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Solar energy (SE) is vital for renewable energy generation, but its natural
fluctuations present difficulties in maintaining grid stability and planning.
Accurate forecasting of solar irradiance (SI) is essential to address these
challenges. The current research presents an innovative forecasting approach
named as Transformer-Infused Recurrent Neural Network (TIR) model. This
model integrates a Bi-Directional Long Short-Term Memory (BiLSTM) network
for encoding and a Gated Recurrent Unit (GRU) network for decoding,
incorporating attention mechanisms and positional encoding. This model is
proposed to enhance SI forecasting accuracy by effectively utilizing
meteorological weather data, handling overfitting, and managing data outliers
and data complexity. To evaluate the model’s performance, a comprehensive
comparative analysis is conducted, involving five algorithms: Artificial Neural
Network (ANN), BiLSTM, GRU, hybrid BiLSTM-GRU, and Transformer models.
The findings indicate that employing the TIR model leads to superior accuracy in
the analyzed area, achieving R2 value of 0.9983, RMSE of 0.0140, and MAE of
0.0092. This performance surpasses those of the alternative models studied. The
integration of BiLSTM and GRU algorithms with the attention mechanism and
positional encoding has been optimized to enhance the forecasting of SI. This
approach mitigates computational dependencies and minimizes the error terms
within the model.
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1 Introduction

The burgeoning cognizance of the finite nature of fossil fuel reserves, coupled with their
deleterious environmental ramifications, has engendered profound interest among global
stakeholders. This burgeoning awareness has acted as a catalyst, precipitating the pursuit
and development of more salubrious alternatives for power generation. Such alternatives,
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which encompass solar, aeolian (wind), hydroelectric, and tidal
energy plants, are collectively termed renewable energy sources
(RES) (Kabir et al., 2018). The SE, in particular, is extolled for its
safety, environmental cleanliness, and inexhaustible nature,
rendering it a pervasive and sustainable resource with the
potential to mitigate environmental degradation, climate change,
and the energy paucity concomitant with fossil fuels (Ahlgren et al.,
2003). Prognostications from the International Renewable Energy
Agency forecast a prodigious augmentation in global solar
photovoltaic (PV) capacity, with projections positing an
ascension to 2840 GW by 2030 and an astronomical 8819 GW
by 2050, a substantial surge from the 480 GW documented in 2018
(Ma et al., 2020; Sher et al., 2021). This trajectory incontrovertibly
enshrines SE as an indispensable solution for power generation
across residential, commercial, and industrial domains, attributable
to its eco-friendly characteristics (Asmelash and Gorini 2021).
Nonetheless, notwithstanding its manifold virtues, SE is beset
with challenges attributable to the erratic nature of its output,
which is influenced by uncontrollable and sporadic natural
factors (Zhang et al., 2020; Shahbaz et al., 2021). This inherent
volatility poses formidable challenges in grid management,
potentially engendering power disequilibria and consequential
losses within photovoltaic systems, thereby impeding the socio-
economic advancement of nations (Mele et al., 2021).

Four main categories of prediction models exist for SI: physical,
empirical, statistical, and artificial intelligence (AI) models. Physical
models use Numerical Weather Prediction (NWP) methods to link
SI to different meteorological parameters (Farivar and Asaei 2011).
These models suffer from significant computational costs in
addition to discovering and identifying appropriate parameters
for NWP mathematical models, while having strong physical
foundations (Yang et al., 2006; García-Hinde et al., 2018;
Salcedo-Sanz et al., 2020). Empirical models, among the most
commonly used, develop linear or nonlinear regression equations
(Jiang 2009). Although straightforward and easy to implement, these
models often have limited accuracy. Statistical methods, including
the Autoregressive Integrated Moving-Average (ARIMA) model
(Al-Musaylh et al., 2018), Auto-Regressive (AR) models,
exponential smoothing, Markov Chain models (Shakya et al.,
2017), and Gaussian processes (Lauret et al., 2015), rely on
statistical correlations (Shadab et al., 2019). These statistical
models are sometimes less accurate in capturing intricate
nonlinear interactions among SI and other factors, even though
they are usually more precise than empirical models (Zang et al.,
2020). Furthermore, conventional statistical methods frequently
ignore additional crucial meteorological parameters that affect SI
in favor of solely using historical data (Nadeem et al., 2024). On the
other hand, AI-based techniques overcome these limitations by
using a variety of input data, which makes it possible to extract
intricate nonlinear properties from several sources for more accurate
predictions (Wang et al., 2020a). These models have shown reliable
accuracy in forecasting ground SI and cloud movement for various
timeframes, extending up to several hours in advance (Liu et al.,
2020). In recent years, the utilization of AI-driven methods in solar
engineering has seen remarkable progress. Studies have shown that
AI techniques, such as supervised and unsupervised ANN
(Japkowicz, 2001), Deep Learning (DL) algorithms, and Support
Vector Machines (SVM) (Hanif et al., 2024a), offer more precise

predictions of SI compared to traditional models (Kumari and
Toshniwal 2021).

Despite their acclaim in various prediction tasks, Machine
Learning (ML) methods like neural networks, Extreme Learning
Machines (ELM) (Bouzgou and Gueymard, 2017), Support Vector
Regression (SVR) (Pawar et al., 2020), and Random Forests (RF)
(Hanif et al., 2024b) encounter significant challenges (Khodayar
et al., 2017; Anuradha et al., 2021). Notably, the accurate selection of
input features demands considerable expertise, rendering these
models less reliable and limiting their ability to capture nonlinear
features from SI data. Additionally, their constrained generalization
capabilities hinder their capacity to discern complex patterns,
leading to issnadeues such as overfitting, gradient disappearance,
and prolonged training periods. While these models excel with small
datasets, they exhibit instability and sluggish parameter convergence
when confronted with larger datasets.

DL models have demonstrated significant utility across
numerous fields due to their rapid feature extraction capabilities,
robust generalization power, and capacity to handle large datasets
(Salehin and Kang 2023). The primary difference between ML
models and DL models lies in the number of transformations the
input data undergoes before producing an output (Kawaguchi et al.,
2022). In DL models, the input data is subjected to multiple
transformations, whereas in conventional ML models, the data is
typically transformed only once or twice (Khodayar and Wang
2019). Deep Neural Networks (DNN) are particularly effective in
analyzing time-series data because of their comprehensive approach.
Recurrent Neural Networks (RNNs), including specialized variants
such as LSTM (Liu et al., 2021) and GRU (Mellit et al., 2021), excel in
temporal data modeling, thereby enhancing prediction stability.
Convolutional Neural Networks (CNN) are especially adept at
spatial analysis of power production data, enabling precise
localized predictions (Wang et al., 2019). However, it is crucial to
acknowledge the inherent challenges associated with each model
type. For example, RNN may face training difficulties due to
vanishing gradients and numerical instability (Xue and Jiang
2021). Similarly, CNN often requires extensive training data and
complex architectures to achieve comprehensive receptive fields.
Moreover, the absence of feature engineering in DL models can lead
to overfitting, increased model complexity, and reduced
interpretability (Yan et al., 2023).

Integrating advanced AI and DL methods into SI forecasting
faces challenges in balancing computational efficiency with
accuracy, given the complex nature of solar data (Bandara et al.,
2019). There is a notable research gap in effectively combining
sophisticated AI with a deep understanding of meteorological
factors influencing SI (Gundu et al., 2024). This often leads to
issues like overfitting and data inconsistencies. Moreover, the
restricted scope of regional testing limits the global applicability
of models, crucial for promoting the adoption of renewable energy
(Wu et al., 2023).

Therefore, this study aims to fill the identified research gaps by
introducing a new DL model called Transformer-Infused RNN
(TIR). This model integrates a Bi-Directional Long Short-Term
Memory (BiLSTM) (Pi et al., 2022) as the encoder and a Gated
Recurrent Unit (GRU) (Jaihuni et al., 2020) as the decoder,
enhanced with attention mechanisms and positional encoding.
The TIR framework employs a BiLSTM encoder to process input
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data bidirectionally, capturing extensive dependencies and
contextual details essential for understanding SI’s complex
temporal dynamics. The GRU decoder complements this by
efficiently generating predictions based on the encoded
information, handling long-term dependencies with improved
computational efficiency. TIR’s strength lies in its attention
mechanisms (Gao et al., 2022), which focus on different input
sequence parts, assigning varying weights to critical features and
enhancing the model’s ability to prioritize important data points.
This selective focus helps manage the irregularities in SI data.
Additionally, positional encoding preserves the temporal order of
data, refining the model’s predictions. This advanced architecture
enables TIR to adapt to SI data variability, providing more accurate
and consistent predictions than traditional models. By harnessing its
capabilities, our goal is to significantly enhance the accuracy of SI
prediction, leveraging its proven effectiveness for superior
performance. More specifically, the objective of this research
is threefold:

a) To design and elaborate on the modelling frameworks of the
TIR model;

b) To assess the predictive precisions of SI forecasting models in
diverse geographical contexts encompassing Munich,
Germany, and Texas, United States, elucidating the impact
of regional disparities on model efficacy and dependability.

c) To validate the efficacy of the TIR model rigorously using
robust statistical metrics and by comparison with baseline
models, including ANN, BiLSTM, GRU, BiLSTM-GRU, and
Transformer;

The subsequent sections of this paper are organized as follows:
Section 2 presents the datasets utilized and the principle guiding
feature selection. Section 3 delineates the models including BiLSTM,
GRU, transformer, and the novel model of the TIR. Section 4
undertakes a comprehensive examination of the experimental
data and outcomes. Concluding remarks are provided in Section 5.

2 Climate zone and feature selection

2.1 Description of the study area

This research examines two distinct geographic regions:
Munich, Germany, and Texas, United States. Texas is
characterized by a semi-humid monsoon climate, while Munich
experiences a humid continental climate (Wang and Grimmelt
2023). Covering an area of approximately 310.43 square
kilometres (sq. km), Munich has an annual mean temperature of
8.8°C and receives around 1,000mm (mm) of precipitation annually.
During the summer, temperatures in Munich typically range from
20°C to 25°C (68°F–77°F), though occasional heatwaves can occur
(Sellaouti et al., 2024).

Texas, a state in the United States, encompasses an area of
approximately 695,662 sq. km. It experiences an annual
precipitation range between 1,000 and 1,400 mm, indicative of its
semi-humid monsoon climate. The state’s average annual
temperature spans from 19°C to 21°C (67°F–70°F), further
exemplifying this climate classification. Such climatic conditions

result in mild weather and an abundance of natural resources,
making Texas a notable region for studying semi-humid
monsoon environments.

Choosing the best location for a solar power facility is critical
due to the significant upfront costs and the expected operational
span of 40–50 years. It is essential to comprehensively evaluate
several factors, including SI potential, sunlight duration, irradiance
levels, and the availability of extensive data essential for applying AI
techniques. The hourly SI and climatic data utilized in this analysis
were sourced from Power Larc via the Data Access Viewer hosted on
the NASA website. The data includes observations from Munich
(48.1351 N, 11.5820 E) and Texas (31.9686 N, 99.9018W), spanning
from 1 January 2014, to 31 December 2023, from 5:00:00 a.m. to 8:
00:00 p.m. at day time, with a sampling frequency of 1 h.

The dataset includes various meteorological parameters, such as
solar irradiance (SI: Wh/m2), relative humidity (rH: %),
precipitation (Pp: mm/hour), temperature (T: °C), dew point
temperature (Twet: °C), wet bulb temperature (Twet: °C), specific
humidity (sH: g/kg), wind speed (Ws: m/s), wind direction (Wd:
degree), solar zenith angle (Sz: degree), and surface pressure
(Ps: kPa).

2.2 Data pre-processing

In the endeavor to construct resilient and potent predictive
models, this research has utilized a multitude of data pre-processing
methodologies. The importance and selection of these
methodologies arise from their renowned effectiveness in
augmenting model performance. Herein, a detailed exposition of
these pre-processing steps is provided, alongside a justification for
their implementation.

2.2.1 Cleaning data and addressing missing values
An essential phase within pre-processing entails data cleaning, a

task crucial for mitigating the impact of missing values. Inadequately
addressed incomplete datasets pose a significant threat to the
predictive precision of models, potentially yielding biased or
illogical outcomes. Diverse methodologies exist for data
refinement, contingent upon factors such as data type, structure,
and intended outcomes (Junninen et al., 2004; Del Ser et al., 2020;
Tefera and Ray 2023). One effective approach involves employing
forward fill imputation to handle missing values, particularly
advantageous when the proportion of such data is relatively
modest, thereby mitigating the risk of information loss. This
paper uses forward fill imputation to handle missing values in
the datasets. This technique involves filling in the missing entries
to ensure dataset consistency. It is effective when dealing with a
small amount of missing data, minimizing the risk of losing valuable
information.

2.2.2 Feature selection process
Improving the integration of climatic data with SI prediction

methods offers potential benefits. However, incorporating every
accessible characteristic as a model input may lead to increased
data complexity and processing difficulties. Therefore, prioritizing
feature selection is crucial to reduce data dimensionality and
simplify the number of features. This approach is essential for
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enhancing prediction accuracy while minimizing unnecessary
computational burden. One often used technique for measuring
the association between specific attributes and SI is the Pearson
correlation coefficient (rvw) which can be expressed below Equation
1 (Armstrong, 2019):

rvw �
∑n
i�1

vi − �v( ) wi � wi( )���������∑n
i�1

vi − �v( )2
√ ����������∑n

l�1
wi − �wi( )2

√ (1)

In Equation 1, �v � ∑n
i�1vi and �w � ∑n

i�1wi represent the means of
variables v and w, respectively. The present value of rvw is defined

here: A value of rvw between 0 and 0.2 indicates an extremely low or
irrelevant correlation between the variables ] and w; for 0.2 ≤ rvw <
0.4, the coefficient is classified as low correlation; for 0.4 ≤ rvw < 0.6,
it is considered moderate; when 0.6 ≤ rvw < 0.8, the correlation is
considered strong; it is robust for rvw ≥ 0.8 (Ahlgren et al., 2003;
Zhou et al., 2016).

Figure 1 shows the correlation coefficients (rvw) between eleven
meteorological parameters and SI values. For Munich data
Figure 1A, T displays a moderate correlation (rvw � 0.52) with SI,
while Tdew exhibits a low correlation (0.29). On the other hand, Twet

and SI demonstrate a moderate correlation (0.42), and the
correlation of sH with SI is low (0.29). Furthermore, rH and SI
are observed to have a strong negative correlation (−0.76), whereas

FIGURE 1
Heatmap illustrating the correlations between weather features and SI: (A) Munich, (B) Texas.
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Sz and SI display a moderate correlation (0.41). As a result, T, Tdew,
Twet, rH, sH, and Sz are identified as the primary inputs for the
model, based on their rvw.

In Figure 1B, sourced from Texas, the data shown illustrates
the rvw between eleven meteorological parameters and SI values.
It is worth noting that T exhibits a moderate correlation (0.58)
with SI, while Twet shows a lower correlation (0.36). Conversely,
rH and SI demonstrate notably strong negative correlations
(−0.61). Furthermore, Ws displays a moderate correlation
(0.48) with SI, whereas Sz demonstrates a low correlation
(0.37). As a result, T, Twet, rH, Ws, and Sz are identified as the
primary inputs for the model, selected based on their rvw. Table 1
presents a summary of the main characteristics of the two
datasets. The chosen parameters provide a balanced and
comprehensive input set for accurate modeling, reflecting both
strong and moderate influences on SI. High-dimensional datasets
often contain redundant features, which can complicate model
training and degrade performance. The strength and direction of
their correlations with SI help prioritize these parameters for
inclusion in forecasting SI.

2.2.3 Data normalization
To normalize data, values measured on different scales are

converted to a common scale, typically between 0 and 1, while
maintaining the original range of value disparities. The Min-Max
scaler employs the following formula to adjust features so that they
lie within a specified range, typically 0 to 1 as defined in Equation 2
(Patro et al., 2015):

Xs � X −Xmin

Xmax −Xmin
(2)

Here Xs is the scaled value of the original X, while Xmin and
Xmax stand for the minimum and maximum values, respectively.
The Min-Max Scaler ensure that all other values are
proportionately scaled within this range, where the smallest
value is mapped to 0 and its highest value is mapped to 1.
This scaling method is beneficial when the data does not
conform to a Gaussian distribution or when preserving the
relative relationships among data points from the original
dataset is important (Raju et al., 2020).

2.2.4 Re-integration of data column and target
separation

After normalization of the numeric data, the date column is re-
added to the scaled data frame to facilitate further analysis or date-
based tracking. The target variable, assumed to be “SI,” is then
separated from the predictors. This separation into X (features) and
Y (target) is essential for supervised learning.

2.2.5 Data splitting
It’s crucial to divide the dataset into distinct training and validating

subsets to fully evaluate the model’s performance. The training set is
essential for model development, while the validating set offers an
objective assessment of the model’s capacity for generalization. In this
investigation, the data is split in an 80-20 ratio, with the larger portion
used for training and the smaller portion for validation. These pre-
processing steps are crucial to ensure that the data is properly formatted
and of high quality, enabling effective training of a deep learning model
to accurately predict SI. It is essential to assess whether the TIR model
can effectively learn from the data and generate reliable, robust
predictions.

3 Methodology

For the development and validation of the TIR model, we
utilized a comprehensive suite of advanced Python libraries,
including Matplotlib, Scikit-learn, TensorFlow, Keras, Seaborn,
Pipeline, and Pandas (Xing et al., 2023). Data processing is
performed using Google Collaboratory, a versatile platform that
allows for Python code execution directly in the browser without
setup requirements. Google Collaboratory provides free GPU access
and facilitates easy sharing, making it an excellent resource for
students, data scientists, and AI researchers.

3.1 Transformer-infused recurrent neural
network (TIR) model

The TIR model leverages advanced neural network components
specifically designed to capture temporal dependencies, thereby

TABLE 1 Summary of the dataset and input feature selection using Pearson correlation analysis.

Weather features Value ranges (munich) Value ranges (Texas)

Temperature −14.52 to 35.0 −21.42 to 24.19

Dew point temperature −15.17 to 22.16 —

Wet bulb temperature −15.52 to 26.76 −23.65 to 14.87

Relative humidity 29.94 to 100.0 10.94 to 100.0

Specific humidity 1.1 to 17.7 —

Wind speed — 0.01 to 13.32

Solar zenith angle 0 to 89.42 0 to 89.93

Solar Irradiance 0 to 962.2 0 to 1,158.95

Daylight duration in June 16 h 14 h

Daylight duration in December 8 h 10 h

Frontiers in Energy Research frontiersin.org05

Naveed et al. 10.3389/fenrg.2024.1485690

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1485690


significantly enhancing the predictive accuracy of SI. This
sophisticated architecture comprises multiple specialized layers,
each meticulously crafted to execute distinct functions essential
for time series forecasting (Hanif and Mi 2024). As illustrated in
Figure 2, the TIR model incorporates a transformer component to
boost performance, along with a BiLSTM encoder and a GRU
decoder, ensuring a robust and efficient forecast of SI.

3.1.1 Positional encoding integration
The TIR model integrates positional encoding into the input

layer to capture the relative positions of time steps, which is essential
for accurate SI forecasting (Zhu et al., 2022). SI data is inherently
sequential, meaning the sequence of observations over time
significantly impacts the prediction of future values (Ma et al.,
2023; Gu et al., 2024). By incorporating positional encoding, the
model generates fixed-dimensional representations for each time
step, allowing it to distinguish between various temporal positions
(Kong et al., 2023).

This capability enables the model to understand the temporal
context of the data, recognizing patterns associated with daily and
hourly changes in SI. As a result, the model can make more accurate
predictions by considering the fluctuations in SI over time (Yan
et al., 2020). Additionally, positional encoding helps the TIR model
capture long-term dependencies, which are crucial for accurate SI
predictions over extended periods. Consequently, the inclusion of
positional encoding enhances the model’s ability to interpret and
forecast complex time series data with precision. The positional

encoding is calculated by using sine and cosine functions with
varying frequencies from Equations 3, 4.

ENPi,2j � sin
i

100002j ∕ d
( ), 2j ≤d (3)

ENPi,2j+1 � cos
i

100002j ∕ d
( ), 2j+1 ≤ d (4)

Here, the term i
100002j ∕ d denotes the positional index for each

embedding within the sequence, where i, j and d correspond to the
embedding’s position in the sequence, the embedding’s dimension,
and the model’s dimension, respectively.

3.1.2 Bi-directional LSTM layer (encoder)
In the TIRmodel, the Bi-directional LSTM layer functions as the

encoder, playing a crucial role in forecasting SI. This Bi-directional
approach is particularly advantageous for SI prediction as it enables
the model to capture both past and future context surrounding each
time step (Srivastava and Lessmann 2018; Ghimire et al., 2019;
Husein and Chung 2019). Traditional DL techniques often struggle
with accurately modeling temporal dependencies in time-series data
due to their limited capacity to remember long-term patterns (Qing
and Niu 2018). RNNs offer a short-term memory capability through
their iterative processes within hidden layers, but they face
challenges with long-term memory retention due to issues like
gradient vanishing and explosion. To address these issues, the
LSTM architecture is developed. Unlike traditional RNN, LSTM
incorporate specializedmemory cells and gatingmechanisms (input,

FIGURE 2
Structure of the TIR model.
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output, and forget gates) to regulate and preserve information over
longer sequences (Wang et al., 2020b). This gating mechanism helps
the LSTM maintain both short-term and long-term dependencies
effectively (Zhou and Chen 2021). In the context of forecasting SI,
the LSTM’s ability to manage these long-term dependencies is
crucial, as SI patterns can span extended periods and are
influenced by a variety of factors over time. By leveraging the Bi-
directional LSTM architecture, the TIR model can more accurately
forecast SI by integrating comprehensive temporal information and
addressing the limitations of gradient vanishing and explosion
inherent in simpler RNN structures. It consists of three
fundamental elements: gates and cell memory states and can be
mathematically defined in Equations 5–9.

ft � σ wfg ht−1, xt[ ] + bfg( ) (5)
it � σ win ht−1, xt[ ] + bin( ) (6)
~c � σ wout ht−1, xt[ ] + bout( ) (7)

ct � ftct−1 + it tanh wcell ht−1, xt[ ] + bcell( ) (8)
ht � ~ctanh ct( ) (9)

In the above relations, weighted matrices are represented by wfg,
win, andwout, while cell biases are represented by bfg, bin, and bout. The
input is denoted as xt and the hidden state vector as ht. In the LSTM
model, inputs are processed sequentially, and only previous inputs affect
the current output. To overcome this one-way dependency, the BiLSTM
architecture is explored. This architecture considers both past and
future values by utilizing a duplicated LSTM structure that handles
both forward and reverse time sequences (Gers et al., 2000).
Consequently, by undergoing dual training iterations, the model can
incorporate additional data characteristics. The architecture and
hyperparameters of the BiLSTM model are detailed in Table 2. The
output of the hidden layer, ht at the time step t in the BiLSTM
framework is defined as Equation 10 follows:

ht � Fht + Bht[ ] (10)
where Fht and Bht are represent forward and backward hidden
sequences. Figure 2 illustrates the architectural blueprint of BiLSTM
developed for SI prediction. The input is represented as x(T), while
the resulting output is represented as y(T).

3.1.3 Attention mechanism layer
The attention mechanism is used on the output of the BiLSTM

layer to help the model focus on specific parts of the input sequence,

like different levels of SI, when making predictions. By combining
the encoder outputs with weights, attention highlights important
time steps related to SI patterns and enhances the model’s capacity
to capture significant variations in the solar energy data (Brahma
et al., 2021).

The expression of the attention mechanism is represented as
Equations 11–13:

dij � score hi, sj−1( ) (11)

αij �
exp dij( )∑Vx
j�1exp dik( ) (12)

ci � ∑Vx

j�1
dijhi (13)

Where dij represent the attention score, αij denotes the attention
weight, and ci is the context vector. This mechanism enables the
model to dynamically adjust its focus according to the
input sequence.

3.1.4 GRU layer (decoder)
The GRU layer is chosen as the decoder for forecasting SI due to

its efficient handling of sequential data and streamlined architecture.
Unlike LSTM networks, which have a more complex structure with
multiple gates, the GRU uses only two gates (the update and reset
gates) resulting in fewer parameters and reduced computational
overhead (Elizabeth et al., 2022). This simplicity enhances the GRU’s
capability to manage long-term dependencies while speeding up
training times (Jaihuni et al., 2020; Zhong et al., 2021). In SI
forecasting, the update gate is crucial as it controls how much
historical data is retained, allowing the model to capture
persistent trends in SI levels. Higher values in the update gate
indicate greater retention of past data, which is essential for
accurate predictions (Mahjoub et al., 2022). Conversely, the reset
gate enables the GRU to focus on more recent, relevant data by
disregarding less pertinent past information. This dynamic
adjustment makes the GRU well-suited for the fluctuating nature
of SI, balancing efficiency and effectiveness in predictive
performance (Sajjad et al., 2020). Detailed in Figure 2, the
complex architecture of the GRU is outlined. The forward
propagation formula for the GRU network is expressed as
Equations 14–17 follows:

rt � σ Urxt + Vrht−1( ) (14)

TABLE 2 Hyperparameters of the TIR model.

Hyperparameters BiLSTM model GRU model TIR model

Positional Encoding — — Yes

LSTM Layers (units, return sequences) 64, True — 128, True (BiLSTM)

Bidirectional Wrapper Applied on LSTM — Applied on LSTM

Attention Mechanism — — Yes

GRU Layers (units, return sequences) — 64, True 128, True

Time Distributed Layer (activation) Linear Linear Linear

Output Layer Activation Linear Linear Linear
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zt � σ Uzxt + Vzht−1( ) (15)
~ht � tanh rtUht−1 + Vxt( ) (16)
ht � 1 − zt( )ht−1 + zt~ht (17)

In the realm of neural network dynamics, rt and zt symbolize the
outcomes of the reset gate and the update gate correspondingly. The
variable xt signifies the input to the network at time t, while ht and
ht−1 represent the hidden state of the current node and the preceding
hidden layer state at time t − 1, sequentially. The term ~ht denotes the
computational process involved in generating the candidate set from
input xt and the output ht−1. Notably, σ and tanh signify the sigmoid
function and the hyperbolic tangent activation function,
correspondingly. The weight matrices, delineated as Ur, Vr, Uz,
Vz, U, and V, are pivotal components influencing the network’s
dynamical behaviour. The architecture and hyperparameters of the
GRU model are detailed in Table 2.

3.1.5 Time distributed dense layer
Lastly, to create predictions at each time step, a time distributed

dense layer is applied to the GRU’s output. Forecasting SI at each
time point in the time series depends on this layer’s ability to
guarantee that each time step in the sequence has a unique
output (Yang et al., 2020).

The dense layer that is time distributed can be explained as
Equation 18 follows:

yt � dense ht( ) (18)

In this context, ht represents the hidden state from the GRU at
time step t and yt is the corresponding output. A linear activation
function is utilized to forecast the continuous values of SI. This
approach treats each timestep as a distinct entity during forecasting
tasks, such as predicting hourly SI. The output of this layer, typically
continuous values generated with a linear activation function,
represents the predicted target variable for each timestep. By
analyzing each timestep separately, the time-distributed dense
layer ensures that the model aligns its predictions with the
temporal characteristics of the input data sequence.

3.1.6 Output activation layer
In a TIR framework utilized for SI prediction, the concluding

activation layer is generally constituted as a linear layer. This
terminal layer yields continuous outcomes by executing a linear
transformation upon the outputs derived from the antecedent layers.
Consequently, the model’s predictions manifest as a direct weighted
aggregation of the features discerned by the network, thereby
facilitating the generation of exact SI forecasts devoid of non-
linearities. This uncomplicated methodology guarantees that the
predicted values exhibit a continuous range, aligning seamlessly with
the spectrum of anticipated SI measurements (Gao et al., 2022).

The TIR model’s architecture, detailed in Table 2, integrates
positional encoding, attention mechanisms, GRU decoding, a time-
distributed dense layer and output activation layer. These
components collectively enhance the accuracy and effectiveness
of SI forecasting hourly sequence time series data, particularly
valuable in fields such as weather forecasting. Each component
plays a crucial role in capturing and leveraging temporal
dependencies, thereby improving forecast precision.

3.2 Evaluation metrics for assessing model
performance

Metrics for performance evaluation are essential for assessing
the DL model’s effectiveness. These measures enable comparisons
and determine the model’s correctness. The primary method of
assessing overall performance involves comparing the actual SI with
the forecasted values (Wang et al., 2018). Specific metrics offer
feedback on the accuracy of the forecasts, thereby aiding in the
enhancement of precision. A lower score on these metrics signifies
more accurate forecasting and serves as a guide to refine the models.
Below, detailed mathematical formulations for the statistical metrics
mentioned in Coefficient of Determination (R2), RootMean Squared
Error (RMSE), Mean Absolute Error (MAE), and Mean Squared
Error (MSE), provided in Equations 19–22, offer a precise
computational framework (Despotovic et al., 2015).

R2 � 1 −
∑N
i�1

xi − x̂i( )2

∑N
i�1

xi − �xi( )2
(19)

RMSE �

������������
1
N

∑N
i�1

xi − x̂i( )2
√√

(20)

MAE � 1
N

∑N
i�1

xi − x̂i| | (21)

MSE � 1
N

∑N
i�1

xi − x̂i( )2 (22)

In Equations 19–22, the variables xi, x̂i, �xi, and N represent the
ground truth values, predicted values, mean ground truth values of
solar irradiance, and the number of observations, respectively. The
attainment of elevated R2 values is sought-after, as proximity to unity
denotes superior model efficacy, reflecting a robust alignment of the
regression line with the dataset. Conversely, a diminution in the
values of RMSE signifies an improvement in model performance.

4 Results and discussion

In this section, the performance of TIR is rigorously tested, with
a focus on its accuracy in identifying complex patterns within large
datasets. Additionally, a benchmarking study is conducted to
compare TIR against five other leading models, highlighting its
superior capabilities.

4.1 Loss trends in TIR training and validation

The dataset is divided into training and validation subsets, with
the training set comprising 80% of the total data. The model’s
performance, evaluated using MSE, is monitored over 50 epochs.
Figures 3A, B illustrate the training loss MSE for Munich and Texas,
respectively. In Figure 3A, the validation loss for Munich shows a
significant decrease during the initial 9 epochs, demonstrating the
model’s ability to quickly learn and adapt. This rapid reduction
suggests an efficient optimization process, leading to a stable low loss
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and indicating that the model has effectively captured the essential
data patterns. The close alignment between the training and
validation losses reflects the model’s robustness, with minimal
overfitting, ensuring reliable performance on new data.

Figure 3B depicts the training process for the Texas dataset. The
initial high losses drop significantly by epoch 5, highlighting the
model’s quick learning capabilities. After epoch 5, the training and
validation losses stabilize at low values, remaining close to each
other, which underscores the model’s strong generalization skills.
The consistently low loss values throughout the epochs indicate that
the TIR model performs well across various datasets. This is further
supported by its low final training and validation losses, which
suggest high accuracy and dependability. The model’s ability to
achieve minimal convergence of loss values points to an optimal
solution, highlighting its effectiveness and precision. The steady and
similar loss curves across different datasets demonstrate the TIR
model’s adaptability and robustness, making it suitable for diverse
applications. Additionally, the alignment of training and validation
loss graphs confirms themodel’s proficiency in fitting and predicting
SI, showcasing its robustness and versatility in forecasting across
different regions.

4.2 Assessing the TIR model

When the TIR model is utilized for SI forecasting in the intricate
datasets of Munich and Texas, it demonstrates notable predictive
efficacy, although with discrepancies indicative of regional SI

patterns. Figure 4 displays the KDE for actual and predicted SI
(Wh/m2) values in Munich and Texas. These estimations are
generated using the TIR model. KDE is a non-parametric
method for calculating a continuous variable’s probability density
function. It produces a smooth curve that accurately represents the
data distribution. This method allows for a meaningful comparison
between actual and forecasted SI (Wh/m2) measurements,
showcasing the model’s ability to capture underlying patterns in
different geographic contexts. The KDE plots for Munich and Texas
demonstrate the alignment between the actual and predicted values,
indicating the model’s robustness and generalization capabilities. By
analyzing the KDE curves, areas where the model performs well and
potential discrepancies can be identified. This analysis is crucial for
understanding spatial variability in SI predictions and improving the
model’s accuracy in various environmental conditions (Chen 2017).

In Munich, the model’s density plot Figure 4A exhibits a distinct
peak at SI ≈ 25 Wh/m2, demonstrating the model’s precision in
capturing the median irradiance values. Although some deviations
are observed, these remain within an acceptable range, underscoring
the model’s proficiency in handling the region’s SI variability.
Conversely, in Texas, the density plot Figure 4B displays a peak
at SI ≈ 11.6 Wh/m2, indicating a high probability of this actual SI
value. The predicted values are in good agreement with the actual SI
values, showing little deviation and a large kernel density overlap.

The alignment of the curves in each graph powerfully
demonstrates the model’s predictive precision. In Munich and
Texas alike, the close correspondence between actual and
forecasted data highlights the TIR model’s exceptional forecasting

FIGURE 3
Training and validation loss (MSE) convergence curve for the TIR model across ephochs: (A) Munich, (B) Texas.

FIGURE 4
KDE plot of TIR prediction: (A) Munich, (B) Texas.
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ability, despite varying weather conditions and input factors. The
KDE curves reveal prominent peaks that indicate the most probable
SI values, with both regions showing similar peak magnitudes.

The solar potential in cities like Brussels, Vienna (Nematchoua
et al., 2022), Warsaw (Ronkiewicz et al., 2021), and Zurich
(Srivastava and Lessmann 2018) has been well-documented, with
many researchers evaluating their suitability for SE harvesting. The
regions are characterized by a moderate to high level of SI, making
them ideal candidates for validating solar forecasting models.
Several studies have highlighted the significant SE potential of
these areas, affirming their importance in solar energy research.

To further assess the generalizability of the TIR model, it was
applied to forecast SI across these four cities. The evaluation metrics,
including R2, RMSE, MAE, and MSE, for each location, are
presented in Table 3. The high R2 values, ranging from 0.885 to
0.914, indicate that the TIR model captures a substantial proportion
of the variance in SI across these regions. Notably, Zurich and
Vienna exhibited the highest predictive accuracy, with R2 values of
0.914 and 0.912, respectively. This suggests a strong correlation
between the actual and predicted SI in these cities, underscoring the
model’s robustness in diverse geographic settings.

The RMSE values, ranging from 0.072 to 0.080, further confirm
the model’s accuracy, with Zurich demonstrating the lowest error
(0.072), followed closely by Vienna (0.074). These results indicate
the model’s ability to predict SI with minimal deviation from the
observed values, reinforcing its reliability. Similarly, the MAE values
across all four cities remain within a narrow range (0.045–0.050),
highlighting the model’s consistency in minimizing the absolute
errors in SI predictions.

In terms of MSE, the values are notably low, with Zurich and
Vienna once again performing the best (MSE = 0.005), followed by
Brussels and Warsaw (MSE = 0.006). These findings reflect the TIR
model’s capability to maintain high predictive accuracy across
different environmental conditions, further validating its
applicability beyond the initial regions of Munich and Texas.

Table 3 illustrates the generalizability of the TIR model and its
proficiency in forecasting SI across a wider range of geographical
locations, reaffirming its effectiveness as a reliable tool for solar
energy predictions in diverse urban settings.

4.3 Performance comparison with state-of-
the-art algorithms

This analysis undertakes a thorough evaluative comparison of
various DL models for predicting SI. The performance of the TIR
model is assessed against a suite of five distinct algorithms previously

suggested by researchers. The models in question encompass a range
of methodologies, including ANN, BiLSTM, GRU, transformers,
and a hybrid BiLSTM-GRU model. Each algorithm has been
subjected to a rigorous examination regarding its effectiveness
and precision in forecasting SI. These specific adjustments are
imperative to ensure that the evaluation remains equitable and
pertinent to the unique attributes of the Munich and Texas
datasets, as well as the research’s particular objectives. The
hyperparameters of these comparative models are presented
in Table 4.

The intent behind these modifications is to enable a clear and
unbiased comparison of the TIR model’s performance against
established models in the field. The efficacy and appropriateness
of the TIR model for SI prediction are depicted in Figures 5, 6.

Upon analyzing the line graph Figure 5, several trends and
patterns emerge. In Figure 5A, the TIR model unswervingly prevails
over the other models over time, achieving a precision exceeding
97% by the end of the period. In contrast, the performance of the
ANN model demonstrates considerable variability over time,
characterized by fluctuations in accuracy and several abrupt
declines, as illustrated in Figure 5B. Upon scrutinizing the
Munich dataset, it becomes evident that the ANN model achieves
remarkable accuracy, with an RMSE of 80.06, as depicted in
Figure 5B. Conversely, the BiLSTM-GRU model records the
highest error, with an RMSE of 280.9, as shown in Figure 5D,
with detailed metrics provided in Table 5.

Examining the GRU, BiLSTM, and transformer models, their
respective RMSE values 277.8, 280.7, and 275.4, are considerably
high and approximate the BiLSTM-GRU model’s performance.
These values underscore the inadequate performance of these
models on the Munich dataset. This pattern is consistent across
RMSE and MAE values, although the TIR model emerges as a close
contender. The R2 scores, however, are especially remarkable,
demonstrating a significant alignment with actual SI values at
0.9947, thus validating the model’s dependability and strength. In
Figures 5C–F, the standalone DL models failed to effectively manage
data outliers and thus did not achieve satisfactory results. In
contrast, the TIR model demonstrated superior performance,
effectively handling outliers and delivering significantly
better outcomes.

Moving forward, Figure 6A illustrates the result of the perfect
fitting achieved between the actual and predicted SI values in Texas.
The TIR model demonstrates a nearly flawless alignment with
minimal error, significantly outperforming other baseline models
and exhibiting superior performance compared to the Munich
region. In contrast, Figure 6B reveals a more pronounced
discrepancy between the ANN model’s predictions and actual SI
values, though this deviation remains within acceptable limits. It is
also noteworthy that while the ANN model performs considerably
better in Munich, it still falls short of the accuracy provided by the
TIR model. Despite the GRU, BiLSTM, hybrid BiLSTM-GRU, and
transformer models displaying augmented MSE and RMSE
statistics, their R2 coefficients of 0.0482, 0.0463, 0.0155, and
0.0563, respectively, as illustrated in Table 5, do not irrefutably
suggest superior predictive efficacy. Figures 6C–F further depict the
results from all baseline models, which show significantly poorer
performance. The underperformance of these models can be
attributed to the inherent complexity of the Texas datasets,

TABLE 3 Performance evaluation of the TIRmodel acrossmultiple locations
for generalization and robustness testing.

Locations R2 RMSE MAE MSE

Brussels 0.885 0.080 0.050 0.006

Vienna 0.912 0.074 0.047 0.005

Warsaw 0.893 0.079 0.049 0.006

Zurich 0.914 0.072 0.045 0.005
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which might include diverse and multifaceted patterns that these
models are unable to capture effectively. Furthermore, the Texas
datasets might possess unique domain-specific characteristics and
intricate temporal and spatial dynamics that these models struggle to
handle. In contrast, the TIRmodel demonstrates an enhanced ability
to manage this complexity and predict the SI more accurately,
indicating its superior capability to capture the nuanced patterns
within the Texas datasets.

However, it shows a tendency to recover towards the end of the
period in the Munich region compared to the Texas region.
Furthermore, single recurrent and transformer models generally
exhibit poorer performance, with high fluctuation rates in both
regions. For instance, its hybrid structure might offer greater
capacity or improved capability in handling the dataset’s
complexity. However, in this case, the BiLSTM-GRU model does
not fully capture the data for SI forecasting, as illustrated in Figures
5D, 6D. Based on the comprehensive evaluation, it can be concluded
that the TIR model achieves higher prediction accuracy and
significantly lower bias compared to other models in both regions.

4.4 Computational cost and efficiency

A detailed assessment of the computational efficiency and cost of
the proposed TIR model compared to other models is provided.
Table 6 summarizes key performance metrics, including total
training time, inference time, model size, memory usage, and
total trainable parameters. Although the TIR model demonstrates
longer training times, its overall efficiency and predictive
performance make it a compelling choice for SI forecasting,
particularly in complex environments.

The TIRmodel’s extended training time of 727.46 s, while longer
than other models such as ANN (166.37 s) and GRU (393.83 s), is
justified by its superior ability to capture complex temporal
dependencies and patterns inherent in SI data. This complexity is
reflected in its larger model size (3.32 MB) and higher number of
trainable parameters (286,593), which enable it to detect subtle and
intricate relationships that simpler models may overlook. For
instance, despite the faster training times of ANN and BiLSTM,

their simpler architectures may struggle to achieve the same level of
predictive accuracy, especially in datasets with significant variability
like those of Munich and Texas. The ability of the TIR model to
manage these intricacies demonstrates its robustness in handling
highly complex datasets. Figure 7 vividly captures the training and
inference durations of various DL models, highlighting significant
disparities in computational efficiency.

When compared to traditional models, such as ANN and
GRU, the TIR model offers a more comprehensive representation
of the underlying dynamics in the SI data, which translates into
higher accuracy. The shorter training times of ANN and BiLSTM,
while beneficial in reducing computational cost, come at the
expense of model generalization. In contrast, the TIR model,
though slower to train, offers superior predictive precision, as
evidenced by its lower inference time per sample (0.0002 s),
indicating that the model is efficient once deployed. Additionally,
the TIR model’s memory usage (845.94 MB) remains moderate
compared to GRU (1,105.75 MB) and BiLSTM-GRU
(1,147.21 MB), highlighting its resource efficiency despite its
deeper architecture.

The results of our study show that the TIR model generalizes
well across different geographical and climate zones, despite its
extended training time. In inference, the TIR model exhibits low
total inference time (2.6277 s), on par with other models such as
GRU (2.8058 s) and BiLSTM (1.3320 s). This suggests that while the
model requires more time during the training phase, its inference
efficiency makes it suitable for real-time applications where speed is
critical once the model is fully trained.

4.4.1 Benefits of extended training time for the
TIR model

The TIR, which combines the advantages of both transformers
and RNNs, has emerged as a viable paradigm in recent advances in
neural network architecture. The performance and generalization of
TIR models can be significantly enhanced by extending their
training period. Longer training increases convergence, lowers the
chance of overfitting, and gives the model a greater knowledge of
complicated patterns. Furthermore, as will be discussed below,
extended training provides the network with additional chances

TABLE 4 Hyperparameters of the baseline models.

Hyperparameters ANNmodel GRUmodel BiLSTM
model

BiLSTM-GRU
model

Transformer
model

Dense Layers (units, activation) 64, ‘Relu’ — — — —

GRU Layers (units, return sequences) — 64, True — 64, True —

LSTM Layers (units, return sequences) — — 64, True 64, True —

Bidirectional Wrapper — — Applied on LSTM Applied on LSTM —

Dropout Rate 0.5 — — — —

Time Distributed Layer (activation) — Linear Linear Linear Linear

Head Size (for Attention in Transformers) — — — — 64

Number of Heads (for Multi-Head Attention) — — — — 4

Feed-Forward Dimension (Transformer only) — — — — 128

Output Layer Activation Linear Linear Linear Linear Linear
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to optimize its parameters, which raises accuracy in tasks involving
sequential data, such time-series forecasting and natural language
interpretation.

1. Increased Predictive Accuracy: Extensive research
demonstrates that deep learning models, including the TIR
model, benefit from longer training durations, leading to
higher predictive accuracy. This is particularly crucial for SI
forecasting, where precision in capturing temporal
dependencies directly influences energy optimization and
grid stability.

2. Long-Term Stability and Performance: The TIR model, owing
to its longer training time, shows enhanced stability and long-
term performance, particularly in maintaining accuracy across
multiple data samples. As overfitting is less likely, the model
can better generalize to new data, providing consistent and
reliable long-term forecasts.

3. Efficiency During Inference: Despite the longer training period, the
TIR model’s inference time remains competitive. With an average
inference time of just 0.0002 s per sample, the model proves to be
effective during deployment. This efficiency is crucial for real-time
solar forecasting systems, where fast response times are essential for
optimizing energy generation and grid management.

4. Adaptability to Various Climate Conditions: The prolonged
training phase of the TIRmodel allows for more thorough fine-
tuning and parameter optimization. This enables the model to
adapt more effectively to varying weather conditions and
geographic regions, offering greater flexibility in different
environmental scenarios.

Although the TIR model’s current training time is longer,
advancements in training optimizations such as hardware
acceleration and distributed computing offer opportunities to
reduce these times without compromising performance. In

FIGURE 5
Comparison of the TIR and baseline models in Munich: (A) TIR, (B) ANN, (C) BiLSTM, (D) BiLSTM-GRU, (E) GRU, (F) Transformer.
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addition, transfer learning techniques could be utilized to further
decrease the model’s initial training time, allowing for quicker
adaptation to new datasets or climate zones.

In summary, while the TIR model requires a more significant
computational investment during training, its superior predictive
accuracy, inference efficiency, and robustness make it a highly
effective tool for SI forecasting in diverse environments. With
ongoing research and technological advancements, the
computational costs associated with DL models like TIR are
expected to decrease, enhancing their applicability in real-time
forecasting systems.

5 Strategic insights and analysis

This research represents a seminal contribution to the
application of a TIR model in SI forecasting, highlighting the
avant-garde amalgamation of diverse DL techniques to augment
predictive precision. The discourse on the SI forecasting outcomes
unequivocally demonstrates that the integration of a TIR framework
markedly bolsters predictive proficiency. Employing the Pearson

FIGURE 6
Comparisons of the TIR and baseline models in Texas: (A) TIR, (B) ANN, (C) BiLSTM, (D) BiLSTM-GRU, (E) GRU, (F) Transformer.

TABLE 5 Model comparison statistics.

Models Munich Texas

R2 RMSE MAE R2 RMSE MAE

TIR 0.9947 0.0213 0.0153 0.9981 0.0140 0.0092

ANN 0.9203 80.06 48.8 0.9030 117.5 88.09

GRU 0.0406 277.8 240.6 0.0482 368.1 331.3

BiLSTM 0.0208 280.7 243.1 0.0463 368.5 331.7

BiLSTM-GRU 0.0191 280.9 243.2 0.0155 374.4 337.4

Transformer 0.0573 275.4 238.4 0.0563 366.6 329.8
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correlation coefficient for feature selection has discerned the most
influential predictors for each locale, thereby enabling the
construction of a model adept at discerning the nuanced impacts
of various environmental factors on SI.

The TIR model, distinguished by its sophisticated deep
recurrent network architecture, has exhibited remarkable
accuracy across a diverse array of datasets, underscoring the
efficacy of advanced deep learning techniques in SI forecasting.
The model adeptly captures intricate environmental patterns,
particularly in datasets where these patterns are pronounced. Its
prowess in balancing complexity while averting overfitting has
been integral to its outstanding performance. Figures 5, 6 provide
compelling visual evidence of the superior predictive accuracy of
both the TIR and ANN models, as illustrated by the results for
the Texas and Munich datasets. Notably, the TIR model
demonstrates a remarkable congruence between predicted and
actual data points in both datasets. The thorough training and
validation process highlight the model’s adeptness in
assimilating knowledge from the training data and its
capability to generalize this knowledge to novel, unseen data.
This proficiency is especially evident from the consistent decline
in loss values during the training phase and the stability of these
values when assessed on the validation sets.

The superior performance of TIR can be attributed to its
capacity to integrate the strengths of RNNs (BiLSTM acts as an
encoder and GRU acts as a decoder) with the attention mechanism
and positional encoding. This integration enables the model to
capture intricate temporal dependencies and focus on the
relevant parts of the input sequence, resulting in more precise
predictions of SI. Munich and Texas present specific weather
patterns, seasonal variations, and geographical features that
complicate the prediction of SI. The advanced architecture of
TIR is likely more adept at capturing these complex, localized
patterns compared to other models. Models including ANN,
BiLSTM, GRU, Transformers, and the hybrid BiLSTM-GRU
architecture frequently encounter difficulties when addressing
complex patterns in SI data. These challenges stem from several
limitations such as susceptibility to overfitting or underfitting,
suboptimal feature extraction, and complications in the training
process and hyperparameter optimization. Although transformers
are recognized for their robust capabilities, they demand substantial
computational resources and may still encounter issues related to
data quality and scalability. Moreover, the integration of diverse
model architectures presents its own set of complexities, with
problems like vanishing gradients or restricted contextual
comprehension further impeding performance. Therefore,

TABLE 6 Key performance metrics of the TIR and baseline models.

Models Total training
time (s)

Total inference
time (s)

Average inference
time per sample (s)

Model
size (MB)

Maximum
memory
usage (MB)

Total trainable
parameters

TIR 727.46 2.6277 0.0002 3.32 845.94 286,593

ANN 166.37 0.6494 0.0001 0.03 720.44 513

GRU 393.83 2.8058 0.0002 0.19 1,105.75 13,889

BiLSTM 341.76 1.3320 0.0001 0.45 771.50 36,481

BiLSTM-
GRU

527.94 1.7546 0.0002 0.89 1,147.21 73,665

Transformer 381.46 1.3655 0.0001 0.16 760.06 8,619

FIGURE 7
Time efficiency analysis of DL models during training and inference phase.
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achieving superior outcomes necessitates a meticulous approach to
model selection, balancing resource availability, and understanding
data-specific characteristics.

The extensive appraisal augments the model’s veracity. When
juxtaposed with both traditional and avant-garde forecasting
methodologies, the TIR model consistently yielded more precise
SI prognostications. This is corroborated by density and line graphs,
where the TIR forecasts exhibit a close alignment with the reference
trajectory, underscoring notable precision. Moreover, the model’s
versatility and resilience across a spectrum of environmental
scenarios not only authenticate its global applicability but also
signify a significant leap in refining the utility and efficacy of SE
prediction mechanisms.

Notwithstanding the model’s demonstrated abilities, it is critical
to understand some of its intrinsic constraints. To make the model
work in different climate zones, it might need to be modified. This is
a chance to make it better and more unique, not a limitation. In
addition, the intricacy of this sophisticated model presents
computational difficulties that may exhaust available resources,
specifically with regard to TIR. This research aims to optimize
model parameters and automate feature selection through
heuristic optimization methods. This foundational work sets the
stage for future research to delve into exploring and evaluating
various prediction intervals using advanced temporal techniques,
thereby enhancing the robustness and applicability of
predictive models.

These findings have significant implications for the field of SI
forecasting. Precise SI predictions are crucial for effective SE
management and seamless grid integration. The improved
forecasting accuracy of the TIR model can result in more
dependable energy production estimates, optimizing the
operation of SE plants and enhancing the stability of power
systems. Additionally, the model’s flexibility across various sites
highlights its potential for worldwide application, which is essential
in an increasingly interconnected and environmentally
conscious world.

5.1 Limitations and future work

While this study yields promising results, it is essential to
recognize its limitations and the opportunities they present for
future research. One limitation is the model’s reliance on high-
quality environmental data, which may not be available
everywhere, potentially limiting its effectiveness in data-scarce
areas. Additionally, incorporating additional data sources, such
as real-time weather satellite imagery, could enhance predictions
further. Future studies could also investigate the model’s
scalability in real-world settings and its application to other
renewable energy sources like wind or hydroelectric power.
Addressing these limitations and exploring these future
directions will advance renewable energy forecasting,
enhancing global energy sustainability and reliability.

In order to boost its effectiveness and application, future
research on the TIR model should concentrate on a number of
important aspects. The existing model, while highly accurate,
demands a large amount of computational power; hence, it is
imperative to optimize training and inference timeframes. These

timeframes could be reduced with techniques like parallel and
distributed training employing cloud-based platforms or
specialized hardware (such as TPUs and multi-GPU
configurations). By moving information from the intricate TIR
model to a more straightforward one and retaining accuracy
during a shorter training period, knowledge distillation may also
be helpful. Lastly, adding online and real-time learning
capabilities could significantly improve the model’s
adaptability in changing situations by enabling it to update
continuously as new data is received without requiring a
complete retraining.

6 Conclusion

This paper introduces the TIR model to address the
challenges in forecasting SI caused by its stochastic nature.
Data from Munich (Germany) and Texas (USA) are used to
train and validate the TIR model. It integrates a BiLSTMmodel as
the encoder and a GRU model as the decoder, enhanced by the
attention mechanism and positional encoding, to improve the
preservation of computational dependencies and reduce error
terms compared to conventional recurrent models. To mitigate
overfitting, data outliers, and complexity, the BiLSTM
architecture is used for initial training, followed by the GRU
as the decoder with attention mechanisms.

Key findings include:

• The TIR model showed outstanding precision in
forecasting SI, notably excelling in the Texas dataset with
an RMSE of 0.0140 and MAE of 0.0092. Although its
performance in the Munich dataset slightly declined,
yielding RMSE of 0.0213 and MAE of 0.0153, the model
consistently demonstrated robust proficiency in capturing
SI dynamics.

• The examination demonstrated the TIR model’s strengths
in comparison to conventional DL algorithms such as
ANN, BiLSTM, GRU, Transformer, and BiLSTM-GRU.
In particular, ANN exhibited a slight performance
advantage, achieving the highest R2 value of 0.9203 in
Munich, followed by TIR. This underscores their
superior capability in managing intricate data
interactions compared to BiLSTM, GRU, Transformer,
and BiLSTM-GRU.

• Comprehensive case studies confirm the TIR model’s
superiority in terms of lower error rates, higher
accuracy, and reduced complexity when compared to
other conventional DL models. The superiority of this
model architecture may arise from the unique abilities of
Transformers, such as attention mechanisms for capturing
dependencies, and RNNs for sequential data processing,
combined in a synergistic way within this model
architecture.

In order to improve SE forecasts and maximize power-
generating efficiency, a major development in SI forecasting
has been made using the TIR model. To get around the
drawbacks of the DL approach, future studies should look at
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novel predictive frameworks, like sophisticated reinforcement
learning strategies. Real-time energy management, smooth
integration of SE into smart grids, and improved strategic
decision-making might all be facilitated by the development of
an advanced hybrid SE prediction model. When preparing for
upcoming SE projects, governments and investors would greatly
benefit from this.
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