training and test datasets were imported into the LSTM-
based load forecasting model for 5G base stations. The error
convergence for the training and test datasets is shown in
Figure 5, while the load forecasting for the test dataset samples is
illustrated in Figure 6. The root mean square error (RMSE) for the
test dataset samples was calculated to be 0.22 kW, with an average
relative error of 0.06. As seen in Figure 5, the loss function value
converges to a minimum after 24 training epochs. Figure 6 indicates
that the model accurately reflects the load data trends over time,
demonstrating good tracking performance. In summary, these
results validate that the LSTM load forecasting model performs
well in predicting the load data of 5G base stations.

4.3 Results and analysis of BSES aggregation

The simulation results for the aggregated power feasible region
of 10 BSES units are shown below. Figures 7, 8 illustrate the charging
and discharging potential and the energy state boundaries of the
aggregated 10 base stations over 24 time periods in a day. The
adjustable capacity of the aggregated energy storage is influenced by
factors such as individual BSES parameters and the load size of the
base stations, resulting in temporal fluctuations. The charging and
discharging potential is related to the charge/discharge power
parameters of each storage unit. The minimum energy state of
the aggregated storage is associated with the base station load size,
while the maximum energy state is linked to the rated capacity
parameters of each storage unit. Therefore, the proposed BSES
aggregation model can quantitatively assess the charging and
discharging potential and the adjustable capacity of the
controllable BSES group, providing data support for the
subsequent participation of BSES in coordinated scheduling with
the distribution network.

4.4 Validation results of 5G BSES co-
regulationmethod for DN voltage regulation

4.4.1 Validation results of a BSES demand
assessment model for DN voltage regulation

Based on the distribution network branch power flow model
presented in this paper and utilizing existing data, the voltage
magnitudes at each node of the distribution network were
calculated before the participation of BSES in the scheduling
across multiple time scales. Figure 9 illustrates the voltage
magnitudes at each node of the distribution network over
24 time periods before BSES participated in the scheduling. As

shown in the figure, low voltage phenomena (voltage magnitude per
unit value less than 0.95, indicated by the green sections) occur at
certain times at the end nodes of the distribution network.

Using the BSES demand assessment model proposed in this
paper, and combining it with existing data, the voltage
magnitudes at each node of the distribution network and the
energy storage adjustment requirements for low voltage
mitigation were calculated after the participation of BSES in
the scheduling across multiple time scales. Figure 10 shows
the voltage magnitudes at each node of the distribution
network over 24 time periods after the BSES participated in
the scheduling. As depicted in the figure, the coordinated
scheduling of BSES effectively improves the voltage
magnitudes at the end nodes, achieving low voltage
mitigation. The multi-time scale adjustment requirements of
the aggregated BSES power for low voltage mitigation in the
distribution network nodes are shown in Figure 11.

4.4.2 Validation results of an optimal scheduling
model for BSES for voltage regulation in DNs

Based on the BSES optimization scheduling model proposed in
this paper and utilizing existing data, the coordinated scheduling of
BSES at each node was calculated. Taking node 22 as an example for
the analysis of internal BSES coordination, Figure 12 illustrates the
charging and discharging conditions of BSES at node 22 over 24 time
periods. The figure shows that the model can achieve coordinated
scheduling of BSES, optimizing the charging and discharging
strategies of the energy storage units and effectively managing
low voltage issues.

5 Conclusion

In this paper, a BSES aggregation method that takes into
account both the base station energy consumption and the
backup power characteristics of BSES is proposed.
Furthermore, with the goal of fully utilizing the energy storage
resources of 5G base stations, a BSES co-regulation method for
voltage regulation in DNs is proposed. The feasibility of the
proposed method is verified by case analysis, and the following
conclusions can be drawn.

• The 5G base station energy consumption prediction model
based on LSTM proposed in this paper takes into account the
energy consumption characteristics of 5G base stations. The
prediction results have high accuracy and provide data
support for the subsequent research on BSES aggregation
and optimal scheduling.

• The BSES aggregation model proposed in this paper, which
considers the prediction of base station energy
consumption, accurately and quantitatively evaluates the
power adjustability and adjustable capacity of BSES
clusters, and enables the centralized management and
scheduling of massive BSES.

• The BSES optimization scheduling model constructed in this
paper for voltage regulation of DNs further exploits the
dispatchable potential of BSES to participate in DN synergy
and interaction. It addresses the low-voltage problem of the
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DN and improves the security and stability of the grid while
ensuring a sufficient and stable backup supply for 5G
base stations.
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