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The promotion of electric vehicles brings notable environmental and economic
advantages. Precisely estimating the state of health (SOH) of lithium-ion
batteries is crucial for maintaining their efficiency and safety. This study
introduces an SOH estimation approach for lithium-ion batteries that integrates
multi-feature analysis with a convolutional neural network and kolmogorov-
arnold network (CNN-KAN). Initially, we measure the charging time, current,
and temperature during the constant voltage phase. These include charging
duration, the integral of current over time, the chi-square value of current,
and the integral of temperature over time, which are combined to create
a comprehensive multi-feature set. The CNN’s robust feature extraction is
employed to identify crucial features from raw data, while KAN adeptly models
the complex nonlinear interactions between these features and SOH, enabling
accurate SOH estimation for lithium batteries. Experiments were carried out
at four different charging current rates. The findings indicate that despite
significant nonlinear declines in the SOH of lithium batteries, this method
consistently provides accurate SOH estimations. The root mean square error
(RMSE) is below 1%, with an average coefficient of determination (R2) exceeding
98%. Compared to traditional methods, the proposed method demonstrates
significant advantages in handling the nonlinear degradation trends in battery life
prediction, enhancing the model’s generalization ability as well as its reliability
in practical applications. It holds significant promise for future research in SOH
estimation of lithium batteries.

KEYWORDS

lithium-ion battery, state of health, multi-feature, convolutional neural network,
kolmogorov-arnold network

1 Introduction

Driven by environmental issues and the ongoing depletion of fossil fuel reserves, the
demand for electric vehicles is on the rise (Liu H. et al., 2024; Zhang et al., 2023a). Electric
vehicles extensively utilize lithium batteries because of their substantial energy density and
extended lifespan (Feng et al., 2020; Gao et al., 2022; Zhu et al., 2024). Nevertheless, the
electrochemical reactions within lithium batteries during operation lead to aging, which
gradually diminishes both their performance and state of health (SOH), ultimately reducing
the vehicle’s lifespan (He et al., 2024). Given the close relationship between capacity decay
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and battery lifespan, SOH is commonly expressed as the ratio
of current capacity to its original capacity (Tian et al., 2020). As
a result, SOH has emerged as a crucial metric for assessing
battery longevity (Chen et al., 2022; Yang et al., 2024). Moreover,
the battery’s safety is intricately linked to its SOH. As the battery
gradually ages, safety hazards such as spontaneous combustion
and explosion also increase, seriously threatening the personal
safety and property safety of users (Zhao et al., 2024). Hence,
precise SOH estimation of lithium batteries is vital for ensuring
the safety and prolonging the service life of power batteries, which
is essential for enhancing the reliability of battery management
systems (Wang et al., 2020; Yu et al., 2023).

In recent years, a variety of SOH estimation methods have been
introduced, generally categorized into model-based (Amir et al.,
2022; Liu et al., 2022; Rojas and Khan, 2022; Tran et al., 2021;
Xiong et al., 2018; Xu et al., 2022; Yang et al., 2021a; Yang et al.,
2021b; Ye et al., 2023; Zheng et al., 2021) and data-driven (Che et al.,
2023; Cui and Joe, 2021; Feng et al., 2019; Jenu et al., 2022;
Jiang et al., 2021; Li et al., 2022; Li et al., 2020; Ma et al., 2022;
Xu et al., 2023; Zhang et al., 2019; Zhang et al., 2022; Zhang C et al.,
2024; Zhang et al., 2023b; Zhang et al., 2020). The model-based
method involves creating an equivalent model of a lithium-ion
battery, which simulates its internal structure, materials, and
the chemical reactions occurring within it. Model-based SOH
estimation methods include empirical models, equivalent circuit
models, and electrochemical models. Amir et al. (2022) proposed
a dynamic equivalent circuit model. This model is founded on
a 2-RC (Resistor-Capacitor) equivalent circuit, utilizing open
circuit voltage (OCV) as a state function, while considering
the battery’s degradation in various chemical environments.
However, the applicability of the model is limited when the battery
operating conditions change. Yang et al. (2021a) developed a voltage
reconstruction model utilizing partial charging curves. This model
reconstructs the complete terminal voltage curve by analyzing
the relationship between the half-cell electrode equilibrium
potential and the full-cell terminal voltage. Nevertheless, frequent
adjustments and calibrations of parameters are required for different
battery types and states. Xu et al. (2022) proposed a joint estimation
method that combines an equivalent circuit model and a simplified
electrochemical model. This method uses an equivalent circuit
model to describe the dynamic behavior of the battery and identifies
the model parameters online through the recursive least squares
method. The simplified electrochemical model is used to describe
the distribution of lithium content inside the battery and to link the
irreversible loss of lithium with SOH, thereby achieving an accurate
estimation of SOH.

Recently, the swift advancement of machine learning and
artificial intelligence technologies has led data-driven methods for
assessing the SOH to become increasingly prominent. Data-driven
methods do not need to analyze the complex electrochemical
reactions inside lithium batteries, and can directly establish
estimation models based on extracted characteristics such as
voltage, current, temperature, and charging time, making them
more universal. Commonly used data-driven models in recent
years include support vector machine (SVM) (Feng et al., 2019;
Li et al., 2022), long short-term memory (LSTM) (Jiang et al., 2021;
Zhang et al., 2019), gated recurrent unit (GRU) (Cui and Joe, 2021;
Zhang et al., 2023b) and transformer (Xu et al., 2023).

These methods utilize a range of techniques, including
Incremental Capacity Analysis (Jenu et al., 2022; Li et al., 2020;
Zhang et al., 2022), Differential Thermal Voltammetry (DTV)
(Che et al., 2023; Ma et al., 2022) and Differential Voltage Analysis
(DVA) (Zhang et al., 2020). ICA transforms the traditional
charge and discharge curve into an IC curve with more obvious
characteristics.The characteristics contained in the IC curve can not
only effectively reflect the degradation process of lithium batteries,
but also describe the reactionmechanismof internal aging of lithium
batteries. Li et al. (2020) extracted the peak position and peak height
from IC curve, which was smoothed using a Gaussian filter, to
indicate the extent of battery aging. Che et al. (2023) extracted
features including peak position, height, and the area beneath
the DTV curve. This method mainly extracts features under the
constant current (CC) chargingmode anddoes not take into account
the performance in the constant voltage (CV) charging stage. In
fact, charging data from CV stage is highly correlated with the
battery’s SOH (Zhang C et al., 2024). Furthermore, during actual
charging, the process rarely begins at full depletion of power, which
imposes certain limitations on this method.

In traditional SOH estimation methods based on physical
modeling and data-driven approaches, while certain progress has
been made, these methods often show limitations in handling
complex nonlinearity and time-varying characteristics. In recent
years, with the rapid development of deep learning, more and
more cutting-edge techniques have been introduced into SOH
estimation, including attention mechanisms and hybrid neural
network methods. Bao et al. (2022) proposed a hybrid network
combining dilated convolutional neural networks and bidirectional
gated recurrent units, effectively extracting local and global features
from time series data. Bao et al. (2023) introduced a dimensional
attention mechanism, enabling the model to automatically select
features highly relevant to SOH degradation trends, significantly
improving the generalization capability of the model. Liu et al.
(2023) proposed a health status evaluation method that integrates
aging features under dynamic operating conditions, andWang et al.
(2024) studied the coupling effect of state of charge and loading rate,
offering new perspectives and methods for SOH estimation.

Considering the strengths and limitations of the above data-
driven methods, this paper proposes a lithium-ion battery SOH
estimation method based on a multi-feature CNN-KAN model
and conducts an in-depth analysis of the relationship between
battery charging data and SOH during CV stage. Even when the
lithium battery SOH has a significant nonlinear downward trend,
this method still has excellent SOH estimation accuracy. The key
contributions of this study can be outlined as follows:

(1) Utilizing data from CV stage, both electrical and thermal
characteristics were extracted to aid in estimating battery
SOH. The electrical characteristics encompass the charging
duration during CV stage, the time-integral of the current,
and the current’s chi-square value. The Pearson correlation
coefficient was applied to confirm the strong relationship
between these electrical features and battery SOH. Following
this, the electrical and thermal characteristics were integrated
to create a multi-feature sequence, offering a comprehensive
depiction of the battery’s dynamic behavior and thermal effects
throughout the charging process. This methodology facilitates
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the deep learning model in constructing a more precise
SOH estimation framework, drawing on multi-faceted battery
aging data.

(2) ACNN-KANdeep learningmodel with excellent performance
was established. This paper uses the outstanding performance
of CNN in capturing local features and reducing noise
to transform complex battery aging data into higher-level
abstract features, thereby reducing noise and reducing the
computational burden of subsequent models. KAN was used
after CNN, which effectively captures the complex dependency
between input features and SOH through a unique adaptive
network and B-spline basis function, thereby augmenting the
model’s generalization capability.

(3) Comprehensive SOH estimation verification and comparison
with traditional models: The SOH estimation was performed
following the methodology outlined in this paper, leveraging
data from battery charge-discharge cycles across four distinct
charging rates. Then it was compared with KAN, CNN-
LSTM, CNN-GRU and SVR models. The experimental results
demonstrate that when lithium batteries show significant
nonlinear changes during aging, the algorithm proposed in
this paper still performs extremely well. In the four data
sets, compared with other models, the mean absolute error
(MAE), root mean square error (RMSE), and coefficient of
determination (R2) are better than those of other models. The
RMSE is 0.31%, 0.29%, 0.41% and 0.97%, and the R2 is 98.03%,
98.60%, 98.26% and 99.24%, respectively.

To conclude, this paper extracts electrical features from lithium
battery charging and discharging data, which exhibit a strong
correlation with SOH, and integrates them with thermal features
to construct a highly precise SOH estimation model. The efficacy
of this approach is confirmed through experimental validation and
comparative assessment.

The outline of the remaining chapters is structured as follows:
Chapter 2 details the methods for extracting electrical and thermal
features. Chapter 3 presents the proposed CNN-KAN model and
discusses its benefits. Chapter 4 covers the process of acquiring
battery aging data and describes experiments conducted using four
different charging rate datasets based on the method introduced
in this paper. The experimental outcomes indicate that the model
offers distinct advantages. Finally, Chapter 5 provides a summary of
this paper.

2 Feature extraction

The CC-CV charging method is the primary approach used for
charging lithium-ion batteries. Figure 1 illustrates the voltage curve
over time during CC stage and the current curve over time during
CV stage at a charging rate of 0.2C (500 mA). This study focuses
on analyzing the data collected during CV stage. Key features such
as the charging duration, the integral of current over time, and the
chi-square value of current are extracted. The Pearson correlation
coefficient is then applied to perform a correlation analysis on these
features. Furthermore, thermal feature observed duringCV stage are
incorporated to offer a more in-depth analysis of battery behavior
during charging.The data analyzed in this chapter was collected at a
charging rate of 500 mA (0.2C).

FIGURE 1
CC-CV curve at a 0.2C charging rate.

2.1 Electrical features

2.1.1 Charging time
Figure 2A demonstrates that as the battery ages, the duration of

the CV stage increases, with the red dashed line representing the
cutoff current, which is set at 48 mA.This is due to the rise in internal
impedance, which diminishes charging efficiency and subsequently
prolongs the charging period. Based on this feature, the constant
voltage charging time, tCV, is identified as a keymetric for evaluating
battery’s aging process.The calculation formula is given in Equation
1:

tCV(c) = te(c) − ts(c) (1)

where te(c) and ts(c) denote the end time of the entire charging
stage and the start time of the CV charging stage, respectively, where
c represents the number of charging cycles. Figure 2B shows the
complete trend of charging time changing with the number of cycles
at a 0.2C charging rate.

2.1.2 Integral of charging current
During theCV stage, current exhibits a dynamic decay, gradually

diminishing until it reaches the cut-off threshold. The integral of
current during this stage directly reflects the amount of energy
stored, which is closely linked to the battery’s capacity. Figure 3A
illustrates that as the battery ages, the integral of the current rises
notably. Therefore, SI is selected as the feature to characterize the
battery degradation process, where SI represents the integral of the
current during the CV stage.The corresponding calculation formula
is given in Equation 2:

SI = ∫
te

ts
 Ic(t)dt (2)

where Ic(t) denotes the current during the CV phase of cycle
c. Figure 3B illustrates the trend of the current integral as a function
of cycle number at a charging rate of 0.2C.
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FIGURE 2
(A) Current-time curves under different cycle periods; (B) cycle number and charging time curve.

FIGURE 3
(A) The curve of current integral changing with time under various cycles; (B) The curve of cycle number and current integral.

2.1.3 Charging current chi-square
The chi-square statistic was proposed by Pearson in 1,900 as a

statistical method for measuring the correlation or independence
between variables. Since its proposal, the chi-square statistic
has found applications across numerous fields, including image
denoising and signal recognition. It is particularly effective
in characterizing the dependence within observed data while
also mitigating the impact of noise. The chi-square formula
is given in Equation 3:

SI =
n

∑
c=1
 
(xc − xc)

2

xc
(3)

where xc represents the sampled voltage during the constant voltage
charging stage in cycle c, n denotes the total number of battery

charge and discharge cycles and xc signifies the average current in
the constant voltage charging stage for cycle c.

Due to frequent interference from various noise sources, the
data collected at sampling points often fails to accurately reflect
battery SOH. Therefore, this study calculated the chi-square value
of the current data during the CV stage and filtered out noise
through statistical analysis. The reason for choosing the chi-
square value over other statistical measures lies in its ability
to effectively capture deviations in the current data, particularly
when identifying outliers or abnormalities. While other statistical
measures could be considered, the chi-square value was chosen
for its efficiency in detecting variations specific to the dataset
used in this paper. As shown in Figure 4A, the internal materials
gradually degrade, causing the battery to show more fluctuations
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FIGURE 4
(A) The curve of the chi-square value of current changing with time; (B) The curve of cycle number and current chi-square value.

and instabilities during the charging process. Figure 4B represents
the change of the current chi-square value in each cycle, showing
the statistical distribution difference of the battery during various
cycle periods.

2.2 Correlation analysis

To further confirm the relationship between the electrical
features extracted from CV stage and battery’s SOH, this
study employs the Person correlation coefficient method for
analysis of the aforementioned electrical features. The Pearson
correlation coefficient is a statistical tool that measures the
degree of linear correlation between two variables, denoted by
r. The coefficient ranges from [−1,1], where r = 1 indicates a
perfect positive correlation, r = −1 signifies a perfect negative
correlation, and r = 0 denotes no linear correlation. The
formula for calculating the Pearson correlation coefficient
is given in Equation 4:

r =
∑(xi − x)(yi − y)

√∑(xi − x)
2∑(yi − y)

2
(4)

where xi and yi are the sample values of the two
variables, x and y denote their average values of two
variables.

The Pearson correlation coefficient between electrical features
extracted from CV stage and battery SOH were calculated. The
results are shown in Table 1.

Figure 5 visualizes the correlation between the electrical features
mentioned in Section 2.1 and the battery SOH. The three electrical
features mentioned can significantly track the nonlinear trend of
the battery aging process. After normalization, it can be seen that
although the curves of the three features have roughly the same
trend, the curves do not completely overlap, indicating that each
feature has its own role in reflecting the information of the battery’s

TABLE 1 Pearson correlation coefficient between electrical features and
battery SOH at a charging rate of 0.2C.

Charging rate (C) tCV SI SI

0.2 −0.9793 −0.9813 −0.9722

FIGURE 5
Normalized curve of battery SOH and electrical features.

aging information. Considering that a single featuremay not be fully
and accurately describe health status and aging process of battery,
this paper combines these three features to reduce the deviation
caused by relying on a single feature and improve accuracy of the
predictive model.
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2.3 Thermal feature

The temperature of a lithium battery is intricately connected
to its SOH, primarily due to the significant impact of temperature
on the physical and chemical transformations occurring within the
battery. At elevated temperatures, a series of secondary reactions
and degradation processes may take place within the battery, such
as the oxidation of the cathode material and decomposition of the
electrolyte (Hou et al., 2023; Zhang Z et al., 2024). These reactions
expedite the battery’s aging process, causing a swift reduction in
SOH. Conversely, at low temperatures, the electrolyte’s fluidity is
greatly diminished, and ion transport becomes slow, resulting in a
decrease in battery efficiency during charge and discharge, which
accelerates the decay of SOH. This paper extracts the temperature
integral value of the lithium battery during the CV stage as a thermal
feature. The formula is shown in Equation 5:

ST = ∫
te

ts
 Tc(t)dt (5)

whereTc(t) is the temperature during theCV charging phase of cycle
c.

ST can represent the overall thermal accumulation effect of
battery during the CV stage. Long-term thermal accumulation may
lead to accelerated aging of battery materials and performance
degradation. At the same time, ST can smooth out short-term
temperature fluctuations and noise by accumulating temperature
data, and capture the overall temperature change trend of battery
during the CV stage. Battery performance is affected by many
factors, including electrochemical reactions, material properties,
and operating conditions. As a thermal feature, facilitating the
model’s accuracy in SOH estimation, and improving the model’s
ability to generalize.

3 CNN-KAN model

3.1 CNN

Convolutional Neural Network (CNN) were first introduced
by Yann LeCun and others in the 1980s and are mainly used
for computer vision tasks such as image classification and object
detection. The fundamental concept of CNN involves utilizing
convolution operations to extract local features of data and pooling
operations to reduce the dimension of features, thereby reducing
computational complexity while maintaining important features.
Although CNNwas originally designed to process two-dimensional
image data, its principles can also be extended to time series data.
One-dimensional convolutional neural network (1D CNN) is a
convolutional neural network specifically designed to process one-
dimensional data (Khan et al., 2024). It mainly extracts features
from time series data by sliding convolution kernels along the
time axis. Given the excellent performance of 1D CNN in time
series tasks (Kim et al., 2023), this paper employs a two-layer 1D
CNN to extract the electrical and thermal features of CV stage and
capture temporal dependencies.

As depicted in Figure 6, the convolutional layer consists of two
layers. The activation function is ReLU. Since time series usually
contain complex nonlinear relationships, the ReLU activation

function can introduce nonlinearity, so that the neural network
can effectively learn and represent these complex nonlinear
relationships, thereby enhancing prediction accuracy. Through
utilizing multiple layers of convolution, the model builds and
optimizes feature representation layer by layer, which can better
capture and understand the details and global information of the
input data. In addition, extracting features in stages can reduce the
number of convolution kernels, minimizing the model’s parameters
and reducing the risk of overfitting. The pooling layer uses average
pooling which better retains the global information from the
input data. The specific mathematical formulas are illustrated in
Equations 6–10:

3.1.1 Convolutional layer

y1(t) =
∞

∑
s=−∞
 x(s) ⋅ f1(t− s) (6)

where y1(t) represents the output from the first convolutional layer,
x(s) represents the one−dimensional input signal, f1(t− s) stands for
the convolution kernel, s indicates the index within the convolution
kernel, and t corresponds to time or space index.

h1(t) =max(0,y1(t)), (7)

where h1(t) represents output from the first convolution layer
following the application of the ReLU activation function.

y2(t) =
∞

∑
s=−∞
 h1(s) ⋅ f2(t− s) (8)

where y2(t) represents output from the second layer of convolution,
and f2(t− s)

← represents the convolution kernel of the second layer.

h2(t) =max(0,y2(t)) (9)

Where h2(t) represents the output from the second convolution
layer following the ReLU activation function.

3.1.2 Pooling layer

m(t) = 1
T

T

∑
t=1
 h2(t) (10)

wherem represents output of the pooling layer andT represents total
number of time steps.

3.2 KAN

KAN is a network structure based on the Kolmogorov-Arnold
representation theorem. The theorem states that any continuous
multi-dimensional function f(x1,x2,…,xn) can be represented as
a nested combination of several functions of one variable. This
provides a theoretical basis for the processing of high dimensional
data (Liu Z. et al., 2024). The formula is provided in Equation 11:

f(x1,x2,…,xn) =
2n+1

∑
q=1
 Φq(

n

∑
p=1
 φq,p(xp)) (11)
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FIGURE 6
CNN structure.

where Φq and φq,p(xp) are continuous univariate functions, q
denotes the index for the outer summation, and p denotes the index
for the inner summation, n is the dimensionality of the input.

This theory provides us with a powerful tool to deal with
complex high-dimensional data problems. The data in the battery
system is usually high-dimensional and SOH estimation involves
multiple complex nonlinear relationships. KAN can reduce the
complexity of high-dimensional data and achieve more effective
modeling through its nonlinear activation and linear combination
characteristics.

First, the input features xp are divided into adaptive grids.
Each input feature is interpolated using B-spline functions over its
corresponding grid interval.

The B-spline interpolation function is given in Equation 12:

Bi,k(x) =
x− ti
ti+k − ti

Bi,k−1(x) +
ti+k+1 − x
ti+k+1 − ti+1

Bi+1,k−1(x) (12)

where ti represents the position of the interpolation nodes, and k is
the degree of the B-spline.

All the B-spline interpolation results are linearly combined
to produce the final aggregated result φq,p(xp). The formula is
provided in Equation 13:

φq,p(xp) =
N

∑
i=1
 wiBi,k(xp) (13)

where, wi are learnable weights and N is the number of
interpolation nodes.

Φq is the global nonlinear transformation factor in the KAN
model. It is used to aggregate the locally interpolated results
∑np=1  φq,p(xp) for all input features xp and apply global nonlinear
processing to them. The formula is provided in Equation 14:

Φq(yq) = σ(
m

∑
j=1
 vq,j ⋅ yq,j + bq) (14)

where yq represents the sum of the locally interpolated results
for all input features after interpolation, σ(⋅) is a nonlinear
activation function, vq,j are learnable weights in the global
nonlinear transformation layer, bq is the bias term, representing
the offset, and m is the number of nodes in the global
function layer.

Figure 7 illustrates the KAN structure utilized in
this study.

Themain advantage of the KANmodel lies in its use of learnable
activation functions, which are parameterized through splines and
placed on the edges, rather than relying on fixed activation functions
at the nodes. Additionally, KAN eliminates the need for linear
weight matrices found in traditional multi-layer perceptron (MLP),
replacing them with univariate spline functions, making it more
efficient in handling highly nonlinear and complex relationships.
KAN is also better at mitigating the curse of dimensionality,
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FIGURE 7
KAN model structure.

particularly in tasks where compositional structures exist in the
data, enabling more efficient feature extraction and approximation.
Through adaptive grids and spline interpolation, KAN not only
improves accuracy but also offers better interpretability and
visualization capabilities.

CNN effectively captures the local features of the original
feature sequence, reduces noise and alleviates the computational
load on subsequent models. KAN follows CNN to capture complex
dependencies between input features and SOH via its unique
adaptive network and B-spline basis function, enhancing the
model’s generalization capability.

4 Experiments and results analysis

4.1 Experimental data

As shown in Figure 8, we conducted a charge-discharge cycle
aging experiment on a group of cylindrical lithium-ion batteries
with identical specifications on the Neware BTS 4,000 at room
temperature, starting in August 2023. The experimental data was
recorded using the upper computer in the testing system, including
time, current, voltage, capacity, energy, temperature, et al. These
data will be standardized to eliminate dimensional differences and

FIGURE 8
Battery testing system.
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FIGURE 9
(A) SOH at 0.1C; (B) SOH at 0.2C; (C) SOH at 0.5C; (D) SOH at 1C.

TABLE 2 Battery aging parameters at four different rates.

Charging
rates

Cycles Initial
SOH(%)

Final SOH(%)

0.1C (250 mA) 358 98.64 84.55

0.2C (500 mA) 660 99.71 86.55

0.5C (1,250 mA) 490 101.3 83.23

1C(2,500 mA) 214 99.576 47.21

accelerate model convergence. The rated capacity of these batteries
is 2.5 Ah. The experimental procedure is as follows:

(1) Charging stage: CC-CV method was employed, with
charging rates set at 0.1C (250 mA), 0.2C (500 mA),
0.5C (1,250 mA) and 1C (2,500 mA), respectively. When

TABLE 3 Person correlation coefficient between electrical features and
battery SOH at four different rates.

Charing rates (C) tCV SI SI

0.1 −0.9838 −0.9830 −0.9563

0.2 −0.9793 −0.9813 −0.9722

0.5 −0.9931 −0.9930 −0.9822

1 −0.9884 −0.9803 −0.9766

terminal voltage of batteries reached the upper limit of
4.2 V, the process transitioned to the CV stage, continuing
until the current decreased to the predetermined cut-off
value of 48 mA.

(2) Resting stage: After charging, the battery is given 5 min of rest
time to stabilize its internal chemical state.
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FIGURE 10
Experiemental flowchart.

(3) Discharging stage: A CC discharge was performed at a rate
of 0.5C until the terminal voltage dropped to the lower cut-
off value.

In this study, the lithium battery SOH is defined as the ratio of
its current maximum discharge capacity to its initial rated capacity
when it leaves the factory, providing an accurate and intuitive
indication of battery performance degradation. The formula is
defined in Equation 15 (Wang et al., 2022):

SOH =
Qmaxcapacity

Qratedcapacity
× 100% (15)

where Qmaxcapacity represents the battery’s current maximum
discharge capacity and Qratedcapacity refers to its rated capacity upon
leaving the factory.

Figure 9A–D shows changes in four batteries SOH during
multiple charge-discharge cycles at rates of 0.1C, 0.2C, 0.5C
and 1C. The results show that battery SOH typically declines
progressively with an increase in charge and discharge cycles.
However, various factors, including temperature, charging rate,
and aging mechanisms, significantly impact the battery, resulting

in a complex and nonlinear SOH decay process. Battery capacity
can exhibit different levels of regeneration across cycles. These
influencing factors make the precise estimation of lithium battery
SOH a challenging task. Table 2 shows the cycle aging parameters of
the battery at four different charging rates.

4.2 Experimental results

The correlation coefficient between electrical features and
battery SOH at four charging rates is calculated using the Person
correlation coefficient methodmentioned in Section 2.2.The results
are presented in Table 3.

The table demonstrates that the Pearson correlation coefficients
between the selected electrical parameters tCV, SI and SI and
the battery SOH across four different rates are nearly −1. This
suggests a strong inverse relationship between these parameters and
battery SOH,making them reliable indicators formonitoring battery
aging trends.
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FIGURE 11
(A) SOH estimation results at 0.1C; (B) SOH estimation results at 0.2C; (C) SOH estimation results at 0.5C; (D) SOH estimation results at 1C.

TABLE 4 Performance of CNN-KAN in estimating SOH at four
charging rates.

Charging rates (C) MAE (%) RMSE (%) R2 (%)

0.1 0.2479 0.3090 98.03

0.2 0.2096 0.2889 98.60

0.5 0.3254 0.4091 98.26

1 0.6799 0.9663 99.24

As outlined in the second section of this paper, the electrical
and thermal features attributes of lithium batteries during
CV stage at various rates are extracted and paired with their
corresponding SOH values to create a comprehensive dataset.
To preserve dataset’s balance and ensure robust generalization in
the model, the data is evenly split into training and test sets at
a 1:1 ratio.

The training data is fed into the CNN-KAN model constructed
in the third part of this paper. Taking 0.2C as an example, the
number of filters of CNN in the model is 128, and each filter has a
convolution kernel size of 3. The number of hidden layer neurons
in the KAN part is 1,024 to process and interpret the features
extracted by the convolution layer. To enhance the generalization
ability of the model and prevent overfitting, L2 regularization with
a coefficient of 1e-4 is applied after each convolution layer, and
a dropout layer with a coefficient of 0.2 is added after the global
average pooling layer. The optimization strategy for the model
employs the Adam optimizer combined with an exponential decay
learning rate scheduler, initializing the learning rate at 1e-4 with a
decay rate of 0.9. This approach dynamically adjusts the learning
rate, accelerates initial convergence, and allows for refinement with
a lower learning rate in later stages. The model is trained for 100
epochs, with a batch size of 32, and the data is split with a training
to validation set ratio of 8:2.

Figure 10 illustrates the experimental flowchart, which can
be summarized as follows: First, battery tests are conducted at
different charging rates to collect key data such as time, current,
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FIGURE 12
(A) Comparison of SOH estimation results at 0.1C; (B) Comparison of SOH estimation results at 0.2C; (C) Comparison of SOH estimation results at
0.5C; (D) Comparison of SOH estimation results at 1C.

TABLE 5 Evaluation indicators at 0.1C.

Model MAE (%) RMSE (%) R2 (%)

CNN-KAN 0.2479 0.3090 98.03

KAN 0.4986 0.6428 91.46

CNN-LSTM 0.4810 0.7089 89.61

CNN-GRU 0.5259 0.7260 89.11

SVR 0.7845 0.8779 84.07

and temperature.Then, electrical and thermal features are extracted
from the raw data to form a dataset. Next, the dataset is split into
training and testing sets, which are used to train the CNN-KAN
model. Finally, the model’s performance is evaluated by comparing
the predicted SOHwith the true SOH using error metrics likeMAE,
RMSE, and R2.

TABLE 6 Evaluation indicators at 0.2C.

Model MAE (%) RMSE (%) R2 (%)

CNN-KAN 0.2096 0.2889 98.60

KAN 0.5615 0.6619 92.63

CNN-LSTM 0.5323 0.7235 91.19

CNN-GRU 0.6685 0.9637 84.37

SVR 0.8695 1.0659 80.88

Figure 11 presents the results of the SOH estimation.
To comprehensively evaluate accuracy of SOH estimation, this

study utilized standard regression model performance evaluation
indicators, including MAE, RMSE and R2. These indicators
provide an important quantitative basis for understanding model
performance. The formulas used to calculate the above indicators
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TABLE 7 Evaluation indicators at 0.5C.

Model MAE (%) RMSE (%) R2 (%)

CNN-KAN 0.3254 0.4091 98.26

KAN 0.6034 0.7224 94.56

CNN-LSTM 0.9648 1.0820 87.79

CNN-GRU 1.0376 1.1551 86.09

SVR 1.1214 1.2945 82.53

TABLE 8 Evaluation indicators at 1C.

Model MAE (%) RMSE (%) R2 (%)

CNN-KAN 0.6799 0.9663 99.24

KAN 2.2105 2.6456 94.33

CNN-LSTM 1.9875 3.0585 92.42

CNN-GRU 3.0041 3.6384 89.27

SVR 3.5943 3.7858 88.38

are described by Equations 16–18:

MAE = 1
n

n

∑
i=1
 |yi − ̂yi| (16)

RMSE = √ 1
n

n

∑
i=1
 (yi − ̂yi)

2 (17)

R2 = 1−

n

∑
i=1
 (yi − ̂yi)

2

n

∑
i=1
 (yi − y)

2
(18)

where n represents the total number of charge and discharge cycles,
yi represents actual SOH value, y is average of all actual SOH values
and ̂yi is estimated SOH value. In the case of MAE and RMSE,
lower values correspond to higher model estimation accuracy.
Regarding R2, a value closer to 1 signifies a superior model fit. The
outcomes of SOH estimation method presented in this study are
displayed in Table 4.

At these four charging rates, the MAE of the estimation results
remains below 0.7%, RMSE is under 1%, and the R2 exceeds 98%.
Specifically, at a 0.1C charging rate, due to the lower charging current
leading to a longer charging time for each cycle, the data may be
more susceptible to external interference and noise, resulting in
more noticeable fluctuations. However, the R2 still reaches 98.03%
and the RMSE is 0.31%. Particularly at the 0.1C, 0.2C, and 0.5C
charging rates, despite the true SOH value exhibiting significant
nonlinear changes, the SOH can still be estimated accurately,
demonstrating the model’s excellent fitting capability. These results
clearly indicate that this approach can offer reliable and precise SOH
estimates across various conditions.

4.3 Experimental comparisons

To verify the advantages of the CNN-KAN model, comparative
experiments were conducted with KAN, CNN-LSTM, CNN-GRU
and SVR models. We utilized the previously mentioned laboratory
data across different charging rates, and the results of these
comparisons are displayed in Figure 12A–D. Tables 5–8 provide a
comparison of the MAE, RMSE and R2 estimation results across
diverse charging rates among the models.

The table shows that the introduced model surpasses the other
four models. Leveraging the robust feature extraction capability of
CNN, the CNN-KANmodel presented in this paper achieves higher
accuracy than the standalone KAN model, with RMSE reduced by
at least 0.31% and R2 increased by at least 3.7% across all four rates.
Compared to traditional CNN-LSTM,CNN-GRU, and SVRmodels,
the R2 is improved by at least 6.82%.

LSTM and GRU capture long-term dependencies through
their internal gating mechanisms, while SVR, as a regression
algorithm based on statistical learning theory, can handle some
nonlinearities using kernel functions. However, all three methods
face limitations when dealing with highly nonlinear datasets. In
contrast, KAN excels at handling complex nonlinear relationships
by decomposing high-dimensional functions into combinations of
univariate functions, making it more effective at capturing the
nonlinear dependencies between input features and SOH.

The proposed CNN-KAN model can provide fast and accurate
SOH estimation at different charging rates. These findings
demonstrate that combining the electrical features of CV stage
with the thermal feature, and processing their complex nonlinear
relationship through an advanced neural network, is an effective
method for monitoring battery health status.

5 Conclusion

This paper introduces a lithium-ion battery SOH estimation
method built on multi-feature and CNN-KAN, which markedly
improves the precision of SOH assessment.

This paper extracts the electrical and thermal features from the
data of the CV stage of lithium batteries. The electrical features
include the time, the integral of the current with respect to time
and the chi-square value of the current. The features of lithium
battery aging process are fully explored from the perspective of
dynamic changes and long-term accumulation effects. The Person
correlation coefficient method is employed to analyze and confirm
that these features are highly correlated with battery SOH. Beyond
the electrical features, the thermal feature of CV stage is as
well combined to take into account the impact of the long-term
accumulated thermal effect on the battery SOH. A mathematical
model is then established that links these quantitative features with
the battery SOH, ensuring precise SOH estimation based on the
identified features for any charging cycle.

On this basis, this paper proposes a CNN-KAN model with
excellent performance. This model leverages the strengths of
CNN in efficiently extracting key features from raw data and
KAN in effectively capturing complex nonlinear relationships in
data through adaptive grids and B-spline basis functions. The
model underwent thorough validation across four datasets with
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varying charging current rates. The findings reveal that despite the
pronounced nonlinearity in the battery SOH decay process, MAE
is 0.25%, 0.21%, 0.33% and 0.68%, RMSE is 0.31%, 0.29%, 0.41%
and 0.97% and an average R2 of 98.53%. At a charging rate of 1C,
the upper R2 is as high as 99.24%. Comparative experiments with
KAN, CNN-LSTM, CNN-GRU, and SVR models further confirm
the excellence of CNN-KAN.

This study presents a novel method for estimating the SOH of
lithium-ion batteries by combining multiple features and a CNN-
KAN model. The proposed method shows significant potential for
real-world applications and future research. By analyzing electrical
and thermal characteristics, the model offers a more comprehensive
perspective on battery performance, making it particularly suitable
for real-time monitoring of battery status in electric vehicles
and renewable energy storage systems. This research lays the
groundwork for exploring more advanced architectures or hybrid
models to further enhance the accuracy of battery SOH prediction.
Additionally, future studies could incorporate more environmental
factors to further improve the model’s predictive capabilities. We
believe this study will strongly support further exploration in the
field of battery health diagnostics.
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