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This paper proposes a novel two-stage transient stability assessment (TSA)
model that integrates ensemble learning with cost sensitivity to address the
challenges posed by the integration of renewable energy and load fluctuations.
The model employs CNNs as positive and negative classifiers to initially evaluate
samples, with consistent results output directly. In cases of inconsistency, the
sample is evaluated by a fair classifier, specifically an ELM, trained on critical
samples. This approach significantly enhances the classification performance
and credibility of the fair classifier, especially under imbalanced conditions,
thereby improving the overall efficiency and accuracy of TSA. The proposed
model demonstrates superior performance compared to single-stage models
and other two-stage models, achieving high accuracy and robustness in
transient stability assessment, particularly for critical samples.
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1 Introduction

The development of modern power systems presents new challenges to the safety of
these systems. In recent years, frequent blackouts worldwide have had significant economic
impacts (Wei Zhang and Zhang, 202). Transient stability is crucial to the safe operation
of power systems. Once a disturbance occurs in the power system, early assessment of
transient stability and timely implementation of emergency control measures can protect
the system’s stability (Guo et al., 2023; Meridji et al., 2023; Singh and Chauhan, 2023;
Wang Y. et al., 2023; Zhu et al., 2023). Therefore, it is vital and necessary to design a TSA
model that can quickly and accurately determine whether a power system will become
unstable and infer the type of events that may cause instability.

Classical transient stability methods include time-domain simulation (TDS) and direct
methods. TDS analyzes system stability through detailed modeling. As long as the
component models and network structures are sufficiently accurate, the results are reliable.
However, with the increasing complexity of power systems and rapid changes in electronic
hardware, TDS-based models have become more complex, and their computational
demands have increased, making TDS methods unsuitable for real-time transient stability
assessment.The directmethod, on the other hand, does not require numerical integration of
dynamic processes and can quantitatively analyze system transient stability. However, direct
method models are simple and may face applicability issues in complex power systems.
Additionally, the evaluation results tend to be conservative. As a result, these methods
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currently cannot fully meet the practical needs of online transient
stability assessment. To date, real-world power grids still require
more advanced TSA solutions that can achieve high reliability and
efficiency.

The rapid development of big data offers new ideas for transient
stability assessment. TSA rules can be mined from large volumes
of data using machine learning (ML) methods (Liu et al., 2023;
Li et al., 2024; Shao et al., 2024). Once dynamic information is
received, stability results can be output within milliseconds. After
discovering underlying relationships offline through ML, they can
be easily applied to online TSA. This data-driven approach almost
eliminates online computation time and can effectively predict
system stability.

Modern power systems usually remain stable after most
disturbances due to their robustness. In practical applications,
events causing power system instability are rare. These rare
events lead to significant imbalances between stable (majority
class) and unstable (minority class) transient data distributions.
The imbalance in training data leads to high misclassification
rates in TSA models. Moreover, misjudging the transient stability
of power systems prevents timely responses and corresponding
measures, leading to safety accidents and significant economic
losses. Therefore, addressing the imbalance in training data is not
only crucial for improving TSA accuracy but also has practical
significance.

Existing methods for addressing class imbalance can be
broadly categorized into data-driven and algorithm-driven
approaches. Additionally, traditional data-driven methods attempt
to oversample or undersample the data so that different classes
appear in equal proportions in the training data.Themain drawback
of sampling-based methods is that they may lose important
information in undersampling or overfit the training data in
oversampling. Algorithm-driven methods primarily include cost-
sensitive methods (Wang H. et al., 2023; Chen et al., 2022; Lin et al.,
2022; Wang et al., 2020) and ensemble learning methods (Shen,
2023; Chen and Wang, 2021; Chen et al., 2021; Zhao et al., 2022;
Wu et al., 2020). References (Wang H. et al., 2023) consider the
imbalance in sample distribution in space by dividing samples
into different levels of training sets and training the model using
cost-sensitive approaches. Reference (Shen, 2023) proposes a
comprehensive transient stability state assessment method for
power systems based on machine learning, using multiple classifiers
to alleviate the sample imbalance problem in transient stability
samples. However, its drawbacks are also evident. The ensemble
learning classifiers used are oftenweak classifiers with low resistance
to interference and increased training time. Among these methods,
the application of cost sensitivity in transient stability assessment is
relatively limited. Although it helps mitigate sample imbalance, its
blind use may lead to overfitting and increased misclassification
rates. Applying ensemble learning alone to transient stability
assessment can also mitigate sample imbalance, but due to the large
number of ensemble classifiers, it may result in longer training times
and weaker resistance to interference.

Recently, tomitigate the imbalance in transient stability samples,
references (Chen andWang, 2021;Wang et al., 2020) adopted a two-
stage assessment approach combining cost sensitivity and ensemble
learning. Specifically, three models are used, with two classifiers in

the first stage, each biased towards one class of samples using cost-
sensitive methods. A non-cost-sensitive classifier is then trained
using the same training set as a fair classifier for second-stage
evaluation. Although this approach combines the advantages of
cost-sensitive learning and ensemble learning, it also overcomes
some disadvantages. However, this method lacks credibility, mainly
because the credibility of the fair classifier is low. This is because
hard samples are evaluated by a non-cost-sensitive classifier, and
the evaluation results are directly output. However, since the fair
classifier is not selected based on the characteristics of the input
samples, highly accurate and convincing evaluation results cannot
be generated.

In transient stability assessment, what truly affects
misclassification and missed judgments are the hard samples. In
this study, we propose a two-stage transient stability assessment
model based on the integration of ensemble learning and cost
sensitivity. First, the initial sample set is input into positive and
negative classifiers again, and samples with inconsistent evaluation
results are collected to form a critical sample set.This critical sample
set is used to train the ELM (fair classifier). The model combines
the strengths of cost sensitivity and ensemble learning, greatly
enhancing the credibility of the fair classifier while improving the
overall reliability of the model.

The rest of this paper is structured as follows: Section 2 offers
an overview of the transient stability assessment (TSA) problem
and introduces the proposed two-stage TSAmodel. Section 3 details
the implementation process of the model. Section 4 presents case
studies and evaluates the model’s performance. Finally, Section 5
summarizes the conclusions of the paper.

2 Integrated TSA model

2.1 Transient stability assessment problem

Transient stability assessment (TSA) has become increasingly
important in power systems, with the main challenge being how
to overcome the inherent sample imbalance problem, which is
determined by the robustness of power systems. To address the
imbalance in transient stability samples, a two-stage assessment
method combining cost sensitivity and ensemble learning has
been widely adopted. However, due to the lack of optimization
in the selection of the fair classifier, it is difficult to produce
highly accurate and convincing evaluation results. The model
proposed in this paper addresses the problem of transient stability
assessment under imbalanced samples by considering the difficulty
of classifying critical samples, combining cost sensitivity and
ensemble learning, which greatly enhances the reliability of the
fair classifier and the overall model reliability. Currently, the issue
of sample imbalance in transient stability assessment cannot be
ignored, as stable samples are the majority, unstable samples are
fewer, and critical samples are even rarer. The training model must
fully understand the characteristics of stable, unstable, and critical
samples to classify them correctly. Therefore, solving the sample
imbalance problem is crucial for transient stability assessment.
The two-stage TSA model proposed in this paper aims to achieve
accurate and reliable classification results even under imbalanced
conditions.
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2.2 Selection of positive and negative
models and application of cost sensitivity

2.2.1 Selection of positive and negative models
Unlike most previous evaluation model designs, this paper

designs a two-stage transient stability assessment model based
on the integration of ensemble learning and cost sensitivity. The
advantage of this approach is that it can combine the strengths
of various models and effectively overcome the drawbacks of
low accuracy, low effectiveness, and high cost caused by sample
imbalance.

The positive and negative models are the foundational models
in the entire two-stage framework; their results are only valid when
they are consistent. Otherwise, if the results are inconsistent, the
assessment will enter the next stage without directly outputting the
results. Therefore, to maximize the role of the positive and negative
models, cost sensitivity is applied to these models. The positive
model is inclined to evaluate samples as stable, while the negative
model is inclined to evaluate samples as unstable. Under this design,
when the evaluation results of the positive and negative models
are consistent, the input samples must be far from the boundary,
indicating that the samples are either extremely stable or extremely
unstable. In such cases, the positive and negative models require
strong feature extraction capabilities to fully recognize samples
beyond the boundary.

Convolutional Neural Networks (CNNs) possess strong
nonlinear expression and pattern recognition capabilities, making
them suitable for handling complex dynamic processes and
nonlinear problems in power systems (Lee et al., 2023). This
allows CNN-based TSA models to more accurately reflect the
transient stability status of the power system based on input
operational parameters. Compared to traditional time-domain
and direct methods, CNN-based TSA methods offer higher
assessment accuracy and faster computation speed. They can meet
the requirements of online real-time prediction, providing timely
and accurate power system stability analysis results for dispatchers
(Gu et al., 2024). Additionally, CNN models can adapt to different
power system scenarios and demands by adjusting the network
structure and parameters, offering higher flexibility and scalability.
In summary, applying CNNs to power system transient stability
assessment has advantages such as automatic feature extraction,

strong nonlinear processing capabilities, high accuracy, real-time
performance, and applicability to complex systems, making it a vital
tool in power system operation and control. Therefore, we select
CNNas the positive and negativemodels.WithCNN’s strong feature
extraction capabilities, we can effectively handle the characteristics
of stable and unstable sample regions, achieving initial simple
classification. Furthermore, CNN-based methods can directly use
low-level measurement data as input features, extracting multi-
granularity information frommeasurement data through multi-size
convolution kernels, thereby improving the accuracy of TSA in
power systems (Jin et al., 2023).

For transient stability assessment, reasonable feature selection
is needed to construct samples as input. This paper focuses on
selecting steady-state quantities and fault characteristics for the
forward-looking prediction of transient stability (Ji et al., 2022).
Therefore, bus voltage, generator active and reactive power, and load
active and reactive power are chosen as input features. Relevant
data are obtained from measurements or time-domain simulations
and input into the CNN model. The network structure of CNN
is shown in Figure 1.

Based on the input electrical quantity matrix, the convolutional
layer performs local learning through convolution kernels in the
CNN model. The convolution operation for each convolution
kernel is as Equation 1.

ac,k = f (X ∗Wc,k + bc,k) (1)

where ac,k is the output of the k-th convolutional surface,Wc,k is the
weight matrix corresponding to the k-th convolution kernel,X is the
input matrix, bc,k is the bias term, and f(⋅) is the activation function
(the ReLU function is selected here).

For the pooling layer, this paper adopts max pooling,
as shown in Equation 2.

ap,k =max(aij) , i, j = 1,2,…,n (2)

where ap,k represents the k-th pooling surface, aij is a sub-block of
the output matrix from the previous convolutional layer, and n is the
dimension of the sub-block of the output matrix from the previous
convolutional layer.

FIGURE 1
CNN network structure.
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The calculation formula for the fully connected
layer is as Equation 3.

a fc = f (apW fc + b fc) (3)

In the fully connected layer, a fc represents the output, ap
represents the input, W fc represents the weight matrix, and b fc
represents the bias term. The ReLU function is selected for the
activation function.

The fully connected layer passes the output values to the output
layer, and the expression of the sigmoid function in the output
layer is as Equation 4.

σ (x) = 1
1+ e−x

(4)

where x is the input value and σ(x) is the function output.

2.2.2 Application of cost sensitivity
Typically, the approach to solving quantity imbalance is to assign

higher weights to unstable samples. However, the misclassification
of critical samples still occurs. Another approach is to assign
higher weights to both imbalances simultaneously: first, higher
weights are given to unstable samples, and then higher weights
are assigned to misclassified samples. This approach can lead to
overfitting (Kesici et al., 2023).

In this study, the model is trained by optimizing parameters to
improve the fit to the training samples. The loss function is used to

TABLE 1 Weight coefficient matrix for model parameter modification.

Real label Predicted label

Stable Unstable

Stable C(1,1) C(1,0)

Unstable C(0,1) C(0,0)

FIGURE 2
Elm network structure.

TABLE 2 Scoring table.

λ λ2 = 0 λ2 = 1

λ1 = 0 0 1

λ1 = 1 1 2

TABLE 3 Evaluation process.

λ First stage Second stage Total score

0 1 0 1

1 1 1 2

2 1 0 1

measure the difference between the predicted and actual values, and
the impact of training samples on evaluation rules can be assessed
through the loss function. This cost-sensitive approach makes the
positivemodel inclined to evaluate samples as stable and the negative
model inclined to evaluate samples as unstable.

For the transient stability assessment problem, the
weight correction coefficient for model parameters can be
represented by Table 1.

Where C(1,1) = C(0,0) = 0. C(1,0) and C(0,1) represent the
weight correction coefficients formodel parameterswhenpredicting
stable conditions as unstable and unstable conditions as stable,
respectively. Typically, C(1,0) = C(0,1) = 1.

In different scenarios, the proportion of unstable samples to
stable samples in the training set often differs, which causes the
model trained under imbalanced samples to have a certain bias in its
discriminative results. Therefore, this paper introduces a correction
factor γ to adjust for the imbalance in sample numbers in different
scenarios, as shown in Equations 5, 6.

γ (0,1) = 10 (5)

γ (1,0) =
Ns

Nuns
(6)

where Ns is the number of stable samples in the training set; Nuns is
the number of unstable samples in the training set.

By adjusting the weight correction coefficients during the
evaluation model parameter correction process, the model’s loss
function is as follows:

Gp = −y(l) lny′(l)γ (1,0) − [1− y(l)] ln[1− y(l)]γ (0,1) (7)

Themodel using Equation 7 is the positivemodel. After applying
cost sensitivity, this model tends to evaluate input samples as stable.
Conversely, if the model needs to incline toward evaluating input
samples as unstable, an additional correction factor β is required.
Since the original model tends to evaluate samples as stable due to
sample imbalance, adding the coefficient β ensures that the model
tends to evaluate input samples as unstable. Similarly, it is also
necessary to adjust the imbalance of the number of samples in
different scenarios here, as shown in Equations 8, 9.

θ (0,1) =
Ns

Nuns
(8)

Frontiers in Energy Research 04 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1491846
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Lei et al. 10.3389/fenrg.2024.1491846

FIGURE 3
(1) Offline training; (2) Online application.

θ (1,0) = 10 (9)

When β = 1, the evaluation model merely corrects for the
bias introduced by the imbalanced training samples; when β >
1, the model increases its fit to unstable samples, reducing the
misclassification probability for unstable samples.

The reorganized model’s loss function is shown in Equation 10.

Gn = −y(l) lny′(l)θ (1,0) − β[1− y(l)] ln[1− y(l)]θ (0,1) (10)

The negative model applies the loss function from the above
equation to tend toward evaluating input samples as unstable.

2.3 Fair classifier

The fair classifier is used to classify hard samples, which are
samples that the initial simple classification could not correctly
categorize.Therefore, the sample set used to train the fair classifier is
the critical sample set, and the model selection must consider this.

The fair classifier operates in the second stage of the assessment,
requiring high accuracy and interpretability in its results. The
sample set used to train the fair classifier is the critical sample
set, which contains rich data information and high information
entropy, requiring a suitable model to extract these features. For
ELM training, the ideal sample should be data close to the stability
boundary to obtain refined stability rules, allowing for effective
learning of the critical region and a strong ability to correctly classify
hard samples.

Given the above considerations, ELM is chosen as the fair
classifier.Due to the distribution characteristics of the critical sample

set, it matches the training requirements of the ELM model. If the
training samples of ELM are from the critical region, the trained
ELMwill have a strong ability to correctly classify the critical sample
set. ELM is used for training, but not with the original sample set;
instead, it is trained using samples with conflicting evaluation results
from two classifiers with opposing biases.

ELM can randomly select input layer parameters, and then use
the Moore-Penrose generalized inverse to obtain the output layer
weights with the smallest 2-norm. In ELM, only the number of
hidden layer neuron nodes needs to be learned and adjusted, and
the entire process does not require iteration. Figure 2 shows the ELM
network structure.

Specifically, for a dataset (xi,yi) with N samples, where xi ∈ ℝn

and yi ∈ ℝ
2, yi is the class label of the i-th sample, and the ELM

output withM hidden layer units is shown in Equation 11.

f (xj) =
m

∑
i=1

βih(wixj + bi) = yj (11)

where j = 1,2,…,N; h is the activation function;wi ∈ ℝn is theweight
vector of the i-th unit in the hidden layer; βi ∈ ℝ

2 is the multiplier
of the i-th unit in the hidden layer; and bi ∈ ℝ1 is the bias of the i-th
unit in the hidden layer.

In ELM, the weight vector wi and the bias bi are randomly
assigned, and the multiplier βi can be obtained based on all the
data through the Moore-Penrose generalized inverse. Therefore,
there is no need for the backpropagation (BP) neural network’s
necessary back-adjustment process (Fuqiang et al., 2023), making
ELM’s calculation speed significantly faster than classification
algorithms based on optimization. This reduction in calculation
time also reduces the online application time of the two-stage
evaluation model (Zhang et al., 2017).
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FIGURE 4
Line diagram of IEEE 39-bus power system.

TABLE 4 Weight coefficient matrix for model parameter modification.

Real label Predicted label

Stable Unstable

Stable TP FN

Unstable FP TN

2.4 Overall evaluation process

After completing all the above designs, the framework for
the proposed two-stage transient stability assessment model is
established. Next, the overall evaluation process is designed.

The model proposed in this study is a two-stage evaluation
model, where the second stage’s evaluation somewhat depends

TABLE 5 Comparison of single-stage and two-stage models.

Model PACC PFD PFA

LSTM 0.9202 0.6535 0.4444

Two-Stage-LSTM 0.9363 0.5644 0.2903

GRU 0.9253 0.6238 0.3968

Two-Stage-GRU 0.9465 0.4257 0.2564

CNN 0.9482 0.3663 0.2727

Two-Stage-CNN 0.9533 0.2376 0.2870

on the results of the first stage. Therefore, it is necessary to
design scoring for the first-stage evaluation results to complete the
evaluation logic of the first and second stages.
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FIGURE 5
Comparison of performance between single-stage and two-stage models. Model performance improvement: two-stage vs. baseline
(LSTM, GRU, CNN).

TABLE 6 Comparison of TCS-ELM with other two-stage models.

Model PACC PFD PFA

TCS-ELM 0.9779 0.1584 0.1053

Two-Stage-CNN 0.9533 0.2376 0.2870

Two-Stage-GRU 0.9465 0.4257 0.2564

Two-Stage-LSTM 0.9363 0.5644 0.2903

Define λ, λ1, λ2, where λ is the total score of the first stage, and λ1,
λ2 are the scores of the positive and negative classifiers, respectively.

To improve efficiency, λ1, λ2 are linked to the output results of
the positive and negative classifiers. If the positive classifier output
is stable (label 1), then λ1 is 1; otherwise, it is 0.

Define λ = λ1 + λ2, the scoring logic is summarized in Table 2.
According to the model logic proposed in this paper, the first-

stage evaluation results are credible, and the evaluation results are
directly output only when the positive and negative classifier outputs
are consistent. This occurs when λ is 0 or 2, meaning the first-stage
evaluation results are reliable, and there is no need for the second-
stage evaluation. If the positive and negative classifier outputs are
inconsistent, the first-stage evaluation results are unreliable, and λ
equals 1, then the process proceeds to the second-stage evaluation.

The overall evaluation process can be simplified
as shown in Table 3.

As shown in Table 3, when the total score is 1, the second-stage
evaluation result is output as the model’s evaluation result. When
the total score is 2, that is, when λ equals 1, the first-stage evaluation
result is credible, and the first-stage evaluation result is output as the
model’s evaluation result.

3 Implementation process of the
integrated TSA model

After selecting a specific example system, transient stability
simulations are performed to collect steady-state data and create the
initial sample set.

Based on the obtained initial dataset, the positive and negative
classifiers are trained separately. After training, the initial dataset
is re-input into the trained positive and negative classifiers for
evaluation, and the critical dataset is organized based on the differing
evaluation results from the positive and negative classifiers.

Since the fair classifier needs to correctly classify critical samples,
ELM is selected as the fair classifier. By training ELMusing the critical
sample set, the ability of ELM to correctly classify critical samples is
greatly enhanced, meeting the requirements of the fair classifier. The
construction of the integrated TSAmodel is then completed.

When evaluating real-time data obtained from the power
system, the measured data is input into the positive and negative
classifiers for evaluation. If the evaluation results are consistent,
the results are output, completing the assessment; if the evaluation
results are inconsistent, the measured data is input into the fair
classifier, and the evaluation results from the fair classifier are output,
completing the assessment. The specific implementation process
is shown in Figure 3.

(1): Offline Training
(2): Online Application

4 Case analysis

Taking the New England 10-generator, 39-bus system as a
case study, as shown in the Figure 4, the entire bus system is
divided into four regions according to adjacent buses. Four different
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load levels, 80%, 90%, 110%, and 120%, are considered, and each
region is assigned a different load level, resulting in 256 different
power flows,256 different operating modes. The generator output
is adjusted accordingly to ensure the convergence of power flow
calculations. The fault is set as a three-phase short-circuit fault, and
anN-1 scan is performed on the system by sequentially setting faults
on different lines. The fault duration is set to 0.2 s on lines without
transformers, with the fault point located at 50% of the line’s length.
On lines with transformers, the fault point is set at the head section
of the line.

The selection of input features including bus voltage, generator
active power and reactive power, as well as load active power
and reactive power, is indeed widely used in data-driven transient
stability assessment (Li et al., 2021; Du et al., 2021). Bus voltage
reflects the system’s voltage levels and can serve as an early
warning for instability. Generator active power and reactive power
respectively influence frequency stability and voltage regulation.
Load active power affects the system’s energy balance, while load
reactive power is crucial for voltage stability. These features provide
a solid foundation for predictive transient stability assessment.

A total of 11,776 samples are generated. By sampling from these
11,776 simulated samples, the training set, testing set, and validation
set are obtained in a ratio of 8:1:1.

Transient stability assessment in power systems includes two
categories: stable and unstable. The criterion for stability is the
transient stability index (TSI). The details are given in Equation 12.

tTSI =
360° − |Δδmax|
360° + |Δδmax|

(12)

When the maximum rotor angle difference among generators
exceeds 360°, TSI is less than 0, and the system is considered
unstable; when the rotor angle difference is less than 360°, TSI is
greater than 0, and the system is considered stable.

The following indicators are set as in Equations 13–15 to evaluate
the performance of the model:

PACC =
Tp +TN

Tp + Fp +TN + FN
⋅ 100% (13)

PFD =
Fp

Fp +TN
⋅ 100% (14)

PFA =
FN

Tp + FN
⋅ 100% (15)

After the training, the model is tested from the test set, and the
performance test results of the model are obtained. At the same
time, existing Two-Stage models (such as two-stage-LSTM, two-
stage-GRU) are tested, which all use the same neural network (such
as LSTM or GRU) for positive and negative sample classification
and fair classification tasks. The weight coefficient matrix used for
model parameter correction is shown in Table 4. Firstly, transient
stability evaluation experiments were conducted on the single-stage
model and the two-stage model, and the results were recorded
and summarized as shown in Table 5.Vertical comparison shows
that the two-stage method proposed in this paper outperforms the
single-stage method in all indicators, with a significant reduction in
misclassification rates and a marked improvement in classification
accuracy. This validates the effectiveness of the two-stage model
in complex tasks compared to a single model. Figure 5 shows the
bar chart comparison of the performance between single-stage and
two-stage models.Based on these findings, we further explored
the effects of different neural network combinations within the
two-stage framework. As such, this paper proposes the TCS-ELM
model (Two-Stage Cost-Sensitive Ensemble LearningModel), using
CNN for positive and negative sample classification in the first
stage and ELM for fair classification in the second stage, fully
leveraging CNN’s feature extraction strengths and ELM’s efficient
classification capabilities. Table 6 shows the performance testing
results of various two-stage models and the proposed TCS-ELM

FIGURE 6
Comparison of performance between single-stage and two-stage models. Performance comparison of 4 deep learning models.
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model.Results indicate that the proposed TCS-ELM model, by
using CNN in the first stage for stronger feature extraction
capabilities and ELM in the second stage for improved classification
accuracy, outperforms other two-stage models (such as Two-
Stage-LSTM and Two-Stage-GRU) in all indicators, particularly
exhibiting higher accuracy and robustness when handling critical
samples. This demonstrates that the TCS-ELMmodel combines the
advantages of CNN and ELM in their respective stages, significantly
enhancing overall performance. Figure 6 presents the bar chart
comparison of the performance between TCS-ELM and other
two-stage models.

5 Conclusion

In conclusion, the two-stage transient stability assessment
model proposed in this paper, which leverages a combination
of cost sensitivity and ensemble learning, addresses the
key challenge of sample imbalance while exhibiting robust
classification capabilities, particularly for hard-to-classify samples.
By integrating these advanced techniques, the model demonstrates
exceptional performance, achieving high levels of accuracy
without compromising the reliability and credibility of the
evaluation results.

In contrast to widely used transient stability assessment
methods, thismodel successfully overcomes several of their inherent
limitations. Traditional models often struggle to balance speed,
accuracy, and reliability, particularly in cases where the data
distribution is uneven or where outliers skew the results. The
proposed model not only mitigates these issues but also delivers
rapid assessments, making it highly efficient for real-time or
near-real-time applications. Its ability to provide convincing and
trustworthy evaluations further strengthens its utility in practical
scenarios where precise and timely decision-making is crucial, such
as in power grid operations and other dynamic systems.

By offering a superior balance of speed, accuracy, and evaluation
credibility, this model stands out as a significant advancement
in the field of transient stability assessment, offering a practical
solution that is both scalable and adaptable to diverse operating
conditions.
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