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time-series probabilistic
residential load power
forecasting

Liangcai Zhou1*, Yi Zhou1, Linlin Liu1 and Xiaoying Zhao2

1East China Branch of State Grid Corporation, Shanghai, China, 2AINERGY LLC, Santa Clara, CA, United
States

The widespread adoption of nonlinear power electronic devices in residential
settings has significantly increased the stochasticity and uncertainty of power
systems. The original load power data, characterized by numerous irregular,
random, and probabilistic components, adversely impacts the predictive
performance of deep learning techniques, particularly neural networks. To
address this challenge, this paper proposes a time-series probabilistic load
power prediction technique based on the mature neural network point
prediction technique, i.e., decomposing the load power data into deterministic
and stochastic components. The deterministic component is predicted using
deep learning neural network technology, the stochastic component is fitted
with Gaussian mixture distribution model and the parameters are fitted using
great expectation algorithm, after which the stochastic component prediction
data is obtained using the stochastic component generation method. Using
a mature neural network point prediction technique, the study evaluates
six different deep learning methods to forecast residential load power. By
comparing the prediction errors of these methods, the optimal model is
identified, leading to a substantial improvement in prediction accuracy.

KEYWORDS

deep learning neural networks, Gaussian mixture model, expectation maximization
algorithm, probabilistic load power prediction, time-series probabilistic load power
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1 Introduction

To achieve China’s dual-carbon goals of reaching carbon peaking by 2030 and carbon
neutrality by 2060, we need accurate load power forecasts (Huang et al., 2024). In addition,
precise load power predictions can greatly reduce power system operating costs. However,
access to a large number of distributed power sources, including electric vehicles, has greatly
increased the stochasticity and uncertainty of the power system, presenting new challenges
to load power forecasting. Reliable load forecasting is essential for risk management and is
a fundamental task for system operation and planning.

An important aspect of load power forecasting is analyzing the factors affecting load
power. Mathematical models have been developed to capture the intrinsic relationship
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between influencing factors and load variations. For example, a
learning prediction method for deep transfer of power zoning
considering the matching of contact line characteristics is proposed
in (Li JF. et al., 2023). In (Yudantaka et al., 2020), to improve the
accuracy of load power prediction, a Long Short-Term Memory
(LSTM) network is trained using past temperature and load power
data. To address excessive temperature prediction errors, past
data describing the relationship between temperature changes and
load power variations are used to train a multilayer perceptron
network (Wang K. et al., 2024). The results show that the proposed
compensation using real-time temperature information improves
the performance of load power prediction. In (Liao et al., 2022), to
cope with the volatility and stochasticity of power loads, a new deep
generative network-based power load scenario predictionmethod is
proposed, where the structure and parameters are redesigned based
on the original pixel convolutional neural network to enhance the
prediction accuracy. In (Xia et al., 2023), an improved fuzzy support
vector regression machine method for power load forecasting is
proposed, using boundary vector extraction to improve the accuracy
and speed of power load forecasting.

In recent years, researchers around the globe have made
significant progress in power load forecasting. Commonly used
prediction models include artificial neural networks, support vector
machines, and extreme learning machines, among others. In
(Cui et al., 2020), an LSTM prediction model for load forecasting
is established based on the time series behavior of power
load, improving prediction accuracy. A prediction model based
on CEEMDAN is proposed in (Huang et al., 2020), effectively
overcoming the problem of EMD modal aliasing, leading to a more
complete decomposition process and improved prediction accuracy.
In (Lu et al., 2019), the stability of the GM model, widely used in
load forecasting, is highlighted along with the detailed constraints
leading to model instability. In (Gao, 2019), a multivariate grey
theoretical prediction model is proposed, with multivariate residual
error correction significantly enhancing prediction accuracy. In
(Wu, 2017), grey forecasting is studied in depth, demonstrating good
adaptability to medium- and long-term power loads. In (Yao et al.,
2022), a short-term power load prediction model based on feature
selection and error correction is proposed to address the problem
of low accuracy and weak generalization ability in short-term power
load prediction. In (Sun and Cai, 2022), a short-term power load
forecasting model based on variational mode decomposition is
proposed, exhibiting high fitting ability and forecasting accuracy,
making it an effective short-term load forecasting method. In
(Wang et al., 2020) and (Ning et al., 2021), the particle swarm
algorithm is employed to improve the prediction model, further
enhancing prediction accuracy.

As load data incorporates increasingly complex factors,
traditional single models struggle to fully explore the intrinsic
information within the data. However, hybrid prediction models
can address the shortcomings of single prediction methods, offering
better stability and accuracy. A hybrid algorithm based on wavelet
transform and support vector machine is proposed in (Jin et al.,
2020) to improve load forecasting accuracy. An approach combining
fuzzy support vector machine and grey prediction is proposed
in (Xiong et al., 2022; Gao et al., 2024), significantly improving
prediction accuracy. In (Li et al., 2024), a newmethod for power load
forecasting that combines grey correlation-oriented random forest

and quasi-tidal swarm optimization algorithm is proposed, further
improving forecasting accuracy. In (Wang ZX. et al., 2024; Zou and
Tao, 2014; Chen et al., 2024), a hybrid prediction method based
on a support vector machine is proposed, which is combined with
an adaptive evolutionary learning machine, wavelet transform, and
grey combinatorial prediction, respectively, to improve the accuracy
of prediction. Based on the variational modal decomposition
technique (Zhang et al., 2023; Cao et al., 2023), combines multiple
prediction methods, which not only improves the prediction
accuracy, but also improves the stability of the prediction model.

In conclusion, hybrid prediction models offer great advantages
and development potential over single prediction models. In this
paper, a new hybrid forecasting model is proposed. Residential load
power is decomposed into deterministic and stochastic components,
which are then predicted separately. For the deterministic
component, various neural network-based methods are utilized
to predict multiple steps, and the best prediction method is selected
based on prediction error. For the stochastic component, the
method of probabilistic prediction is adopted, where a Gaussian
mixture model (GMM) is established to fit the probability density
function of each period of the day using multiple Gaussian
functions, serving as the probabilistic prediction result of the
stochastic component (Xie et al., 2024a). The optimal parameters
of the model are determined using the Expectation Maximization
(EM) algorithm. To test the accuracy of the prediction results,
the stochastic component generation method is employed to draw
random samples from the probabilistic prediction results, simulate
the predicted values of the stochastic component, and compare
them with the actual residential load power by adding them to the
point prediction results of the deterministic component, thereby
calculating the prediction error and testing the effectiveness of the
prediction model. Finally, to prove the practicality of the prediction
model established in this paper, the optimal neural network selected
is used to perform point prediction on the same dataset, which is
then compared with the time-series probabilistic prediction model
established in this paper.

The second section of this paper characterizes the residential
load and separates the deterministic and stochastic components.The
third section describes various neural network prediction methods
for the deterministic component and prediction methods for the
stochastic component. The fourth section presents the simulation
analysis, and the fifth section concludes the study.

2 Processing and characterization of
residential load power data

2.1 Characterization of residential loads

The waveform of residential load power contains a wealth
of information and fully exploring its underlying patterns can
significantly enhance our ability to predict residential load power.
Figure 1 illustrates the variation of residential load power over a
10-day period, while Figure 2 shows the changes in residential load
power over a single day, with time intervals of 15 min.

Based on these figures and the actual conditions, we can identify
three key characteristics of residential load power: randomness,
periodicity, and diversity.
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FIGURE 1
Overview of residential load power time series over a 10-day period.

FIGURE 2
Overview of the residential load power time series over a day.

• Firstly, the trend in residential load power data is typically
influenced by the type and number of electrical appliances used
by the residents.The power consumption of different appliances
varies, and while there may be a general pattern in terms of
when certain appliances are used, the presence of uncertainty
factors can cause abnormal fluctuations in load power, which
in turn affects prediction accuracy.

• Secondly, residential load power data is closely linked to people’s
daily routines. The repetition of daily and weekly activities
leads to regular changes in load power data, which reflect these
recurring patterns.

• Finally, there are significant variations in residential load
power data across different regions. A prediction method that
performs well on one dataset may result in substantial errors
when applied to another dataset. Therefore, it is essential to

FIGURE 3
Decomposition of residential load power data during a day.

analyze specific cases and select the prediction method that
best suits the characteristics of the dataset to achieve optimal
prediction results.

2.2 Separation of deterministic and
stochastic components

As residential load power is characterized by randomness,
dispersion, periodicity, and diversity, these characteristics cause
residential load power to exhibit two patterns of change over time:
deterministic and stochastic. To better predict the residential load
power, this paper separates residential load power into deterministic
components and stochastic components, i.e, Equation 1, with
point prediction for the deterministic component and probabilistic
prediction for the stochastic component (Li YH. et al., 2023).

P = Pcertain + Prandom (1)

There are many methods to achieve the separation of
deterministic and stochastic components in time series, such
as the moving average method, exponential smoothing, and
polynomial fitting (Zhang et al., 2024). Due to the large fluctuations
in residential load data, the weighted moving average method
was chosen to achieve the separation of the deterministic and
stochastic components. Weighted moving average is a method
of data smoothing that gives unequal weights to each variable
value over a fixed period. The principle is that historical data are
not equally useful for predicting future data. Figure 3 shows the
decomposition effect of residential load power.

As seen in Figure 3, the deterministic component is the most
important part, and its time series is smooth and stable, representing
the sequential change pattern of residential load power. In contrast,
the stochastic component is similar to the noise, with a small
amplitude, and its time series fluctuates above and below the zero
value without any regularity, reflecting the volatility of residential
load power.
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FIGURE 4
MLP basic structure.

FIGURE 5
Structure of CNN.

3 Time-series probabilistic residential
load power prediction

3.1 Neural network-based power
prediction for time-series residential
loads

A neural network is a computer algorithm, also known
as an artificial neural network, that is inspired by the
process of information processing in the brains of humans
and animals (Sun et al., 2021). This section introduces the
fundamentals of six types of neural networks: multilayer perceptron
(MLP) networks, convolutional neural network (CNN), recurrent

neural network (RNN), LSTM neural networks, bidirectional LSTM
(Bi-LSTM) neural networks, and encoder and decoder LSTM (ED-
LSTM) neural networks, which will be covered in the next six
subsections.

3.1.1 MLP networks
MLP, also known as a feed-forward neural network, is the

simplest shallow neural network. It has only one input layer and
one output layer, while the hidden layer can have one or more
layers, enabling it to learn nonlinear functions. The connections
between the different layers of an MLP network are fully connected,
and the basic structure of an MLP containing one hidden layer
is shown in Figure 4.
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FIGURE 6
RNN structure.

FIGURE 7
Internal structure of LSTM hidden layer.

3.1.2 CNN
ACNN is a type of forward neural network that has been widely

used in the fields of computer vision and time series analysis and is
one of the most basic and important components of deep learning.
Because CNNs are locally connected and share weights, they can
effectively reduce both error decay and training weights, thereby
reducing the complexity of the network and improving the model’s
featuremapping ability compared with general neural networks.The
structure of a CNN is shown in Figure 5.

Themost important components in the CNN network structure
are the convolutional layer and the pooling layer. Each neuron
in the convolutional layer is interconnected with the localized
feature region of the previous layer through the convolution kernel,
and the convolutional layer extracts different features of different
time series data through such convolution operations. The role
of the pooling layer is to further extract the features of the data
to reduce the dimensionality of the data. The commonly used

pooling methods are the maximum pooling method, mean pooling
method, and so on.

For time-series data, a one-dimensional CNN is used.When the
lth layer of the CNN is a convolutional layer, the one-dimensional
convolution is calculated as Equation 2:

xlk = f(
N

∑
i=1

xl−1i ⊗w
l
ik + b

l
k) (2)

where xlk is the kth convolutional mapping of layer l; f is
the activation function; N is the number of inputs performing
convolutional mapping; ⊗ is the convolutional operation; wl

ik is the
weight of the kth convolution kernel of layer l performing the ith
operation; blk is the bias of the kth convolution kernel corresponding
to layer l.

For the pooling layer, in this paper, the maximum pooling
method is used, and Equation 3 represents taking the maximum
value from vector xlk to xlk+r−1. For the sequence x, the maximum
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FIGURE 8
Bi-LSTM structure.

FIGURE 9
Framework structure of ED-LSTM.

pooling operation is repeated for each consecutive vector with
window r to obtain the largest feature sequence.

̃xlk =max(xlk:x
l
k+r−1) (3)

3.1.3 RNN
The RNN was first proposed in the 1980s. An RNN connects

neurons in series, allowing each neuron to have a certain degree of
memory and store the information from previous input sequences.
Additionally, the RNN parameters can be shared, and it exhibits
strong learning abilities for nonlinear time series, making it an
effective tool for time series analysis. The network structure of an
RNN is shown in Figure 6.

The network function of the RNN is calculated as Equations 4, 5:

st = f(uxt +wst−1 + bu) (4)

ot = g(vst + bv) (5)

where xt is the input vector at moment t; u is the weight between
the input layer and the hidden layer; v is the weight between the
hidden layer and the output layer; w is the weight value of the
hidden layer’s feedback; bu and bv are the neuron bias values of the
hidden and output layers; st , st-1 are the outputs of the hidden layer
at moments t and t-1; ot is the output of the network at moment
t; f and g are the neuron activation functions of the hidden and
output layers.
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FIGURE 10
Mean RMSE for ten-step over-forecasting.

3.1.4 LSTM neural networks
LSTM networks are an improvement upon RNNs, where, like

RNNs, they input sequences sequentially and continue to add
valuable information into intermediate state variables to reveal the
dependencies between different moments of a time series. However,
LSTMs forget some unimportant data and retain the important
ones, allowing key information to be passed on, thus making them
more suitable for application to long-time series. Compared with
RNNs, LSTMs add forgetting gates, input gates, output gates, and
memory units in the hidden layer. The input gates control the
proportion of new inputs in the memory units, the forgetting gates
determine which unimportant information is ignored, and finally,
the information is output through the output gates. Figure 7 shows
the internal structure of the LSTM hidden layer.

The forget gate is used to determine the degree of retention of
incoming information from the previous moment t-1. Its output
ft is obtained by linearly varying the output st-1 of the hidden
layer at the previous moment with the input xt at this moment,
and then applying the activation function sigmoid. The formula
is shown in Equation 6.

ft = sig(wxfxt +ws fst−1 + b f) (6)

where ft is the output of the forgetting gate at moment t; st-1 is the
output of the hidden layer at moment t-1; bf is the bias parameter of
the forgetting gate; xt is the input at moment t; and wxf and wsf are
the weight parameters of the forgetting gate.

The input gate is used to decide the degree of retention of the
input information at themoment t.The output it is obtained through
the output st-1 of the hidden layer at the previous moment and
the input xt at this moment by linear change, and then through
the activation function sigmoid. The calculation is similar to the
forgetting gate, as shown in Equation 7.

it = sig(wxixt +wsist−1 + bi) (7)

where it is the output of the input gate at moment t; st-1 is the output
of the hidden layer at moment t-1; bi is the bias parameter of the

input gate; xt is the input at moment t; wxi and wxi are the weight
parameters of the input gate.
̃ct is used to describe the input state at the moment t, and

its output it is obtained by linearly varying the output st-1 of
the hidden layer at the previous moment with the input xt at
this moment through the activation function tanh. The formula
is shown in Equation 8.The input state variable ̃ct is equivalent to an
integration of the state information of the input and hidden layers to
form a new state variable.

̃ct = tanh(wxcxt +wscst−1 + bc) (8)

The state unit is used to update the internal state of LSTM,
and its calculation formula is shown in Equation 9. In the formula
part ct−1 ⋅ ft determines the degree of retention of information
at the moment t-1, and ̃ct ⋅ it represents the state information at
the moment t.

ct = ct−1 ⋅ ft + ̃ct ⋅ it (9)

where ct is the internal state at moment t; ct-1 is the internal state at
moment t-1; ̃ct is the input state at moment t.

The output gate is the part that controls the output at time
t, and its output ot is calculated in a similar way to ft and it ,
as shown in Equation 10.

ot = sig(wxoxt +wsost−1 + bo) (10)

where ot is the output of the output gate at moment t; bo is the bias
parameter of the output gate; wxo and wso are the weight parameters
of the output gate.

The output ht of the hidden state at moment t is determined
by the state ct and output ot at this moment, as shown in
Equation 11.

ht = ot ⋅Tanh(ct) (11)

3.1.5 Bi-LSTM neural network
The Bi-LSTM is a neural network with a two-loop structure

developed based on LSTM. It consists of a forward LSTM neural
network and a reverse LSTM neural network. Data in the forward
LSTMneural network flows from the past to the future, utilizing past
information, while data in the reverse LSTM flows from the future
to the past, utilizing future information.

Figure 8 shows the structure of the neural network, which is
the unfolding of the network along the time axis at times t-1, t,
and t+1. The network contains a hidden layer, h, which represents
the state of the hidden layer. In the figure, h is the state of
the hidden layer, x is the input, y is the output, and it includes
two hidden layers: forward propagation, and backpropagation.
There is no connection between these layers, and the data flows
independently in each.

The computation process of the forward LSTM hidden layer
state h⃗t, and reverse LSTM hidden layer state h⃖t is shown in
Equations 12, 13. Both forward and reverse hidden layers can
be regarded as single-layer LSTMs, and both can compute their
respective hidden layer states ht from the state at the moment t-1
and the inputs at the moment t. The output of the Bi-LSTM network
is the combination of the two parts of the hidden layer states, which
constitute the overall hidden state of the network.
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FIGURE 11
Residential load power deterministic component Bi-LSTM ten-step ahead short-term prediction result.

h⃗t = LSTM(xt, h⃗t−1) (12)

h⃖t = LSTM(xt, h⃖t−1) (13)

where h⃗t is the forward LSTM hidden layer state at
moment t; h⃖t is the reverse LSTM hidden layer state at
moment t; LSTM is the LSTM cell; xt is the input at
moment t.
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FIGURE 12
(Continued).

3.1.6 ED-LSTM neural networks
The ED-LSTM neural network utilizes LSTM neurons to build

an encoder-decoder model, where the encoder and decoder parts of
the model can each be regarded as an LSTM neural network. The
working principle of the ED-LSTM neural network is to convert the
model inputs into intermediate vectors of fixed dimensions through
the encoding process and then decode the intermediate vectors
through the decoding process, predicting the results to be output in
combination with the output of the previous moment.The structure
of the ED-LSTM neural network is represented in Figure 9:

The encoding process is represented as Equations 14, 15.

ht = f(ht−1,xt) (14)

c = q(h1, ⋅ ⋅ ⋅,xt) (15)

where x is the input at moment t; ht-1 and ht are the hidden states of
the previous moment and this moment; f is a customized nonlinear
transformation function; c is an intermediate vector; q is a weighted
average function.

The decoding and output process is represented as
Equations 16, 17

st′ = f(yt′−1, st′−1,c) (16)

yt′ = g(yt′−1, st′−1,c) (17)

where yt′−1 and st′−1 are the predicted output and implied state at the
previous moment; yt′ and yt′ = g(yt′−1, st′ ,c) are the predicted output
and implied state at the currentmoment; g is a customized nonlinear
transformation function.

3.2 Probabilistic prediction of residential
load power stochasticity components

3.2.1 GMM principles and parameter optimization
The GMM is a linear combination of multiple single Gaussian

probability density functions, and various probability density
distributions can be accurately described by adjusting parameters
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FIGURE 12
(Continued). Residential load power stochasticity component PDF.

such as weight coefficients, mean, and covariance matrices of
the GMM. GMM has extensive applications in the field of
photovoltaic and wind power probability prediction. From the

previous characterization of residential load power, it can be
seen that the stochastic component of residential load power
has a small amplitude and fluctuates irregularly around the
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FIGURE 13
Residential load power overrun ten-step prediction results.

zero value, so it is theoretically feasible to fit this component
using the GMM. Equation 18 shows the GMM composed of
multiple Gaussian distribution functions. In addition to the
mean and variance, the GMM includes a weight coefficient
parameter, which combines multiple single Gaussian functions to
improve the model’s ability to fit data that follow a Gaussian
distribution.

P(x|θ) =
W

∑
w=1

awφ(x|θw) (18)

where the parameter aw is the weight coefficient of a Gaussian
distribution in the GMM, determined according to the

algorithm, and satisfies Equation 19, i.e., the sum of the
weights is one.

W

∑
w=1

aw = 1, (a ≥ 0) (19)

The expression for a single Gaussian function in a GMM
is shown in Equation 20.

φ(x|θw) =
1
√2πσw

e
(− (x−μw)

2

2σw2
)

(20)

where μw is the mean of the wth Gaussian distribution
member and σw

2 is the covariance matrix of the wth Gaussian
distribution member.

To improve the accuracy of parameter optimization, this
paper uses the maximized likelihood function to optimize the
three parameters (Xie et al., 2024b). The mathematical expression
is shown in Equation 21.

L(x1,x2, ...;θ) =
m

∏
i=1

p(xi,θ) (21)

The sample data set also contains unobserved hidden variables
Z = {z1, z2, … }. If the parameters of the mixture model
are estimated directly by solving the maximum value of the
likelihood estimation function, it will make the parameter-solving
process very cumbersome and complicated, making optimization
difficult (Yin et al., 2024). Therefore, it is necessary to first find
the hidden variables. After identifying the hidden variables, taking
the logarithm of the likelihood function yields the following
mathematical expression:

L(1)(x1,x2, ...;θ) =
m

∑
i=1

log p(xi,θ) =
m

∑
i=1

log∑
zi

p(xi,zi,θ) (22)

From Equation 22, the likelihood function changes as the
parameter set θ changes, and the optimal parameter set θ
needs to be determined. The process of solving the maximum
likelihood estimation of θ becomes complicated due to the
inclusion of the hidden variable Z in the sample dataset,
which makes it difficult to optimize the parameters. Therefore,
in this paper, the EM algorithm is utilized to estimate the
maximum likelihood of the complete data to obtain the optimal
parameters.

3.2.2 Randomness component generation
methods

To test the prediction performance, it is necessary to combine
the prediction results of the deterministic component with those
of the stochastic component to obtain the final prediction results.
However, the prediction result of the stochastic component of
residential load power is a probability density function (PDF),
which cannot be directly added to the point prediction result of
the deterministic component.Therefore, this paper adopts amethod
to generate the stochastic component by creating a sample set
that conforms to the target distribution. Random samples are then
drawn from this set and combined with the prediction result of the
deterministic component.

The optimal parameters of the GMM are obtained by the
EM algorithm, resulting in the following probability density
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FIGURE 14
Prediction error of ten steps ahead of residential load power.

TABLE 1 Comparative study between traditional point prediction methods and the prediction model developed in this paper.

Case Step1/W Step2 Step3 Step4 Step5 Step6 Step7 Step8 Step9 Step10

1 5,810 6,986 9,412 10,309 11,972 13,564 15,052 15,200 17,815 19,900

2 5,998 6,738 7,551 8,399 10,701 11,242 13,996 14,218 16,847 17,294

function (PDF) and cumulative distribution function (CDF),
as shown in Equation 23.

{{{{{{
{{{{{{
{

PDF: f(x) =
Wopt

∑
w=1

aw
1
√2πσw

e−(x−μw)
2/2σ2w

CDF:F(x) =
√2π
2

Wopt

∑
w=1

awσw[1+ erf(
x− μw
√2σw
)]

(23)

where aw, μw and σw represent the parameters of the wth Gaussian
function,W is the total number of Gaussian functions. erf (x) is the
Gaussian error function andWopt is the number of optimalGaussian
functions.

Based on the Newton-Raphson method, a procedure for
generating samples of probability distributions is proposed. Set
the error threshold ηcdf to 10–4, divide the parameter x ∈ [xst,xen]
into M segments, and the interval of the mth segment is
[xst + (m− 1)xdis,xst +mxdis]m, where xdis = (xen − xst)/M. Generate
a random number r between 0 and 1, find the value ofm that meets
the condition F(xst + (m− 1)xdis) < r < F(xst +mxdis), and define it as
msel. Let x1 = xst + (msel − 1)xdis, and find the value of xwhen itmeets

|xk+1 − xk| < ηcdf according to Equation 24.

xk+1 = xk −

√2π
2

Wopt

∑
i=1

awσw[1+ erf(
xk−μw
√2σw
)]− r

Wopt

∑
w=1

awe
− 1

2
(x−μw)

2

σ2w

(24)

4 Case studies

4.1 Data processing and evaluation
indicators

If the raw data is used as input variables for prediction, it
is necessary to normalize the data due to the large range of the
data itself, which can affect the efficiency and accuracy of the
model’s prediction. The data values were all scaled between 0 and
1 according to Equation 25.

x′ =
x− xmin

xmax − xmin
(25)
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FIGURE 15
Comparison of prediction errors between traditional point prediction methods and the prediction model developed in this paper.

where x and x' are the values of the variables before and after
normalization, respectively; xmin and xmax are the minimum and
maximum values of the sample variables, respectively.

To test the validity of the model and evaluate the prediction
performance, the root mean square error (RMSE) is selected as the
evaluationmetric in this paper.The formula for the rootmean square
error is shown in Equation 26.

RMSE = √ 1
n

n

∑
i=1
(y′i − yi)

2 (26)

where n is the number of samples; yi and yi
’ are the actual and

predicted values of residential load power, respectively.

4.2 Simulation environment and
parameters

The prediction of deterministic components of this experiment
is done based on the Pycharm development environment. The
Keras deep learning framework was selected and ReLU was
chosen as the excitation function. The number of iterations
is set to 1,000. The optimizer is chosen as Adam optimizer,
and for MLP neural networks Adam optimizer and SGD
optimizer are chosen for prediction. In this paper, mean square
error is used as a loss function. The number of samples for
training once is 64.

The prediction of the stochasticity component is done
based on the MATLAB platform. The residential load data is
modeled using GMM and the parameters are fitted using the
EM algorithm, finally, the data is sampled using the stochastic

component generation method and the obtained data is added
to the deterministic component prediction results to get the final
prediction results.

4.3 Analysis of experimental results

The results of the short-term prediction of the deterministic
component of residential load power are shown in Figure 10. In the
figure, the horizontal axis represents the number of steps ahead, and
the vertical axis represents the normalized RMSE mean. From the
figure, it can be seen that the prediction performance of the Bi-LSTM
neural network is better than that of other methods, with its RMSE
for each step being below 0.14, and the RMSE for the first five steps
being below 0.1, which achieves the best prediction performance.
Therefore, in this paper, the Bi-LSTM neural network is chosen
as the prediction method for the deterministic component of
this dataset.

The prediction results of Bi-LSTM with ten steps ahead
are shown in Figure 11. It can be observed that the prediction
performance is relatively good and very close to the actual
values, while the prediction error gradually increases with the
number of steps ahead, which is consistent with the description
in Figure 10.

In this paper, a probabilistic forecasting method is used to
fit the probability density function of the stochasticity component
for each period throughout the day based on the historical data,
using a GMM containing two Gaussian members. This is utilized as
the probabilistic forecasting result for the stochasticity component.
The probabilistic prediction results for the stochastic component
of residential load power are shown in Figure 12. From the

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1490152
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Zhou et al. 10.3389/fenrg.2024.1490152

figure, it can be observed that the probability distribution for
most periods is approximately normal and single-peaked. Since
the characteristics of the stochastic component are similar to
noise, which typically follows a normal distribution, the prediction
results are consistent with the expected characteristics of the
stochastic component. Additionally, the fitted probability density
functions are mostly single-peaked, with a few double-peaked,
indicating that it is reasonable to use a GMM consisting of two
Gaussian members.

The best prediction method for the short-term prediction of the
deterministic component of residential load power is the Bi-LSTM
neural network. This method is used to predict the deterministic
component, and inverse normalization is performed to obtain the
final prediction results for the deterministic component. Random
samples are drawn from the probabilistic prediction results of the
stochastic component of residential load power for 24 time periods
throughout the day, with four samples taken from each period in
turn as the simulated prediction value of the stochastic component
at each moment of the period. Finally, the two components are
added together to form the final prediction results, which are then
compared with the actual values.

From Figure 13, it can be observed that the overall prediction
performance is good. The residential load power data values are
distributed between 40 kW and 120 kW, which is about 70 kW
at 0:00, then gradually increases and reaches a peak of about
130 kW in the morning hours, and then gradually decreases to
about 40 kW. The prediction results of the first few steps are
close to the actual values, while the prediction waveforms deviate
from the actual values and the prediction errors gradually increase
as the number of oversteps increases. The prediction error for
each step is shown in Figure 14. The prediction error RMSE for
Steps 1 through 4 is around 0.8 kW, while beyond Step 4, the
RMSE increases by approximately 1.5 kW on average for each
additional step.

The Bi-LSTM neural network achieved the best results in
predicting residential load power, so this neural network was used
to directly predict the raw data. The prediction results were then
compared with the results of the prediction model developed in
this paper to assess the practicality of the proposed model. The
comparison of the over-prediction errors for each step of the point
prediction of the raw residential load power data using the Bi-LSTM
neural network and the prediction model proposed in this paper is
shown in Table 1. Method 1 in the table represents the traditional
point prediction method, while method 2 represents the prediction
model proposed in this paper. To observe the pattern more clearly, a
comparison graph of the two methods is shown in Figure 15.

In Figure 15, case 1 represents the traditional point prediction
method, and case 2 represents themodel developed in this paper. For
residential load power, the predictionmodel developed in this paper
shows a larger error compared to the traditional point prediction
model for the first step ahead. However, the performance of the
model developed in this paper surpasses that of the direct point
prediction method in the subsequent nine steps. It can be observed
that the direct point prediction method on the original data has a
smaller error when the number of steps ahead is small, while the
prediction model developed in this paper has a smaller error when
the number of steps ahead is large.

5 Conclusion

This paper highlights the critical role of accurate power
prediction in the context of residential load forecasting, addressing
the challenges posed by increasing variability and complexity
in modern power systems. We conducted a comprehensive
analysis using six neural network architectures—MLP, CNN,
RNN, LSTM, Bi-LSTM, and ED-LSTM—to predict residential
load power, focusing on short-term forecasting accuracy. Our
results demonstrated that the Bi-LSTM neural network consistently
outperformed the other models, achieving the lowest mean
RMSE of 0.086 in ten-step-ahead predictions. This superior
performance underscores the effectiveness of Bi-LSTM in capturing
the temporal dependencies andnonlinearities inherent in residential
load power data, making it the most suitable method for point
prediction in this study. Building on the strengths of the Bi-
LSTM model, we introduced a novel hybrid prediction framework
that integrates neural network-based point prediction with a
probabilistic prediction model. This innovative approach not only
leverages the time-series forecasting capabilities of neural networks
but also incorporates stochastic elements through probabilistic
modeling, thereby enhancing the overall accuracy of residential
load power predictions.The proposed method was rigorously tested
and validated against traditional point prediction models, showing
significant improvements in prediction accuracy, particularly in
scenarios with higher levels of uncertainty and variability. These
results confirm the practicality and effectiveness of our approach,
which represents a meaningful advancement in the field of
residential load forecasting.

In summary, this study contributes to the literature by
demonstrating the superior performance of Bi-LSTM in short-term
residential load forecasting and by introducing a hybrid prediction
framework that effectively combines deterministic and probabilistic
elements. This work not only improves forecasting accuracy but
also provides a robust foundation for future research and practical
applications in power systemmanagement. In this paper, the research
object is the prediction of residential load power, while other types of
loads such as commercial, office-type loads, and photovoltaic power
generation are not studied at present. Since different types of loads
have their characteristics, it is important to study the forecasting of
other types of loads, which is our next research goal.
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