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The contemporary smart grid infrastructure, characterized by its bidirectional
communication capabilities between prosumers and utility organizations,
has revolutionized the efficient execution of fine-grain computational tasks.
Ensuring the uninterrupted delivery of power, even in the face of unforeseen
contingencies, stands as a paramount concern for utility companies. Peak
load forecasting, load balancing, and robust cyberattack detection and
prevention mechanisms are integral components in achieving grid reliability.
This research endeavors to advance peak load forecasting strategies and
demand response optimization at the microgrid level, thereby enhancing
grid reliability through the application of Deep Reinforcement Learning
(DRL) techniques. Additionally, it investigates the ongoing threat of false
data injection attacks. By synergizing these two critical investigations and
implementing a novel framework and defense mechanism, this paper
proposes a comprehensive approach to fortify the smart grid’s reliability
and security. The envisioned framework not only refines demand response
(DR) optimization but also bolsters the grid’s resilience in the face of
the everevolving cyber threat landscape. The research outcomes showcase
the practicality and effectiveness of the proposed framework, substantiated
through extensive experimentation conducted on IEEE-3, IEEE-9, IEEE-14, and
IEEE-33 bus systems.

KEYWORDS

smart grid architecture, load forecasting, demand response, load profiling, smart grid
resilience, FDI attack

1 Introduction

The conventional design of the power network has advanced in sophisticated ways since
its unique inception when a central framework regulated energy creation and distribution.
The advent of innovations for Internet communication in this domain brought a shift
toward a more interconnected, intelligent, and dynamic nature of the grid model, known
as the Smart Grid (SG). Its fundamental advantage is two-way data communication,
through which information can be exchanged between the client (i.e., a smart meter)
and the power company, thus making it appropriate to play out a sophisticated power
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consumption metering (Mohassel et al., 2014). This allows the user
to partake in programs that decrease power use when energy costs
rise and allow the user him/her to sell the power produced at home
(e.g., utilizing solar energy installations).This technology can also be
leveraged by the power company to enhance the supply and demand
of electricity by managing power generation and distribution in
real-time, enabling power operators and administrators to anticipate
periods of high demand and prevent scenarios of blackouts.

For this, the data collection is done through sophisticated
advanced metering infrastructure (AMI) in aggregation with meter
data management systems (MDMS). The data collection needs
information technology-enabled industrial equipment. From one
viewpoint, the power company is utilizing the supervisory control
and data acquisition (SCADA) frameworks to deploy machines that
continuously sense the energy generation and demand of numerous
consumers. This incorporates, for instance, the programmable logic
controllers (PLCs) and remote terminal units (RTUs) that are
available in the substations spread over the wide area network
(WAN) of the smart grid. From another viewpoint, support for the
MDMS techniques involves interconnecting thesemodern resources
with outside networks (e.g., the Web) and technical advances (e.g.,
distributed computing and the cloud) to go through additional
information investigation and support demand response (DR).

The growing connection of SCADA systems that used to work
separately has increased the number of online security risks, in
this case, (Upadhyay and Sampalli, 2020). The main reason behind
complex attacks are more likely to target multiple nodes in the
control network over a long period of time. The presence of
these attacks can harm the smart grid infrastructure and risk
the accessibility of utility machines, which converts into scenarios
responsible for holding the power supply and is likely to introduce
power outages in the network (Romanenko et al., 2020). In a similar
aspect, security measures should likewise be inducted to save the
accessibility of the power supply in situations like high demand
(that may likewise be incited on purpose), thus staying away from
blackouts (Lopez et al., 2018).

In connection with the situationmentioned above, the reliability
and security of the SG infrastructure are critical phenomena. It
can be investigated by analyzing the resilience of SG (Singh and
Govindarasu, 2020). The authors in (Clark and Zonouz, 2019)
stated that the resilience of the SG focuses on (I) assurance for
the full corrective measures of the core functionalities of the SG
despite continuous ill-disposed mischievous activities and attacks.
As a boundary condition, some non-core functionalities may be
affected for the time being. (II) Ensured recovery of the crucial
activity of the influenced sub-functionalities inside a predefined cost
limit called the resilience limit. So, to analyze the stability of SG
in terms of safety and security, it is imperative to not only study
cyber security andDRbut also explore the interdependence between
them and how they contribute towards the resilience measure
of SG. For this reason, the protection of SG infrastructure from
such undesired actions with mischievous intentions is an emerging
research area (Cybersecurity, 2018), for the government (UsEnergy.
U)- (InEnergy), and international agencies like the National
Institute of Standards and Technology (NIST) (Cybersecurity,
2018) and the European Union Agency for Cybersecurity (ENISA)
(EuGovernment).

FIGURE 1
Smart grid reliability criteria.

There is a lack of academic research on smart grid reliability
as it concerns to users, and further investigation on this subject is
necessary (Balali et al., 2023) and (Bohra and Anvari-Moghaddam,
2022). To understand the criteria for judging the Reliability and
Security Aspect of SG, the authors have proposed in (Mashal et al.,
2023) as three main factors: (1) The “Network System” criterion is
all about the needs and standards of the communication network
system. (2) The “Big Data” criterion shows the features and traits of
handling large amounts of data. (3) The “Grid efficiency” measure
checks how well the smart grid works as presented in Figure 1.

In Mashal et al., (2023), authors proposed the problem of
evaluating the reliability of smart grids as a Multiple Criteria
Decision Making (MCDM) problem in order to investigate the
elements that influence it. With the help of expert opinion and
MCDA approach, the authors proposed a overall rank for criteria
and subcriteria as mentioned in Figure 1. The below figure presents
the rang and weightage of subcriteria, Figure 2. From this figure, it
is evident that for Big Data handling criteria, Privacy and Analytics
are two important sub-criteria, for Grid Efficiency point of view
Interoperability, Availability and Self-Healing are an important sub
criteria and finally for Smart Grid Network System aspect, Network
Cyber Security andDelay are highly ranked sub-criteria.The present
work is mostly based on the resilience mechanism defined by the
NIST report (Ross et al., 2019). The main contributions of the paper
are as follows:

1) Propose a framework for SG with demand response
optimization and cyber events handling mechanism.

2) As mentioned above in Figure 2, the seven sub-criteria
are explored through this work which are as Privacy,
Analytics, Interoperability, Availability, Self-Healing, Cyber
Security and Delay.

3) Present the design and execution of a detectionmechanism for
cyber events, thus ensuring the security of SG.

4) Address the wellbeing of the critical SG assets by carrying
out a DR balance mechanism that allows a crucial energy
supply for the whole SG, expediting the expectation of future
utilization patterns.

5) Theproposed framework demonstrate how the ideas ofDR and
cyber security with resilience are intrinsically related.
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FIGURE 2
Global weights and ranking for sub-criteria -smart grid reliability.

The rest of the paper’s structural flow follows: Section 2
describes the background and related work. It also describes the
DR mechanism and the optimal method to ensure its smooth
functioning, along with the relationship between DR and SG
resilience. It also depicts the necessity of cyber security and its post-
attack handling scenarios. Further, Section 3 presents the proposed
framework as a solution for the problem formulated. To validate
the effectiveness of the proposed framework, Section 4 describes
the data used for the experiment, and further, Section 5 shows the
usability of the DR and cyber security for the safety and security of
SG from the resilience perspective. Finally, Section 6 is for conclusive
remarks and future scope of the present work.

2 Background work

As per the NIST, the definition of the SG is the power
delivery infrastructure based on integrating and amalgamating
different smart computing and communication technologies
with intelligent services. The ENISA also considers SG as an
intelligent energy infrastructure with two-way communication
capability for consumers and producers with smart components like
Advance Metering Infrastructure (AMI). Throughout the world,
the arrangement and activity of power infrastructure foundations
are, by and large, dependent on security and sufficiency necessities.
These principles permit the framework construction to withstand
dangers to supply consumer requests with a great and negligible
disruption throughout a period. Due to environmental change, the
number and seriousness of natural disasters like tempests, droughts,
and floods have been observed in many countries. In 2012, the

northeastern territories of the USA were impacted by a hurricane
that annihilated around 100,000 electrical wires. Around 7 million
people were affected by a power cut as a result of this event. As per
the authors (Panteli and Mancarella, 2015), the impact of severe
weather events is expected to increase due to higher greenhouse
gas concentrations. Such contingencies emphasize the urgency and
importance of making the power grid smarter and more intelligent
enough to withstand these catastrophic circumstances that also
impact social life.

Along with natural disasters, cyber security is also one of the
major concerns for SG’s safe and smooth operation. In (Panteli and
Mancarella, 2015), resilience is defined as “the ability of a system
to withstand, absorb, and rapidly recover from an external, high-
impact, low-probability devastating event, like an extreme weather
event or a cyber attack”. A resilient infrastructure can restore
and recover from such a damaging situation within an acceptable
time frame. Many researchers have defined the resilience concept
from a critical infrastructure perspective. For example, authors in
Mousavizadeh et al. (2018) defined resilience as the ability to recover
and restore the system against extreme catastrophic events. The
definition has covered both active and passive concepts. One of
the important factors to consider while determining the reliability
and stability of SG is the consideration of insider attack scenarios,
as explained by (Singh et al., 2021). It is shown that if an attacker
already has access to the system as an insider, this access can be
used to launch attacks that are more difficult to detect and prevent.
Another work by Cheng and Yu (2019) shows how the AI 2.0, driven
by data, will speed up the growth of smart energy and electric power
systems (Smart EEPS). In this version of AI, machine learning (ML)
is a key method that analyzes large amounts of real and simulated
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FIGURE 3
Attack resilient smart grid functioning.

data to predict outcomes, make judgments, and help people make
better decisions.

The SG infrastructure’s intelligent communication and decision-
making system components make its resilience more dependent
on the underlying distribution network. For example, in Li et al.
(2017), in normal mode, the SG may not have any Micro Grid (MG)
formation. However, after disturbing events or partial blackouts, the
same SG has one or more MG formations based on the resilience
measures taken by the operator. With the proper utilization of
DR in the MG system, load scheduling can be achieved efficiently
by detecting anomalies in the system. Another research work
in Fleschutz et al. (2021) highlights the price-based demand
response (PBDR) system that is attributed to good economic
and environmental aspects. With the analysis of carbon emissions
based on the PBDR system, the authors have established that the
PBDR system is good for economic and environmental aspects.
The aim of another work, Chen et al. (2015), is to suggest a new
method for managing power distribution systems during outages.
The suggested strategy entails building numerous microgrids that
are live-connected to the radial distribution system and powered
by distributed generators (DG). This allows for the restoration
of critical loads in a timely manner, thus making the SG more
resilient (Figure 3).

In addition to the role of these advancements in day-to-
day operator activity, they give greater adaptability to power grid
utility in the extreme possibility conditions in which electrical
lines are harmed or association with the upstream SG network
is disturbed. This issue has constrained network operators to
make an inescapable arrangement for the resilient operation of the
SG in extreme conditions like technical issues, natural disasters,
and man-made issues that cause irrecoverable losses. Hence, the
occurrence of severe contingency conditions is a prominent issue.
Consequently, advancing an appropriate procedure to decrease the

adverse consequences of this issue on the SG network has become
vital. Up to now, considerable research has been done in the
context of both normal and contingency situations of SG. Therefore,
the present section represents the resilience measures of SG as
per the NIST (Ross et al., 2019) framework, which is as follows:

1) Adaptive response
2) Segmentation
3) Redundancy
4) Diversity
5) Deception

For more detailed explanation, the present section has been
divided in to two segments as SG Resilience in context to Cyber
Resilience and Optimized Demand Response, respectively.

2.1 SG resilience: cyber resilience

NIST has published a report with a special focus on cyber
resilience, “Developing Cyber Resilient Systems: A Systems Security
Engineering Approach”, (Ross et al., 2019). It includes different
verticals: adaptive response, segmentation, redundancy, diversity,
and deception. Each of these (Figure 4) has standard procedures and
best practices with the objective of making attack-resilient systems.
A more detailed explanation of the NIST resilient mechanism
is as follows:

1) Adaptive response: This method entails a prompt and suitable
response to a cyberattack by changing specific system elements
to change their functionality or adjust the resource allocation.
The system must continue to function while these changes are
implemented.

2) Segmentation: It prioritizes activities and resources based on
their importance and reliability to identify and secure themost
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FIGURE 4
NIST Cyber Resilience technique (Ross et al., 2019)

attractive or susceptible ones. Segmentation can happen either
manually or automatically while the system is running.

3) Redundancy: It embraces the existence of numerous, secure
instances of critical components, including hardware, data, and
functions (referred to as “replicas”), eliminates single points of
failure, and enables the system to continue functioning even
after a successful cyber attack. The retention of additional,
alternate communication resources is another definition of
redundancy. At this point, replicas must stay in sync.

4) Diversity: This strategy uses heterogeneity in terms of
architecture, design, or technology tomake it more difficult for
attackers to take advantage of widespread vulnerabilities.

5) Deception: It is carried out by concealing crucial resources,
knowingly disseminating false information, or leading
attackers in the wrong direction to ripoffs of the genuine
system components. Even when they have gained in, it may be
able to stop them from seriously harming the system.

Another factor important for the resilience of SG, as analyzed in
Adepu et al. (2020), is weaknesses in both the network infrastructure
and the processes that control the smart grid. It was explained
that these overlooked, common vulnerabilities can be effectively
used to attack smart grids. This means that they showed that
even vulnerabilities that are known to exist can be used to attack
smart grids if they are not properly addressed. The authors in
Adepu et al. (2020), specifically mentioned that distribution systems
with multiple energy sources are particularly vulnerable to attack.
This is because these systems are more complex and therefore
havemore potential vulnerabilities. Another important contribution
towards the cyber resilience of SG has been mentioned in a special
publication of NIST (Ross et al., 2019) and pointed out that SG
are vulnerable to cyber attacks due to their use of heterogeneous
communication technologies and their distributed nature. Further
work on a similar line is being done by Syrmakesis et al. (2022)
and shows that while preventing or detecting cyber attacks is a
well-studied field of research, making SG more resilient against
such threats is a challenging task. The article, (Babar et al., 2020),
presents the implementation of a safe demand-side management
system in the smart grid. This system utilizes machine learning
and IoT techniques to accurately identify dishonest entities within
the grid. Authors in Tebekaemi and Wijesekera (2019), introduced
the secure overlay communication model as a means to distribute
the operation and control of smart grids. This model includes a

technique for detecting attacks that modify data. In another work as
e Sousa et al. (2022), the authors addressed the identification of load-
altering attacks, which have the potential to disrupt network stability,
by employing linear matrix inequality optimization techniques.
The study conducted by Srivastava and Parida (2022) focuses on
identifying and isolating potential problems in AC microgrids using
a machine-learning technique. The ramifications of injecting false
data on the functioning of intelligent power distribution networks
have been examined in the study conducted by Cao et al. (2022).
A brief reason of deep reinforcement learning (DRL) suitability for
false data injection (FDI) attack detection compared to traditional
methods are as:

1) Adapts to Changing Conditions: Smart grids are constantly
changing, with different power demands, weather conditions,
and operational challenges. Traditional detection methods
often rely on fixed thresholds or static patterns, which can
struggle to keep upwith these changes.DRL, on the other hand,
learns and adapts in real-time. It can adjust to new situations
as they happen, making it better suited for environments like
smart grids where things are always shifting. This adaptability
makes DRL more resilient to new, unexpected types of attacks.

2) Tracks Attacks Over Time FDI attacks usually do not happen
all at once; attackers often inject false data in small doses
over time to gradually influence the system. DRL is great
at handling these kinds of “sequential” tasks. It considers
the long-term impact of each data point, so it is able to
detect patterns or small, ongoing changes that might indicate
an attack in progress. Traditional methods might miss these
subtle, accumulating signs of trouble since they often analyze
data in isolated snapshots.

3) Learns Complex Patterns Automatically The data in smart
grids can be pretty complex—things like voltage, power flows,
and load data are all interrelated, and it is hard to manually
define features to capture every subtle pattern or anomaly.
DRL uses deep neural networks to automatically learn relevant
features from this data. It is like having a model that can see
subtle signs of unusual behavior without needing an expert to
pre-program every possible pattern. This ability to learn what
matters directly from the data gives DRL an edge in spotting
the tricky, hidden signs of an FDI attack.

4) Fast, Real-Time Detection Traditional detection methods can
sometimes be slower or less responsive. They may need time
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to process batches of data or use fixed rules that might not
respond fast enough. DRL models are designed to make quick
decisions. They’re built for real-time detection, so as soon
as they spot something suspicious, they can flag it. This is
especially important in large smart grids, where attacks need
to be detected and stopped quickly to prevent damage.

5) Learns to Recognize Harmful Attacks Not all FDI attacks are
equally harmful. Some might cause minor disruptions, while
others could lead to serious issues like blackouts. DRL can be
trained to recognize the attacks that are most dangerous. By
using a reward system where it “learns” to avoid actions that
lead to instability, DRL models become better at prioritizing
serious threats over harmless anomalies. This way, it can focus
on detecting the attacks that really matter.

6) Handles New, Evolving Attack Strategies Traditional methods
often rely on known patterns or signatures, making them good
at detecting familiar attack types but less effective against new
or modified ones. DRL, however, can generalize better to new
types of attacks. By training on a wide range of scenarios in a
simulated environment, it learns what normal and abnormal
behavior look like, even if it has not seen a specific attack
before. This makes it more robust and able to catch innovative
or evolving attack strategies.

7) Can Keep Improving Over Time Traditional detection methods
areusuallystatic—oncetrained, theydonotchangeunless they’re
retrainedonnewdata,whichcanbealengthyprocess.DRLcanbe
set up to keep learning continuously, adapting as newdata comes
in.This ongoing learningprocess helps it stay effective as the grid
evolves, whether due to seasonal changes, new infrastructure, or
changing consumer behaviors.

2.2 SG resilience: optimized demand
response

Because of the new advancements in the modernization of the
power grid framework, distributed energy resources (DERs) are
presently essential in providing DR interest in various conditions. It
needs cross-functional arrangements that speed up the coordination
of DERs and help the organization administrator optimize SG
operations. Notwithstanding the DERs, there are more appealing
and moderate choices that make the present SG frameworks more
intelligent than traditional networks. One of the popular options is
distribution network reconfiguration (DNR). Despite having been
presented a while ago, the concept of DNR is now considered to be
a versatile solution in the process of modernizing SG frameworks
(Arasteh et al., 2018). The DNR is characterized as the way toward
changing the situation with regularly open/shut switches of the
distribution network to arrive at an arrangement that enhances
the objective while fulfilling all functional planning constraints
of the SG without discarding any SG infrastructure network
node(s) (Paterakis et al., 2015). Many researchers have handled
the contingency situation, which arises due to disturbances in SG,
with a different mechanism. For example, authors in Gholami et al.
(2016) proposed using fuel in plug-in electric vehicles (PEV) as an
alternative resource to combat partial blackout situations. Due to
the important part that Distributed Generation (DG) and energy
storage systems (ESS) play in the power system, many studies

have been conducted to find ways to include these DERs in the
SG framework under different circumstances. Authors in Nikkhah
and Rabiee (2018) proposed a constraint on voltage stability for
effectively managing wind power as an alternate energy resource.
Further in another work Pilz et al. (2020), authors have investigated
the impact of false data injection attacks on smart grids and designed
a security game to help utility companies choose the best strategies.
They finally stated that the security game can help utility companies
choose the most appropriate monitoring and defense strategies so
that false data injection attacks have only a limited, if any, impact
on smart energy scheduling. The taxonomy of existing research
for the Study of Resilience with Respect to DERs and DNR is
presented in Table 1.

2.3 Research gap and motivation

Price attacks and energy theft or its parameter (voltage, current,
and phase angle)manipulation are the twomain types of cyberattacks
that try to mess up SG-related DR strategies. For instance, attackers
canmess up power distribution systems by posting fake energy prices
that are less than the real ones through the Internet or social networks
(Tang et al., 2019; Tang et al., 2018; Tang et al., 2019b). People who get
false information about low electricity prices will probably use more
as a smart reaction to the chance, which will likely cause a sudden
(partial) load increase in the power system. Then, the quick rise in
demand may lead to a peak load or even an overload on the power
grid. Energy theft attacks are another type of attack. In these attacks,
one ormore customers in the power system are the thieves who try to
make money by changing the data sent to the utility companies about
either generation or usage (Amin et al., 2015; Esmalifalak et al., 2014).
Attacks like these could make the people who do them money, but
the energy companies would lose money. We look at a new kind of
framework that combines false pricing attacks and energy parameter
manipulation attacks in the context of SG security and reliability.

3 Attack resilient smart grid reference
architecture

For the power grid to work reliably, there needs to be a
full and all-encompassing cybersecurity framework that includes
attack prevention, attribution (forensics), detection, prevention,
restoration, and resilience for the smart grid. This framework needs
to cover the physical, application, information, and infrastructure
domains. Computerized reasoning and AI-based intrusion
avoidance and recognition frameworks are the best strategies for
cyber event identification, classification, and lessening its effect
in SG. These arrangements fabricate a keen, adaptable, secure,
resilient, and versatile cyber-physical smart grid infrastructure
(Zeadally et al., 2020). The existing research summary for the
architecture attributed to the automatic protection of SG is presented
in Table 2. Table 2 encapsulates the coverage of different aspects
like fault detection, network reconfiguration, demand response,
stability and robustness, and regulatory policy which are integral
constituents of the SG architecture.

Through this work, we proposed a resilient framework,
considering the microgrid concept as the backbone of the SG
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TABLE 1 Taxonomy of previous research for the study of resilience with respect to DERs and DNR.

References number DERs consideration DERs allocation DR Contingency

DG ESS PEV DG ESS PEV

Ahmadi et al. (2019) No No No No No No No No

Nikkhah et al. (2020) Yes No Yes No No Yes No No

Home-Ortiz and Mantovani (2020a) Yes No Yes No No Yes No No

Gao et al. (2020) No No Yes No No Yes Yes No

Home-Ortiz and Mantovani (2020b) Yes No Yes No No Yes No Yes

Han et al. (2020) Yes No Yes Yes No Yes No No

Nikkhah et al. (2021) No No Yes No No Yes No No

Nikkhah et al. (2021) No No Yes No No Yes No No

Gholami et al. (2016) Yes Yes Yes No No No No Yes

Nick et al. (2017) Yes Yes No No Yes No No No

Nikkhah and Rabiee (2018) Yes No No Yes No No No No

Awad et al. (2015) No Yes No No yes No No No

Vahidinasab (2014) Yes No No Yes No No No No

Rabiee et al. (2018) No No No No No No No No

Ding et al. (2017) No No No No No No No No

Lin and Bie (2018) No No No No No No Yes Yes

Sharifi et al. (2017) Yes No No No No No No Yes

Aghaei et al. (2016) Yes No No No No No Yes Yes

infrastructure. A microgrid is a limited-scale and self-dependent
power distribution framework. It comprises RES and ESS and
is equipped with facilitated control techniques. Loads inside a
microgrid can be upheld by its neighborhood distributed generators
persistently, which facilitates the MG to be detached from its
upstream or parent node microgrid during blackout events or
contingencies (Zhang et al., 2019; Wang et al., 2015). These features
contribute to maximizing the resilience of SG. A resilient SG
framework must be equipped to withstand, expect, and react
to extreme or unprecedented events (Wang and Wang, 2015).
Though the self-adequate microgrid offers several benefits to SG,
more emphasis must be placed on analyzing resilience from a
DR and cybersecurity perspective. The proposed framework as
presented in Figure 5 represents two components: DR optimization
and Cyber event handling and both are explored through a data-
driven approach.

The proposed framework’s operational components are as:

1) Data Anomaly is detected and SG operational strategy
component (having Cyber Event Detection and Demand
Response management) is invoked.

2) The demand Response module is based on effective and
accurate electrical load forecasting.

3) Based on the electrical load forecasting, the profit (DR)
optimization is achieved for all stakeholders (producer
and consumer). Our Previous work (Sinha et al.,
2021) and (Holderbaum et al., 2023) supports the
electrical load forecasting component with detailed
experimentation and validation of the proposed DR
mechanism.

4) Cyber Event detection is mainly for power fault detection
and classification followed by FDI attach detection
mechanism.

5) As part of our previous research work, we have done the power
fault detection and classification (Sinha et al., 2022).

6) For the FDI attack detection component, we proposed a
Reinforcement Learning-based detection mechanism.

7) Finally, the last component of the proposed framework is
supported by our previous work on smart grid restoration
mechanism (Sinha et al., 2020).

The next two subsections discuss these two aspects in detail.
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TABLE 2 Previous Research for the Architecture attributed to Automatic Protection of Smart Grid.

References
number

Fault detection Network
Reconfiguration

DR Stability and
robustness

Regulatory
policy for RE

Bhattarai et al. (2015) Y N N N N

Habib et al. (2017) Y N N N N

Shih et al. (2017) Y N N N N

Momesso et al. (2020) Y N N N N

Ma et al. (2018) Y N N N N

Liao et al. (2019) Y N N N N

Tummasit et al. (2015) Y Y N N N

Sampath Kumar et al.
(2018)

N Y N N N

Muda and Jena (2017) Y Y N N Y

Mahat et al. (2011) Y Y N N Y

Ibrahim et al. (2016) Y Y N N N

Nascimento et al. (2020) Y Y N N N

Papaspiliotopoulos et al.
(2015)

Y Y N N N

Tielens and Van Hertem
(2016)

N Y N N Y

Arani and El-Saadany
(2012)

N Y Y N Y

Alipoor et al. (2014) N Y N N Y

Soni et al. (2013) N Y N N Y

Zhang and Chi (2015) N N Y Y N

Cohenpb and Charles
(1985)

N N N Y N

Allesina and Tang (2012) N N Y Y N

Gribble (2001) N N Y Y N

Long et al. (2017) N N Y Y N

Morstyn et al. (2018) N N Y Y N

Liu et al. (2017) N N Y Y N

Korjenic and Bednar
(2011)

N N Y Y N

Szulecki et al. (2015) N N Y Y N
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FIGURE 5
Attack resilient smart grid architecture.

3.1 Resilience for smart grid demand
response

Because of the techno-monetary problems of the extension of
existing distribution infrastructure, DERs could be a successful
way for electricity delivery to customers with minimized active
power loss and load shedding. However, conventional Distributed
Network Reconfiguration (DNR) models neglect to adjust to
the imperatives and constraints introduced by new SG network
advances. Considering the reasons mentioned above, the adaptation
of an extensive coordinated model in which an optimal activity
model for DR is vital, which is more likely to bring in the resilient
operation of the grid infrastructure (Table 1). In the proposed
framework, as presented in Figure 5, the resilience aspect with
context to DR has been divided into two parts: (i) efficient and
accurate load forecasting and (ii) optimization of profits among
multiple stakeholders for distributed microgrid infrastructure. A
detailed explanation of both aspects is as follows:

3.1.1 Efficient and accurate load forecasting
In our previous work, VAR-CNN-LSTM (Sinha et al., 2021),

and (Holderbaum et al., 2023) we proposed a model based on Deep
Learning (DL) technique to accurately forecast the next 6-hour
electrical load. In load forecasting, historical data is considered time
series data. It has linear and non-linear components (Equation 1).

dt = Nt + Lt + ϵ (1)

where Lt is a linear component at time t, Nt is a component which
is a non-linear component at time t and ϵ is the error component.
A hybrid model called VAR-CNN-LSTM is proposed in this work.
To handle the linear component the Vector Auto Regression (VAR)

is used. The mathematical notation of the time series with A typical
Auto Regression with order ‘p’ can be formulated as (Equation 2).

Yt = α+ β1Yt−1 + β2Yt−2 +⋯+ βpYt−p + ε (2)

where α is a constant denoting the intercept, β1,β2,…,βp are lag
coefficients. Aftermaking time series data stationary, theVARmodel
will do the forecasting task and the residual of this is fed as an input
to the deep learning part that is CNN-LSTM. The resultant vector
from kth convolutional layer is formulated as (Equation 3).

ylij = σ(b
l
j +

M

∑
m=1

wl
m,jx

0
i+m−1,j) (3)

blj represents bias for j
th featuremap, ylij is calculated by input x0

ij from
previous layer, σ denotes the Rectified Linear Unit (ReLU) (Nair and
Hinton, 2010) like activation function and w is the kernel. After the
convolutional operation, the LSTM is used at a lower layer as it stores
the temporal informationwell in advance from the features extracted
by CNN layer.

3.1.2 Load profiling at microgrid level
DR scenarios for power distribution are getting attention as

energy demand continues to grow. Their importance is set to
grow consistently throughout the years before the Smart Grid
(SG) foundation. DR programs attempt to support prosumers to
use uninterrupted supply and decrease their consumption usage
during peak hours, which would eventually support microgrid
administrator changing of DR and draw profit by selling the amount
of generated power to the SG. Though various research works think
of utilizing DR systems, most of them revolve around a model
based on single-agent electricity costs as a variable independent of
climate. However, we recognize an urgency to analyze and support
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learning toward working with amulti-agent model that can enhance
the DR process when power prices are administered through their
respective demands. Our methodology is centered around utilizing
price as a sign that will influence the adjustment of demand and
subsequently optimize the DR reaction.

We suggested a way to use the Asynchronous Advantage
Actor-Critic model to create the agent and a setting that uses
VAR-CNN-LSTM (from our earlier work) to mimic the real-life
situation (Mnih et al., 2016). In our A3C model, we have a master
agent who is responsible for the decision-making based on the
current state of the environment, and we have worker agents
whose sole responsibility is to explore and update both policy
and value networks asynchronously, which are common to all
worker agents. The list of symbols used for the A3C algorithm is
presented in Table 3.

Working of Worker network: Worker agents, as in
Algorithm 3 and 4, are created by themaster agent that is responsible
for the exploration and updation of the policy and value networks.
The work of worker agents can be divided into the trajectory
calculation and updation of the networks.

3.1.2.1 Calculation of trajectory
A trajectory is a path that the agent takes through a state, action

and reward space. The length of the trajectory can vary and be set.
Consider T to be the trajectory length that is set. It is assumed that
everyworker agent has a copy of the current state of the environment
upon which they explore.

(1) First, the agent observes the current state of the environment
at a given time t, St and this is given to the policy network to
generate a probability distribution πθA (At ∣ St).

(2) We create a categorical probability distribution with respect to
the probability distribution function generated by the policy
network that helps in sampling random action.

(3) Upon taking an actionAt, the agent observes the next state St+1
and reward Rt.

(4) The agent stores (St;At; Rt) tuple and repeats the above steps till
trajectory length T.

This process generates a trajectory for each worker agent,
which is different for every agent because of the random actions
chosen to explore the environment.

3.1.2.2 Updating policy and value networks
Before updating the policy and value networks, the worker

agents calculate each tuple’s advantage value, each state’s target value,
and the loss value of policy and value networks for considering the
entire trajectory. The advantage value is calculated for each tuple
present in the trajectory by using the n-step method for every tuple
in the trajectory (Equation 4).

Ad(St,At ∣ θ,θv) =
n−1

∑
i=0

γirt+i + γnV(St+n ∣ θv) −V(St ∣ θv)

∀t ∈ {0,…,T}
(4)

Due to the iterative nature of our process, it is not feasible to
utilize the cumulative rewards R(t) at each time step. In order to
proceed, it is important to develop a Critic model that can effectively
estimate the value function. The agent calculates the total reward Gt

TABLE 3 List of symbols used for A3C algorithm.

Symbol Meaning

S ∈ S States

R ∈R Rewards

A ∈A Actions

St,At,Rt State, action, and reward at time step t of one trajectory

Gt Return; or discounted future reward; Gt = ∑
∞
k=0γ

kRt+k+1

γ Discount factor; penalty to uncertainty of future rewards; 0 <
γ ≤ 1

P(s′, r ∣ s,a) Transition probability of getting to the next state s′ from the
current state s with action a and reward r

V(s) State-value function measures the expected return of state
s;Vw(.) is a value function parameterized by w and θv is the
parameter to the value function

μ(s) Deterministic policy; we can also label this as π(s), but using a
different letter gives μ(s) better distinction so that we can
easily tell when the policy is stochastic or deterministic without
further explanation. Either π or μ is what a reinforcement
learning algorithm aims to learn

π(a ∣ s) Stochastic policy (agent behavior strategy); πθ(.) is a policy
parameterized by θ

A(s,a) Advantage function, A(s,a) = Q(s,a) −V(s); it can be considered
as another version of Q-value with lower variance by taking the
state-value off as the baseline

Q(s,a) Action-value function is similar to V(s), but it assesses the
expected return of a pair of state and action (s,a);Qw(.) is a
action value function parameterized by w

Vπ(s) The value of state s when we follow a policy π;Vπ(s) =
𝔼a∼π [Gt ∣ St = s]

Qπ(s,a) Similar to Vπ(.), the value of (state, action) pair when we follow a
policy π; Qπ(s,a) = 𝔼a∼π [Gt ∣ St = s,At = a]

n varies from state to state and it’s maximum value is tmax

θ parameter to the policy

which can be viewed as a sum of flat partial returns as (Equation 5).

Gt =
∞

∑
k=0

γkRt+k+1 (5)

For any two values within the interval γ ∈[0, 1), we can
conceptualize the returnG0 as having partial termination in one step,
resulting in a degree of (1 - γ) and yielding only the first reward, R1.
Additionally, it can be seen as partially terminating after two steps,
with a degree of (1 - γ)∗γ, resulting in a return of R1 +R2, and so
forth. Finally, before updating the policy and value networks which
are represented by θA and θC, we calculate the loss of both policy and
value networks.
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Loss of policy network is calculated by the given (Equation 6).

Lpolicy (θA) =

T

∑
t=0
(Gt (St) −V(St))

2

T
(6)

The loss of value network is calculated by the given (Equation 7).

Lvalue (θC) =

T

∑
t=0
(−Ad(St,At) log(πθA (At ∣ St)))

T
(7)

where, Ad(St,At) is the advantage function and πθA (At ∣ St) is the
probability distribution of an action given a state at time t given by
policy network.

The policy and value networks are updated in the following
way, considering αθA is the learning rate of the policy network
(actor), αθC is the learning rate of value network (critic).
Policy network (Equation 8).

θA = θA + αθA∇θALpolicy (θA) (8)

Value network or Critic network (Equation 9).

θC = θC + αθC∇θCLvalue (θc) (9)

After the exploration is done by the worker agents and the networks
are updated, the master agent based on the current environment
state takes the best suitable action to maximize the overall reward.

3.1.2.3 Action Space
The steps of the action function are defined as:

(i) Verify that the action is legal.
(ii) Send the history of environment states and calculate the

next state (also including the current environment state)
to the LSTM.

(iii) Compute the new price based on the effect of the action.
(iv) Set the just-calculated price as the price of the next state (the

new price).
(v) Based on the demand and supply values of the next state and

the new price, compute the non-normalized reward.
(vi) In the historical record of environment states, add the next

state to it.
(vii) Return the value of the non-normalized reward and the next

state to the agent.

3.1.2.4 Reward
Based on Algorithm 2, the reward function is formulated with

the following goals as:

(i) Ensure that the demand is always more than supply in order to
ensure that the producer makes a profit instead of paying back
to the consumers to consume electricity.

(ii) Ensure that there is always a buffer present for demand. It
will ensure that abrupt changes in demand or supply will
not impact and decrease the producer’s profitability by a
huge amount.

(iii) In order to avoid a long-term reduction in demand, make sure
that the price of electricity is not extremely high.

Initialize the policy parameter θ at random

Generate one trajectory on policy

 πθ:S1,a1,R2,S2,a2…,St;

for t = 1 to T do

  Estimate the return G

  Update policy parameters:

  θ← θ+αγtGt∇θ log (πθ(at)|St)

end

Algorithm 1. REINFORCE.

Initialize the hyperparameters maxAllowedPrice and

minAllowedPrice

correction ← 1

if ((demand−supply) < 0) or

 (newPrice < minAllowed) or

 (newPrice > maxAllowed):

correction = 0-abs (correction)

reward ← (mod(demand-supply)3)∗(abs(newPrice2))∗

correction

profit ← (demand−supply)∗newPrice

return reward

Algorithm 2. Reward Function.

So, the formula to compute the reward value is as:

reward = |(demand− supply)2| ∗ |newPrice3| ∗ correction

However, the correction is based on the following points:

• If newPrice is within a certain limit or bounds.
• If demand− supply or newPrice is negative.

The value of x is set to 3 and y is set to 2 to satisfy the
constraints mentioned above. The variable newPrice is the non-
normalized value, as in Algorithm 5 of the price the action has given
to the environment. For this function, the non-normalized values of
demand and supply are used. Since we are using the demand and
supply values of the same time step as that of the newPrice, we are
therefore using the demand and supply values of the next time step,
that is, the one thatwill be returned alongside the reward, to calculate
the reward. Here, the correction is a factor that is simply used to
ensure that the newPrice lies within limits or bounds defined earlier,
eventually ensuring no exploding or vanishing price problems. This
happens by recalculating and modifying the reward to punish the
agent for getting too far out of bounds.

3.2 Resilience for smart grid cyber security

Thesecond aspect of the proposed resilient framework (Figure 5)
is cyber event handling with an emphasis on FDI attacks. For this,
the work proposed a deep learning-based algorithm to detect the
ongoing false data injection attack (FDI). The proposed method is
divided into six sections:
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Global parameters:-θ, w

Initialise thread-specific parameters: θ′ and w′

Initialize time step t = 1

while T ≤ Tmax do

  Reset gradient: dθ = 0 and dw = 0.

  Synchronize thread-specific parameters

with global

   ones: θ′ = θ and w′ = w.

  tstart = t and sample a starting state St.

  while (st != TERMINAL) and t−tstart ≤ tmax do

   Pick the action At ∼ πθ′(At|St) and receive a

    new reward Rt and a new state St+1.

   Update t = t+1 and T = T+1

  end

  Initialize the variable that holds the return

   estimation

     R =
{{
{{
{

0, St = TERMINAL

Vw′ (St) , otherwise

}}
}}
}

  for i = t−1,…,tstart do

   R← γR+Ri; here R is a MC measure of Gi.

   Accumulate gradients w.r.t.:

    dθ← dθ+∇θ′ logπθ′(Ai|Si)(R−Vw′(Si));

   Accumulate gradients w.r.t. w’:

    dw← dw+2(R−Vw′(Si))∇w′(R−Vw′(Si)).

  end

  Update asynchronously θ using dθ, and w using dw

end

Algorithm 3. Asynchronous Advantage Actor-Critic (A3C) Offline + Online
(Episodic).

3.2.1 Simulating cyber attacks
We simulate the attack by dividing the simulation into episodes.

In each episode that spans 500 timesteps, the attack starts at a
random time step (t).We train our reinforcement learningmodel on
several episodes and use a predetermined reward system to compute
the reward and take the appropriate action.

3.2.2 Predict agent action
In each episode, at each step, the neural network model receives

the state value and predicts two values: the estimated reward for each
action (stop or continue) for that given state. Using this prediction,
we take action with the maximum reward and proceed to the next
state. The reward system ensures that the model is punished for
taking the wrong actions at the right time.

3.2.3 Goal of the reinforcement learning agent
We have two possible states that our system can be in:

1) Normal functioning (Sn)
2) Under FDI Attack (Sa)

We have two possible actions that the RL agent can take:

1) Continue the normal functioning of the grid (Do not stop the
simulation) (Ac)

2) Stop the simulation (As)

Global parameters: -θ, w

Initialise thread-specific parameters: - θ′ and w′

Initialize time step t = 1

Initialize deques trajectoryReward,

trajectoryState

 trajectoryAction

while (st != TERMINAL) and t−tstart ≤ tmax do

  Pick the action at ∼ πθ′(at|St) and receive a new

   reward Rt and a new state St+1

  Update t = t+1 and T = T+1

  append state to trajectoryState

  append action to trajectoryAction

  append reward to trajectoryReward

end

while True do

  Reset gradient: dθ = 0 and dw = 0.

  Synchronize thread-specific parameters

with global

   ones: θ′ = θ and w′ = w.

  tstart = t and sample a starting state st.

  Pick the action at ∼ πθ′(At|St) and receive a new

   reward Rt and a new state St+1.

  Update t = t+1 and T = T+1

  Pop the trajectoryState

  Pop the trajectoryAction

  Pop the trajectoryReward

  Append newState to trajectoryState

  Append newAction to trajectoryAction

  Append newReward to trajectoryReward

  Initialize the variable that holds the return

   estimation

     R =
{{
{{
{

0, St = TERMINAL

Vw′ (St) ,otherwise

}}
}}
}

  CalculateVpredicted,Vtarget and Advantage

  Accumulate gradients w.r.t. :

   dθ← dθ+∇θ′ logπθ′(Ai|Si)∗ (Advantage(Si);

  Accumulate gradients w.r.t. w’:

   dw← dw+∇w′(vpredicted −vtarget)2.

  Update asynchronously θ using dθ, and w using

   dw.

end

Algorithm 4. Asynchronous Advantage Actor-Critic (A3C) Online mode
Sliding Window.

Our objective is to create an agent to identify the attacks as soon
as they begin (not sooner, not later) in order to avert severe grid
damage. We have four different possibilities as a result of our agents’
actions. They are as follows:

1) The agent terminates the simulation before the attack occurs.
2) The agent terminates the simulation after the attack starts.
3) The agent does not halt the simulation after the attack starts.
4) The agent does not halt the simulation before the attack occurs.
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Set hyper-parameters:

 ζ,totalNumActions,priceUpperBound,priceLowerBound

 for ∀timestept do

 action = a ∈ [0,totalNumActions−1]

 maxChange = (priceUpperBound−priceLowerBound)/2

 correctingFactor =

2(maxChange1/ζ)/totalNumActions correctedAction =

action− (totalNumActions/2)

 pricet = pricet−1 + (correctingFactor∗correctedAction)ζ

 end

Algorithm 5. Update Price.

In the above four outcomes, only 2 and 4 are desired, whereas
actions 1 and 3 are unintended.

3.2.4 Reward system
For each of the above four consequences of our agent’s action, we

reward it in such a way that we punish the unintended consequences
and reward the intended ones. Suppose the current state is defined
as St and the current action as At. We can define a possible reward
policy as (Equations 10–13).

Rewardt = C1, if St = Sa andAt = As (10)

Rewardt = −k1 × (t− t0) , if St = Sa andAt = Ac (11)

Rewardt = C2, if St = Sn andAt = Ac (12)

Rewardt = −k2 × (k3 − noise) , if St = SntextandAt = As (13)

Where C1 and C2 can be small positive values to ensure positive
reward, k1,k2 and k3 are constants that we can fine-tune states to
improve performance. Sn is the state under normal functioning, and
Sa is the state under FDI attack. At the same time, Ac denotes the
action to continue the normal functioning of the grid (do not stop
the simulation), andAs is the action denoting to stop the simulation.
The start (t0) is the timestep when the attack begins. Equation 11 is
the reward when the agent fails to stop the grid while the attack is
happening. In this case, the reward is based on the time elapsed since
the attack began (t0). Equation 13 is the reward when the agent stops
the grid when there is no attack (false positive). We want to punish
this consequence, and thus the reward can have a huge negative value
when this happens.Weuse themeanof the noise vector as the reward
term at that state to incorporate it into the agent’s learning process
and impact its decision when a similar observation occurs at a future
point in time. Hence, this reward policy should theoretically ensure
that our agent learns to avoid unintended actions.

3.2.5 Attack detection learning Algorithm
The steps involved in the training process of the deep

reinforcement learning algorithm are mentioned in Algorithm 6.

 Input = model, targetModel, params

 procedure TRAIN(model, targetModel)

 ϵ← 1,c← 0,trainsteps← 5000,t← 0,BufferSize←

1000,BatchSize← 0

 Initialize Replay Buffer as an empty list

 Whilet < trainsteps do

  timesteps← 500

  attackStarted← False

  start← random number between 0 and 150

  state,noise← grid.IEEE14bus(attack_started)

  qval← model.predict(state)

  action← max(qval)

  for i ← 0 to timesteps do

   if i = = start then

   attack_started← True

   new_state,new_tot_noise =

grid.IEEE14bus(attack_started)

   if t ≤ observe then

   new_qval← model.predict(new_state)

   new_action←  random number between 0

   and 2

   else

   __

   new_qval← model.predict(new_state)

   new_action← max(new_qval)

   if attack has started and action is 0(Stop

   Simulation) then

   __

   reward← 500

    attack has not started and action is

   1(Continue Simulation)

   reward← 5

    attack has not started and action is 0(Stop

   Simulation)

   reward←−100∗(10−noise)

    attach has started and action is 0(Stop

   Simulation)

   reward←−2.5∗(i−start)

   state = new_state

   qval = new_qval

   action = new_action

   tot_noise = new_tot_noise

  if ϵ > 0 and t > observe then

  __

  ϵ← ϵ− (1/trainsteps)

   if t ≥ 500 or Current Size of Replay Buffer >

  buffer then

  Remove the oldest entry in the Replay Buffer

  Generate a mini batch from of BatchSize entries

  from the Replay Buffer

  X,y←

processMinibatch(minibatch) train the model using X 

and y generated

  Save the model after every 100 steps.

Algorithm 6. Attack Detection Learning Algorithm.
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3.2.6 Correlation with NIST framework

• Identify: In the previous sections, we looked at a few possible
attacks on SG systems. False Data Injection (FDI) attack is
one of the most simple yet lethal attacks that can be done
on smart grid networks. The FDI attack falls under two of
the three possible categories of attacks we defined previously
(confidentiality of data, integrity of data and commands,
availability of information, and electricity). FDI attacks can
tamper with the integrity of data and commands. The data that
can be tampered with is the critical sensor information essential
inmaking important decisions about electricity production and
supply. FDI attacks can also cause problems with the availability
of information and electricity. This happens indirectly when
the tampered sensor information is used to make predictions
or estimations about the amount of power needed to be
generated or supplied. Having the wrong estimation can lead
to unintended power surges or outages.

• Protect: This step involves ensuring that adequate safety and
securitymeasures are in place to stop the attack fromhappening
in the first place. In this work, we discussed an additional
software barrier running in real-time to protect against the FDI
attack. It analyzes the sensor readings at regular intervals and
ensures the detection of aberrations in the readings.

• Detect: This step involves identifying the attacks as they
happen. This is essential since it enables us to respond to the
threat and act accordingly. However, as technology advances,
it becomes easier for attackers to bypass these detection
mechanisms. Hence, having a detection mechanism exclusively
for a particular attack makes it much harder for an attacker to
bypass it. This work proposes a reinforcement learning-based
detection mechanism for the FDI attack in particular. This
method constantly tracks the sensor information and utilizes
it to estimate the state of the SG system (under attack or normal
functioning).

• Respond: This is the step where we take the necessary action
to deal with the threat of an attack. The proposed framework
takes the necessary steps as soon as it notices threats in order
to lessen or lessen the severity of the damage that the attackers
have caused. There are several ways to respond to an attack,
ranging from blacklisting the IP address of the attack source
by setting up new firewall rules to stopping the system from
running for a few minutes while you respond to the threat. This
ensures that the amount of damage caused is minimized. In
this work, we proposed a reinforcement learning agent-based
technique that takes the sensor readings at any point in time as
the state of the environment and takes one of two actions: to
stop the system from running further or to continue running.
By stopping the system from running, we are buying time to
respond to the threat posed by the attack and minimize both
the physical and financial damage dealt in the process.

• Recover: The recovery phase ensures that all the services that
were hindered during the attack are restored to their normal
functionality. It also involves setting up necessary security
measures to prevent attacks from happening further. Many
strategies were proposed to deal with the recovery phase. In
this work, we do not deal with the recovery phase of the NIST

framework. We suggest possible approaches in the future work
section of this work.

4 Dataset

4.1 For load profiling

For training the reinforcement learning-based agents, we
tried to mimic the behavior of the power flow analysis of the
smart grid. We have used the publicly available dataset called
Independent Electricity System Operator (IESO). The IESO data
is the collection of various reports released by Ontario’s power
grid operators. The report contains supply, demand, tariffs, and
other relevant parameters. The dataset has values from the time
interval 2010-01-01 to 2019-12-20, with data points taken at
an interval of 5 minutes. We mainly required hourly electricity
consumption by the consumers and the historical tariff price so
we could use it to train our LSTM model to better simulate the
future parameters of the smart grid, including demand, supply,
and other parameters, based on the changes to the tariffs made
by the agent.

While performing the correlation analysis, we removed the
column with a negligible correlation with the price and demand
value, which resulted in the reduction of the column from 47 to
13. This would make the training more accurate for the LSTM
model and efficiently mimic the SG behavior in the agent’s actions.
Finally, there might be some cases where relevant supply data
is unavailable, so we study the latest supply and demand values
from IESO and compute the supply column values, keeping in
mind that their correlation with other column variables is equal
to that of the latest data. This step was essential for the reward
computation due to our assumption that in the SG environment,
most consumers also behave like prosumers, thus making their
demand fluctuate. In this model behavior, the worst situation may
arise when the power supply is greater than demand, thus making
the agent (producer) pay back to the consumers. This will enhance
the importance of the supply value column to make the model
appropriate.

In addition, we normalized the dataset to speed up the learning
process for the LSTM to simulate the environment and, indirectly,
the learning for the policy and critic networks, leading to faster
convergence. The environment and the agents all use normalized
data, except for the reward function and the logging facilities, the
former to give more fine-tuned reward signals to the agent and the
latter for debugging purposes.

Dataset normalization is done to make training easier
for NN. We use the following formula to normalize the
dataset values (Equation 14).

valuerow,col =
valuerow,col −min(valueScol)

max(valueScol) −min(valueScol)
(14)

4.2 For cyber threat detection

The investigation and data generation was completed in a
phased manner so that the readiness of data utilized in FDI
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FIGURE 6
Distribution of the electricity Demand.

attack detection on an IEEE 9-bus framework and a 14-bus
system was carried out in MATLAB Simulink (Documentation,
2020) and MATPOWER (Zimmerman et al., 2011). For 9 Bus,
we deployed six three-phase V-I measurement parts to recreate
PMUs introduced in power frameworks. Likewise, for 14 bus,
we deployed. 11 three-phase V-I measurement parts. For each
PMU in the 9-bus framework, we recorded 18 distinctive electrical
amounts, like the magnitude and those related to current and
voltage. Similarly, for 14 bus, 28 such electrical estimations
are recorded.

5 Power system use case

5.1 Achieving resilience through demand
response

5.1.1 Load forecasting
The load forecasting is done usingmodel proposed in Sinha et al.

(2021). The experiment has been carried out in IESO data (I. E. S. O.
(IESO)) combined with Canada weather data. The data distribution
is presented as in Figures 6, 7.

Themodel outcome on the IESO dataset is described in Figure 8.
From the result, it is clear that the model has achieved good
accuracy and outperforms well in comparison to other existing
models like MLP, HMM, and VAR. For better clarity, we have
tested the model on all eleven regions of Ontario, and the
RMSE score is calculated and presented for all the regions
simultaneously.

5.1.2 Load profiling at microgrid level
We have used Algorithms 1, 2, 3, 4, and 5 for optimal profit

and demand response optimization in the microgrid environment.
The online real-time training of the agent as in Figures 9–11,
and Figure 12 elaborates the outcome of the online training of
the agent with a method of model updates chosen as episodic
(i.e., sliding window approach is not being used here). Instead of
it, we adopted a head-start approach-based pre-trained network

FIGURE 7
Distribution of the electricity Price.

FIGURE 8
Forecast of the electricity Price.

described earlier. Figure 9 depicts that the value of the mean profit
gathered by the agent is relatively higher than the dataset profit.
This would imply that the agent gradually becomes competent in
maximizing profits while keeping the price column’s value within
acceptable bounds or limits.

Figure 10 shows that the critic loss constantly decreases,
implying that the value network can predict the correct value of
the states. When compared to offline mode, we can see that after
2000 episodes, the critic loss in online mode is of the order of 0.01,
compared to 105 in offline mode.

Figure 11 shows that in online mode, policy loss becomes
almost optimal after 2000 episodes, whereas it takes 5,000
episodes in offline mode for it to become optimal. This
implies a better convergence rate to optimal policy in online
mode due to the use of pre-trained networks (headstart
modifications).

It is clear from Figure 12 that the average advantage in online
mode is much better than in offline mode. The algorithm also
quickly converges (on the input data), implying that in online mode,
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FIGURE 9
Profit accumulated plot with the mean, max and min profits values of
models and original datasets.

FIGURE 10
Critic loss curve based on our RL model.

the agent is taking comparatively better actions than its offline
counterpart and is quick to identify the most optimal actions to be
taken in a state.

So, it may be inferred that Deep reinforcement learning (DRL) is
highly effective for load profiling and demand response optimization
because it adapts in real time to changing demand patterns, predicts
future needs, and makes sequential decisions to balance load.
Unlike traditional methods, DRL can personalize load management
for different users, automate demand-side responses, and handle
the complexities of renewable energy integration. By continuously
learning from real-time data, DRL enables proactive peak shaving,
cost reduction, and enhanced grid stability, making the smart grid
more resilient, efficient, and responsive.

FIGURE 11
Policy loss curve based on our RL model.

FIGURE 12
Average advantage.

FIGURE 13
3 bus grid.
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FIGURE 14
IEEE 14 bus grid network.

5.2 Achieving resiliency through
multiagent detection mechanism

This section deals with the experimental outcome as achieved
using the proposed Algorithm 6 for the in-progress FDI attack. The
experiment was carried out on 3-bus (Abur and Exposito, 2004),
IEEE-9 bus, IEEE-14 bus, and IEEE-30 bus systems (Figures 13,
14; Table 4). The assessment will be conducted on three exemplary
bus grids, in conjunction with several standard IEEE grids,
including the IEEE 9 bus, IEEE 14 bus, and IEEE 32 bus systems.
The existing system state vector, comprising voltage magnitudes
and phase angles, is ascertained through the utilization of State
Estimation functions inherent to the PANDAPOWER Python
library (Thurner et al., 2018). Simulation endeavors involve the
initialization of network configurations to their default values for
the simple 3-bus grid, IEEE 9 bus, IEEE 14 bus, and IEEE 33
bus systems, each of which is subjected to a prescribed number
of steps during each episode. The inception of a Fault Detection
and Isolation (FDI) attack is introduced at a randomly selected
point within an episode and persists for an indeterminate duration.
The principal objective entails training our model to promptly
terminate the episode upon the commencement of the FDI attack,
with temporal precision. To check the convergence of the proposed
reinforcement-based learning algorithm,we plot the value of the loss
function as the training of themodel progresses.The plot is shown in
Figure 15.

The evaluationmetrics for the proposed RL agent are as follows:

1) Perfect Calls Percentage
2) False Alarm Rate
3) Good Calls Percentage
4) Late Calls rate
5) Detection Failure Percentage
1) Perfect Calls Percentage: The number of attacks that our RL

agent can detect as soon as they start. Let the number of
episodes where the attack starts time step is the same as the

attack detection time step be Np and the total number of
episodes be T. This can be computed by the equation:

Per fect Calls Percentage =
Np

T
∗100

2) Good Calls Percentage: Let us define good calls as detecting
attacks before a certain number of time steps after they
start. We can call this threshold the Good Calls Percentage.
Let the number of episodes where the attack detection is
within time steps after it starts to be Ng and the total
number of episodes be T. This can be computed using
the equation:

Good Calls Percentage =
Ng

T
∗100

3) Delayed Calls Rate: Let us define Delayed calls as detecting
the attack anytime after the attack begins. Let start be the
time step when the attack has begun, t be the time step when
the agent detects and the total number of episodes be T.
For all the episodes that start, this can be computed using
the equation:

Delayed Calls Rate = ∑|t−start|
T

4) False Alarm Rate: False Alarms are the calls that occur before
the attack begins. We would want to avoid these as much as
possible to avoid disruptions in power supplies. Let start be
the time step when the attack has begun, t be the time step
when the agent detects it, and the total number of episodes be
T. For all the episodes that start, this can be computed using
the equation:

False Alarms Rate = ∑|t−start|
T

5) Detection Failure Percentage: When our agent is unable to
detect that the attack occurred by the end of the episode, we
call this a detection failure. Let the number of episodes this
happens to be called Nd f and the total episodes be T. This can
be computed using the equation:

Detection Failure Percentage =
Ndf

T
∗100

We have used evaluation metrics to estimate the performance of
the proposed RL algorithm for the model trained for simple −3 bus,
IEEE-9, IEEE-14, and IEEE-33 bus systems. We have experimented
using 100 episodes for all IEEE system grids. The threshold for good
calls was set to 10 time steps after the attack began. Table 4 shows
the results of the experiment done on an IEEE 9, 14, 30, and 3-bus
grid system.

6 Conclusion

The Smart Grid framework is an emerging innovation that
carries many advantages to administrators and users, even though it
has a fewdownsides regarding safety and security, whichmay impact
its deployment in real-time applications. Like other frameworks
for critical infrastructure, the advancement of SG modern devices
toward an exceptionally associated and distributed model paves a
few issues for the reliability and safety of the integrated framework.
The proposed framework investigates the reliance of DR on the
smart grid and shows how the ideas of DR and cyber security
with resilience are intrinsically related. The framework first gives
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TABLE 4 Evaluation results of in progress FDI attack using proposed method.

Bus type Perfect calls
percentage

Good calls
percentage

Delayed calls rate False alarms rate Detection failure
percentage

3 Bus Grid 81 96 0.72 1.84 0

IEEE 9 Bus 94 96 0.01 0.50 0

IEEE 14 Bus 88 99 0.50 0.00 0

IEEE 33 Bus 94 92 0.00 4.60 0

FIGURE 15
Loss curve.

the deep learning model for accurately estimating electrical load
and price. Consequently, it proposes an optimized demand response
strategy in a multi-micro-grid environment using a modified RL-
based A3C algorithm (in offline and online modes). The results
show that forDR optimization, onlinemode convergesmore quickly
than offline mode, implying that in online mode, the agent is
taking comparatively better actions than its offline counterpart
and is quick to identify the most optimal actions to be taken
in a state. Further, the framework explored the intricacies of
in-progress cyber attacks, especially FDI attacks. It proposed a
reinforcement learning-based algorithm for the same, and the
experiment is carried out on IEEE-3, IEEE-9, IEEE-14, and IEEE-
33 bus systems. It is shown with the help of a plot that the
loss function minimizes as the model’s training progresses. The
evaluation metrics for the proposed RL agent for the in-progress
FDI attack are Perfect Calls Percentage, False Alarm rate, Good
Calls Percentage, Late Calls rate, and Detection Failure Percentage.
Finally, the framework shows the interdependence of DR and
cyber security and proposes a solution for reliable smart grid
functioning.
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