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A distance-aware approach for
reliable out-of-distribution
detection of wind turbine
gearbox fault diagnosis

Jingxin Zhou and Yao Zhao*

College of Electrical Engineering, Shanghai University of Electric Power, Shanghai, China

Fault diagnosis of wind turbine gearbox is essential to ensure operational
efficiency and prevent costly downtime. However, conventional deep learning
models often struggle with domain shift, where the distribution of testing data
differs from that of training data. This issue is more pronounced with out-of-
distribution inputs—data outside the conditions themodel was trained on. These
challenges can lead to unreliable diagnostic results and potentially hazardous
situations. To address this, we introduce Spectral Normalization and Gaussian
Process methods into Res2Net framework to enhance its ability to detect out-
of-distribution data. Spectral Normalization and Gaussian Process improve the
model’s ability to assess the distance between test and training data. This
model can handle out-of-distribution data due to both epistemic and aleatory
uncertainty. The experiment collected raw vibration signals from gearbox
under varied conditions. Unknown faults simulated epistemic uncertainty, while
noisy samples resulted in aleatory uncertainty. These signals were converted
into images using the Gramian Angular Difference Field transformation. The
resulting images were then fed into the Res2Net model, enhanced with Spectral
Normalization and Gaussian Process. The model outputs include classification
results and corresponding uncertainty values based on distance awareness.
With quantified uncertainty values, the model can reflect the trustworthiness of
the diagnostic results. By comparing these uncertainty values with predefined
thresholds, it is possible to distinguish whether the data are out-of-distribution
or not. Experiments have proven the superiority of the Distance-Aware Res2Net
in out-of-distribution detection and fault diagnosis.

KEYWORDS

fault diagnosis, wind turbine gearbox, out-of-distribution detection, uncertainty
quantification, spectral normalization, Gaussian process, Res2Net

1 Introduction

It is important to develop fault diagnosis and healthmanagement techniques tomonitor
machine health in real time. In the past, traditional machine learning theories were
popular in intelligent fault diagnosis, such as artificial neural networks (Ben Ali et al., 2015;
Behim et al., 2024), k-nearest neighbors (Liu et al., 2021; Zhenya and Xueliang, 2022) and
support vector machines (Jiang et al., 2021; Wang et al., 2024). Among these methods, fault
features aremanually extracted from the collected data. Sensitive features are then selected to
train the diagnosticmodel for automatic diagnosis ofmachine health conditions. Traditional
machine learning methods rely heavily on human labor for feature extraction. They are
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unable to keep up with the growing volume of data. This leads
to less accurate diagnosis. Moreover, these methods are limited to
extracting superficial features and lack the capability to uncover
deep-seated fault information.

Deep learning approaches like Stacked Auto-encoders
(Chen et al., 2023; Zhao et al., 2024), Deep Belief Networks
(Tang et al., 2024; Lu et al., 2021), and Convolutional Neural
Networks (CNN) (Chen et al., 2019; Zhou et al., 2023) including
Residual Neural Networks (ResNet) (He et al., 2016), have facilitated
the development of intelligent fault diagnosis. These methods rely
less on expert knowledge and have achieved remarkable results
in various applications. According to the input dimension, fault
diagnosis methods using CNN can be divided into two categories.
The first category uses one-dimensional signals as CNN input. For
example, Zhao et al. (2023) added an adaptive activation function
to a 1-D convolutional neural network for fault diagnosis of the
planetary gearbox. Zhang et al. (2019) proposed an algorithm
based on one-dimensional ResNet for vibration signals, which
showed better performance than the 1D-CNN in bearing fault
diagnosis. Some researchers argue that, with advancements in
artificial intelligence, image classification methods offer greater
advantages over raw signal analysis. This is mainly because most
well-known CNN models require two-dimensional images as
input to fully leverage the networkperformance (Sun and Wang,
2024). Many methods for converting one-dimensional data into
two-dimensional images have been applied in intelligent fault
diagnosis. For example, the spectrum based on Fourier transform
(Yi et al., 2023), the scalogram based on wavelet transform (Li et al.,
2024), the Gramian angular field (Gu et al., 2023), and the Markov
transition field (Yan et al., 2022), and so on. The converted images
provide greater convenience for datamining and classification tasks.
Deep learning automatically learns high-level representations in
images.This approach adaptivelymines essential features that reflect
the health status of rotatingmachinery. Unlike traditional intelligent
fault diagnosis, it does not rely on expert experience or manual
feature extraction.

The effectiveness of deep learning models relies on the
assumption that the training and test data distributions are the same.
However, this condition is rarely met in real-world scenarios (Han
and Li, 2022). Wind turbines are subject to variable environmental
conditions and complex operating states, causing their fault modes
to be varied and difficult to predict. These factors affect the
distribution of fault data, leading to differences from the training
set. Consequently, the diagnostic effectiveness of the model is
impacted.Thediscrepancy between ideal assumption and real-world
conditions raises a key challenge: The model fails to adapt to new
fault patterns and changes in environmental noise, resulting in
outputs that lack utility in real-world applications. Furthermore,
when faced with unknown situations, the model may display
overconfidence and fail to recognize its own limitations. This can
lead to the spread of incorrect information and inappropriate
decision-making. To address this issue, domain adaptation has been
proposed (Wan et al., 2022; Tang et al., 2021; Zhang et al., 2024).
However, domain adaptation still requires some knowledge of the
target domain data. This is because one of the main challenges
of domain adaptation is narrowing the distributional differences
between the source domain (training data) and the target domain
(where the model will be applied). Explicitly identifying these

differences is essential for designing an effective adaptive strategy.
Arbitrary unknown faults may occur in real applications, and
domain adaptation is not always the best solution.

Therefore, when confronted with unknown fault types, methods
for uncertainty quantification (UQ) need to be introduced. A
significant benefit of UQ is that it enables end users to assess
when the model’s predictions are reliable and when they should
exercise additional caution in making decisions based on those
predictions. Consequently, UQ can provide valuable information
about the limitations of diagnostic coverage, leading to more
informed decisions in operation and maintenance.

The mainstream UQ methods include Bayesian neural network,
neural network ensemble, etc. These methods have been applied
in the fields of autonomous driving, medical health, speech
recognition, image processing, and more (Abdar et al., 2021).
However, they have not received much attention from researchers
in fault diagnosis. Han and Li (2022) integrated several deep
neural networks to create a diagnostic system called “deep
ensembles.” This system enables credible analysis to identify
out-of-distribution samples and provides alerts for potentially
unreliable diagnoses. Zhou et al. (2022) proposed a method for
UQ of fault diagnosis results in a probabilistic Bayesian deep
learning framework, which utilizes the uncertainty information
to differentiate unknown domains, thus enabling trustworthy
machine fault diagnosis. However, their practicality in real-
time and industrial-scale applications is limited by memory and
inference costs. Bayesian neural networks quantify uncertainty by
inferring the probability distribution of weights, a process that is
computationally intensive. This leads to slow inference speeds. It
is not suitable for applications that need real-time responses. Deep
ensembles estimate uncertainty by training multiple independent
models and combining their predictions. This means that the
required computing resources, memory, and training time increase
significantly with each additional model, making it difficult to
deploy in resource-constrained environments.Therefore, it becomes
particularly important to have UQ methods that are both effective
and have low inference costs for application in fault diagnosis. The
main contributions of this paper are as follows:

1. An experiment was designed in the laboratory to simulate
the power generation process of wind turbines, aimed at
extracting vibration signals corresponding to different health
conditions of the turbines. The collected vibration signals were
transformed into two-dimensional images using the Gramian
Angular Difference Field (GADF). This data transformation
facilitates the extraction of informative features from raw data,
thereby enhancing the performance of classifiers.

2. Spectral Normalization (SN) and Gaussian Process (GP) were
integrated within the Res2Net architecture to improve the
model’s ability to handle unknown out-of-distribution data.
By assessing the distance between training and testing data,
an uncertainty estimate is obtained. In this way, the model
provides classification results. It also informs maintenance
personnel when the diagnostic results are trustworthy and
when human expert intervention is required.

3. To validate the performance of the proposed model, its
classification and out-of-distribution detection (OOD)
capabilities were tested under various unknown fault
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conditions and noise levels. The proposed model consistently
achieves complete detection in out-of-distribution scenarios
while maintaining high accuracy in in-domain (ID)
distribution fault detection and classification.The experiments
demonstrate the necessity and effectiveness of the proposed
model in practical applications.

The rest of the paper is organized as follows. Section 2 introduces
the theoretical background of the proposed fault diagnosis method.
In Section 3, the proposed Distance-Aware Res2Net architecture
and the detailed diagnostic process are described. Section 4
compares the performance of the Distance-Aware Res2Net model
with traditional models and demonstrates the necessity of out-of-
distribution detection research. It also analyzes the effectiveness
of the model in handling different types of out-of-distribution
data. Finally, Section 5 provides the conclusions.

2 Preliminaries

2.1 Gramian angular difference field

The GADF is used to encode time series data into a two-
dimensional image while preserving the temporal dependencies and
patterns present in the original signal (Wang and Oates, 2015). The
process involves three main steps: normalization, polar coordinate
transformation, and Gramian matrix computation.

Firstly, the time series {xt}
T
t=1 is normalized to ensure that all

values lie within the interval [−1,1], as shown in Equation 1:

̃xt =
xt −max (X)) + (xt −min (X))

max (X) −min (X)
, (1)

where min (X) and max (X) are the minimum and maximum values
of the time series X, respectively.

Secondly, the normalized time series is transformed into
polar coordinates. Each value ̃xt is represented as an angle,
and the time stamp ti is encoded as the radial coordinate, as
expressed in Equation 2:

{{
{{
{

ϕt = arccos( ̃xt)

r =
ti
W

(2)

where ϕt is the angular coordinate corresponding to the time series
value ̃xt, and r represents the normalized time stamp with W being
the total number of time stamps.

Finally, the Gramian Angular Difference Field is computed
as the difference between the cosines of the pairwise angles, as
illustrated in Equation 3:

GADFi,j = sin(ϕi −ϕj) . (3)

Through the above transformation, the original one-dimensional
time series is mapped into a two-dimensional matrix, where each
element of the matrix corresponds to a GADF value, and the
enhanced visual difference of the image is achieved by applying
pseudo-color mapping.

Figure 1 illustrates the entire process of converting a time series
vibration signal into a GADF image. The GADF transformation

offers a robust method for converting time series data into images,
which can subsequently be used as input for deep learning. This
transformation preserves the temporal dependencies of the original
signal. This makes it suitable for fault diagnosis tasks where
these dependencies are crucial. Unlike spectrum based on Fourier
transform and Scalogram based on wavelet transform, GADF does
not rely on expert experience, making it a more accessible and
automated approach for data transformation.

2.2 Res2Net module

The Res2Net module represents a significant advancement in
convolutional neural network architectures (Gao et al., 2021).
It is specifically designed to enhance the model’s capability to
process information at multiple scales simultaneously. The main
innovation of Res2Net is its newway of processing featuremaps.This
approach allows for richer feature interactions and more complex
representations. These qualities are important for tasks that need to
identify fine-grained details.

Figure 2 compares the traditional bottleneck block and the
Res2Net module. The bottleneck block (a) typically consists of
a sequence of 1 × 1, 3 × 3, and another 1 × 1 convolution,
simplifying the feature processing. In contrast, the Res2Net module
(b) introduces a substantial modification by splitting the input
feature map intomultiple slices (x1, x2, x3, x4), each processed by its
convolutional path (K2, K3, K4) and then hierarchically integrating
them. This hierarchical integration lets each layer process its specific
slice of features. At the same time, it accumulates and refines outputs
from the previous slices. As a result, the network’s ability to capture
diverse features at different scales is enhanced. By allowing each
branch to learn at a different scale and then hierarchically integrating
these multi-scale features, Res2Net can adaptively learn the features
most relevant to the task at hand. This is particularly beneficial for
analyzing images with varying object sizes and complexities.

2.3 Spectral Normalization

Spectral Normalization is employed to stabilize the training of
the discriminator in generative adversarial networks (Miyato et al.,
2018). The distance between data in the input space and the hidden
space can be preserved by adding Spectral Normalization to the
learned latent representations of a neural network (Liu et al., 2022).

To control the Lipschitz constant of the discriminator function
f by constraining the spectral norm of each layer g:hin↦ hout, where
hin and hout denote the inputs and outputs of the hidden layer in the
neural network, respectively. The Lipschitz norm ‖g‖Lip is equal to
suphσ(∇g(h)), where σ(A) is the spectral norm of A, defined as in
Equation 4 (Behrmann et al., 2019):

σ (A) ≔max
h:h≠0

‖Ah‖2
‖h‖2
= max
‖h‖2≤1
‖Ah‖2 (4)

which is equivalent to the largest singular value of the
matrix A. For a linear layer g(h) =Wh, its Lipschitz constant
is: ‖g‖Lip = suph σ(∇g(h)) = σ(W). SN normalizes the spectral
norm of the layer’s weight matrix W making σ(W) = 1, as
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FIGURE 1
Coding process of GADF image.

FIGURE 2
Comparison between the bottleneck block and the Res2Net module.
(A) Bottleneck block (B) Res2Net module.

expressed in Equation 5:

ŴSN (W) ≔
W

σ (W)
. (5)

By normalizing the weight matrix Wl in each layer ensures,
as shown in Equation 6, it:

σ(W̃SN (W)) = 1, (6)

which guarantees that ‖ f‖Lip is bounded within a reasonable
range. By controlling the spectral norm of each layer, as
expressed in Equation 7, the Lipschitz constant of the entire network
can be controled.

‖ f‖Lip ≤
L+1

∏
l=1

σ(Wl) (7)

In neural networks, the bi-Lipschitz condition requires that the
hiddenmapping h satisfies the following relation (O’Searcoid, 2006),
as illustrated in Equation 8:

L1 ⋅ ‖x1 − x2‖X ≤ ‖h (x1) − h (x2)‖H ≤ L2 ⋅ ‖x1 − x2‖X (8)

where 0 < L1 < 1 < L2 are positive and bounded constants. ‖h(x1) −
h(x2)‖H indicates the distance between x1 and x2 in the hidden
space, and ‖x1 − x2‖X indicates the distance between them in
the data manifold. For deep learning models, the bi-Lipschitz
condition typically enables the model’s hidden space to preserve
meaningful correspondence to their distance in the data manifold.
In the bi-Lipschitz condition, the upper bound ‖h(x1) − h(x2)‖H ≤
L2 ⋅ ‖x1 − x2‖X prevents the hidden representation h(x) from being
too sensitive to small semantically irrelevant perturbations in
the pixel space, while the lower bound L1 ⋅ ‖x1 − x2‖X ≤ ‖h(x1) −
h(x2)‖H ensures that the hidden representation does not produce
unnecessary invariants for semantically meaningful changes in the
input manifold. Together, the bi-Lipschitz condition essentially
encourages h to be an approximately equidistant mapping. As a
result, the learned representation h(x) has a robust and meaningful
correspondence with the semantic properties of the input data x.

2.4 Gaussian Process

TheGPmodelwith radial basis function kernel is distance-aware
(Liu et al., 2022). Its predictive distribution p(y|x) = softmax(g(x)) is
the softmax transform of the GP posterior g ∼ GP under the cross-
entropy likelihood. The uncertainty is captured by the posterior
variance as shown in Equation 9:

u (x∗) = var (g (x∗)) = 1− k∗Vk∗, (9)

where

k∗i = exp(−
1
2
‖x∗ − xi‖22)

and VN×N is a fixed matrix determined by the data. As test
data x∗ moves further from the training data, u(x∗) increases
monotonically (Williams and Rasmussen, 2006). This awareness of
distance is crucial for OOD detection.

Specifically, given input samples X = {x1,x2,…,xN}, the
Gaussian-process output layer G = [g(x1),g(x2),…,g(xN)] follows
a multivariate normal distribution a priori, as shown in Equation 10
(Liu et al., 2020):

g ∼MVN (m,K) (10)

Frontiers in Energy Research 04 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1496130
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Zhou and Zhao 10.3389/fenrg.2024.1496130

where g is a vector of function values, m is the mean
vector,and K is the covariance matrix computed using the kernel
function K = k(x,x′), and the posterior distribution is computed
as shown in Equation 11:

p (g |X ) ∝ p (X |g)p (g) (11)

where p(g) is the GP prior and p(X |g) is the data likelihood for
classification.

To simplify computation and make inference easier, two
approximation methods are applied to the output layer of the GP:
(1) the GP model is extended into the random Fourier feature space,
transforming it into a simpler Bayesian linear model (Rahimi and
Recht, 2007); (2) the posterior distribution is approximated using
Laplace approximation (Liu et al., 2018).

3 Methodology

3.1 Distance-Aware Res2Net

Thestructure ofDistance-AwareRes2Net is illustrated in Figure 3.
This network architecture takes advantage of the properties
of Res2Net, characterized by its multi-scale feature extraction
capability, allowing the network to capture more detailed and
comprehensive information from the image, thus improving the
overall classification accuracy.The network begins with input GADF
images. These images first pass through a spectral normalized 1 × 1
convolutional layer. Then comes the Maximum Pooling layer, which
reduces the size of the feature map while preserving important
features. Next comes themain part of the network, consisting of four
stages, eachwith 3, 4, 6, and 3 spectral normalized Res2Netmodules,
each containing four parallel convolutional branches inside. The
right side of the figure provides a detailed view of the internal
structure of the Res2Net module. This hierarchical structure allows
the network to progressively transition from simple to complex
features, effectively improving learning ability and diversity of
feature representation. Each convolutional layer in the network
is applies SN (highlighted in yellow) to ensure that the hidden
mappings are distance preserving. This means that the distance
‖h(x) − h(x′)‖H in the hidden space correspondsmeaningfully to the
distance ‖x− x′‖X in the data manifold. After processing through
multiple spectrally normalized Res2Net modules, the feature maps
are reduced in size by a global average pooling layer, preparing
them for final classification. The final layer of the model uses a
Gaussian process with a radial basis function kernel to quantify
the distance between the test data and the training data manifold.
This layer outputs classification results and quantifies uncertainty.
The quantified uncertainty is related to the awareness of distance,
providing a basis for out-of-distribution detection. By integrating
SN and GP modules into the Res2Net framework, traditional
deep learning model is endowed with OOD detection capabilities.
Ultimately, this network not only outputs classification results but
also provides UQ of those results. The classification results show the
predicted categories of the input data, while the UQ indicates the
model’s confidence in its predictions. This is critical for assessing
the reliability of diagnostic results, especially when identifying
previously unknown faults. A high level of uncertainty indicates

that the model’s predictions may be unreliable, prompting further
investigation or human intervention.

Figure 4 shows the diagnostic process for wind turbine gearbox
based on the Distance-Aware Res2Net model. The process starts
with data collection, which gathers vibration data from the wind
turbine in different health conditions. These signals are transformed
into two-dimensional images using the GADF, making the data
more suitable for deep learning model inputs. The transformed
data is divided into two sets: the ID training set, which contains
data from known conditions, and the test set, which includes a
mixture of known and unknown health conditions. The Distance-
Aware Res2Net model is trained using the ID training set, and the
training process continues until the maximum number of epochs
is reached. Once training is completed, the trained Distance-Aware
Res2Net model is used to predict the test set, generating predictive
results and quantifying the uncertainty of each prediction. The
uncertainty of the predictions is compared to a predefined threshold.
If the uncertainty is below the threshold, the prediction is deemed
trustworthy and classified as an ID sample (known fault), resulting
in a trustworthy diagnostic result; if the uncertainty exceeds the
threshold, further human intervention is required, classifying it as
anOOD sample (unknown fault) and indicating the need for human
judgment. With the UQ, the process enhances the reliability of the
diagnostic results, thus improving the accuracy of the diagnosis and
effectively identifying unknown faults to ensure the safe operation
of the wind turbine.

3.2 Uncertainty threshold

Uncertainty plays a critical role in assessing the reliability of
diagnostic results. Lower uncertainty indicates higher confidence
in model predictions, and higher uncertainty signals potential
unknowns. To effectively identify out-of-distribution (OOD)
samples, it is essential to establish an appropriate uncertainty
threshold—one that is greater than the uncertainties of most in-
distribution (ID) samples but less than those of OOD samples.
Given that OOD samples are unforeseen during training, the
threshold must be derived from the ID test set. The interquartile
range (IQR) method, a statistical tool commonly used for detecting
outliers, serves as the basis for establishing this threshold. The IQR
is calculated by first sorting the ID uncertainty values in ascending
order and then determining the first quartile and the third quartile,
which respectively separate the lowest 25% and the highest 75% of
the data. The IQR is defined as shown in Equation 12:

IQR = Q3−Q1 (12)

The uncertainty threshold, referred to as the upper limit for
outliers, is determined using Equation 13 (Tukey, 1977):

UncertaintyThreshold = Q3+ 1.5× IQR (13)

where Q1 and Q3 are the first and third quartiles of the uncertainty
values in the ID test set, respectively. Any data point exceeding this
uncertainty threshold is categorized as an outlier.
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FIGURE 3
Distance-aware Res2Net.

4 Experiments

Before conducting the experiments, it is necessary to introduce
two key concepts of uncertainty: aleatory uncertainty and epistemic
uncertainty. According to Kiureghian and Ditlevsen (2009),
uncertainty can be classified into aleatory and epistemic types.
In the field of machine learning, the inherent randomness (or
noise) within raw data typically leads to aleatory uncertainty,
which cannot be fully eliminated by increasing training
data. In contrast, epistemic uncertainty arises from a lack of
information that the model has under specific conditions and
can theoretically be reduced by incorporating additional data
(Huellermeier and Waegeman, 2021; Nemani et al., 2023). For
example, unknown types of test data result in high epistemic
uncertainty, as the model lacks relevant training data for these new
fault types.

In wind turbine fault diagnosis, these two types of uncertainty
have a direct impact on the model’s ability to identify different
health conditions and its reliability in real-world applications.
Aleatory uncertainty, such as noise in vibration signals, reduces

the clarity of signal features, increasing uncertainty during
signal recognition and classification. On the other hand,
wind turbines may exhibit various unknown fault types with
characteristics significantly different from known faults, presenting
a challenge to the model’s generalization capability. Through
uncertainty quantification, the model can provide maintenance
personnel with risk assessments that support more reliable
judgments in fault diagnosis. Additionally, implementing out-of-
distribution (OOD) detection enhances the model’s robustness,
enabling it to identify anomalies that were not present in
the training set, which increases its reliability in practical
applications.

To address the challenges posed by these two types of
uncertainty in fault diagnosis, this study designs three experimental
groups to evaluate the performance of the Distance-Aware
Res2Net model in handling aleatory and epistemic uncertainty.
By introducing these different types of uncertainty scenarios,
we aim to comprehensively assess the model’s performance
in real-world applications and verify its diagnostic reliability
under various uncertainty conditions.
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FIGURE 4
Fault diagnosis process.

4.1 Experimental Setup

Figure 5 shows the wind turbine fault diagnosis test bench and
the planetary gearbox used in this study. The test bench consists
of a motor that simulates the rotation of wind turbine blades, a
parallel gearbox, a planetary gearbox, and a doubly-fed induction
generator. The gear exhibits four states: normal condition (NC),
chipped tooth fault (CTF), missing tooth fault (MTF), and surface
wear fault (SWF). A defective planetary gear was replaced with a
normal planetary gear in the gearbox to collect data. We installed
a displacement sensor on the drive shaft to capture the vibration
signals. The motor was kept running at 1,500 rpm and the sensor
sampling rate was 48 kHz. Under four different healthy conditions,
four types of signals were collected, with the normalized signals
displayed in Figure 6. In this section, we set up three groups of
experiments to test the performance of Distance-Aware Res2Net. In
all experiments, 80% of the ID samples were used for training and
20% of the ID samples were used for testing. In addition, there were
additional OOD samples involved in the test set to test the OOD
detection ability of the model. The ID dataset contains 4,096 data
points per sample, with 240 samples for each condition, totaling
960 samples. In addition, we also collected three OOD fault data,

including bearing fault, stator winding fault, and stator winding
and bearing compound fault. Each sample of the OOD dataset still
contains 4,096 data points, with each condition having 48 samples,
and a total of 144 samples. The OOD dataset is only used for testing
and not for model training.

4.2 Limitations of traditional models and
the necessity of OOD detection

In Experiment 1, we set up two scenarios: Scenario 1 contains
only ID data (NC, CTF, SWF, MTF), that is, all test data
and training data belong to the same distribution; Scenario
2 introduces unknown health conditions (stator winding fault)
as OOD data. Table 1 shows the basic information of the two
diagnostic scenarios: health conditions and sample size.

A confusion matrix is a tool used to evaluate the performance
of a classification model by comparing its predictions with the true
labels. It displays the relationship between true and predicted classes,
with diagonal elements representing correctly classified samples and
off-diagonal elements indicating misclassifications. Analyzing the
confusion matrix provides an intuitive understanding of the model’s
classification performance and possible sources of error. Figures 7, 8
show the confusionmatrix for diagnosis of fourmodels (GoogleNet,
ResNet, Res2Net, andDistance-AwareRes2Net)whenprocessing ID
data andmixed ID andOODdata. In the simple diagnosis of IDdata,
each model shows high diagnostic performance, and classification
errors occur only in a very small number of samples. However, the
Distance-Aware Res2Net model still achieves the best performance
in classification. This is due to the optimization of Distance-Aware
Res2Net network structure and the Spectral Normalization of the
neural network layer weights, which makes the model more stable
during training.

In Scenario 2, after the introduction ofOODsamples, traditional
models without OOD detection capability incorrectly diagnose
all unknown faults as known fault types. This misdiagnosis not
only reduces the overall accuracy of the model, but it may also
lead to misjudgment and potential dangers in actual operation.
Specifically, traditional models such as GoogleNet, ResNet, and
Res2Net cannot effectively distinguish these new types from known
fault types (NC, CTF, SWF, MTF) when faced with unknown fault
types (stator winding fault). Due to the lack of detection ability
for OOD data, these models tend to misclassify new fault types
as a certain type of faults already present in the training data.
This phenomenon is referred to as overconfidence. Overconfidence
in traditional deep learning models occurs when they incorrectly
classify OOD samples as known categories, often assigning high
confidence to these erroneous predictions. Confidence is derived
from the model’s predicted probability of classification, typically
calculated using functions like softmax, but it does not guarantee
the accuracy of those predictions (Abdar et al., 2021).

In contrast, uncertainty measures the reliability of that
confidence, indicating how trustworthy the model’s predictions
may be. The Distance-Aware Res2Net model shows significant
advantages in handling unknown faults by incorporating SN and
GP layers. These experimental findings highlight the limitations
of traditional deep learning models when dealing with OOD
data. There is a pronounced need for robust OOD detection
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FIGURE 5
Wind turbine fault diagnosis test bench and faulty gear.

FIGURE 6
Vibration signals of planetary gearbox at normal and fault conditions.

mechanisms in fault diagnosis systems, particularly in complex
industrial applications. The Distance-Aware Res2Net model,
which incorporates SN and GP, offers substantial improvements
in uncertainty estimation for diagnostic results through its deep
network’s distance-aware technique.

4.3 Simulating unknown faults: addressing
epistemic uncertainty in diagnosis

The setting of Experiment 2 includes three groups of
experiments, each testing the diagnostic performance of the
Distance-Aware Res2Net model under known health conditions
(NC, CTF, SWF, MTF) and unknown health conditions (bearing
fault, stator winding fault, and compound fault of stator winding and
bearing fault). Table 2 presents the basic information for Experiment
2. To better demonstrate the performance of the model in OOD
detection, we used accuracy, false alarm rate (FAR), and missing
alarm rate (MAR). These indicators comprehensively evaluate the
model’s diagnostic ability regarding OOD data.

The false alarm rate, also known as false positive rate, is defined
as the ratio of negatives incorrectly classified to the total negatives.
In OOD detection, false alarm rate is defined as the proportion

of ID samples incorrectly identified as OOD samples, as shown in
Equation 14 (Tharwat, 2021):

FAR = FP
FP+TN

(14)

where, FP (False Positives) represents the number of false alarms, in
which samples that should have been identified as ID are incorrectly
classified as OOD. TN (True Negatives) represents the number of
correct rejections, where samples are correctly identified as ID.

The MAR is the proportion of OOD samples that are incorrectly
classified as ID samples, as shown in Equation 15 (Tharwat, 2021):

MAR = FN
FN+TP

(15)

where, FN (False Negatives) represents the number of missed
detections, in which OOD samples are incorrectly identified as ID.
TP (True Positives) represents the number of true alarms, where
OOD samples are correctly detected.

From the experimental results in Table 3, it is evident that
the Distance-Aware Res2Net model demonstrates strong diagnostic
accuracy across all three scenarios, achieving an accuracy of 96.67%
in each case. This indicates that the model is effective in accurately
identifying known health conditions. Furthermore, the model fully
detects the three types of OOD samples, misclassifying only 3.65%
of the ID samples as OOD, which demonstrates its capability
to avoid misclassifying normal conditions as faulty. Notably, the
MAR is 0, indicating that no unknown fault conditions are
misidentified as ID.

Figure 9 presents the density plots of uncertainty when dealing
with mixed data, including ID and OOD samples. The uncertainty
associated with ID data is significantly lower than that of other
OOD conditions, which helps the model accurately identify normal
conditions. For unknown health conditions, such as stator winding
and bearing compound fault, higher uncertainty may prompt the
model to adopt a more cautious diagnosis approach when dealing
with complex or unknown faults.

Interestingly, the accuracy, false alarm rate (FAR), and missing
alarm rate (MAR) results are identical for the three types of
OOD samples. As shown in Figure 9, while the uncertainty
distributions of these OOD faults differ, they share an important
characteristic: their uncertainty values do not overlap with
those of the in-distribution faults and are all above the set
uncertainty threshold. This commonality leads to the same
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TABLE 1 Descriptions of experiment 1.

Scenario Known health conditions Unknown health conditions Number of samples

Scenario 1 NC, CTF, SWF, MTF None 4∗240

Scenario 2 NC, CTF, SWF, MTF Stator winding 4∗240 + 48

FIGURE 7
Diagnostic Confusion matrix of ID data.

FIGURE 8
Diagnostic Confusion matrix of mixed data with ID and OOD.

TABLE 2 Descriptions of experiment 2.

Scenario Known health conditions Unknown health conditions Number of samples

Scenario 1 NC, CTF, SWF, MTF Stator winding fault 4∗240 + 48

Scenario 2 NC, CTF, SWF, MTF Stator winding fault + Bearing fault 4∗240 + 48

Scenario 3 NC, CTF, SWF, MTF Bearing fault 4∗240 + 48

TABLE 3 Diagnostic results of unknown health conditions.

Scenario Accuracy FAR MAR

Scenario 1 96.67% 3.65% 0

Scenario 2 96.67% 3.65% 0

Scenario 3 96.67% 3.65% 0

FAR values across the three OOD fault types. Furthermore,
because the in-domain training and testing sets are the same
for all three OOD faults, their MAR values also turn out to be
identical.

In summary, the Distance-Aware Res2Net model exhibits
high accuracy in diagnosing known health conditions, effectively
reducing false alarm rate and avoiding missing alarm rate, thereby
ensuring the reliability and safety of the system.
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FIGURE 9
Density plots of ID and different types of OOD samples.

FIGURE 10
Confusion matrix of fault classification under different noises.

4.4 Simulating nosied samples: addressing
aleatory uncertainty in diagnosis

This section aims to explore the OOD detection performance
of the Distance-Aware Res2Net model under different noise levels.
Noise is an inevitable factor in the actual wind turbine operating
environment and has a significant impact on the performance of the
diagnostic system. In the presence of abnormal noise interference,
the model’s diagnostic results should convey the level of uncertainty,
allowing human experts to intervene and make informed decisions.
To simulate this effect, we introduced Gaussian white noise of
different intensities into the ID data to generate OOD data that the
model has not seen during the training phase. These noise levels
are regarded as separate OOD scenarios and do not participate in
model training. Each noise level contains 48 images.The experiment
includes five different noise levels: 10 dB, 5 dB, 0 dB, -5 dB and
−10 dB. Signal-to-noise ratio (SNR) is an important indicator to

TABLE 4 Evaluation metrics of ID and nosied OOD samples.

SNR (dB) Accuracy FAR MAR

10 78.75% 3.65% 89.58%

5 81.52% 3.65% 77.08%

0 85.00% 3.65% 58.33%

−5 96.66% 3.65% 0.00%

−10 96.66% 3.65% 0.00%

FIGURE 11
Uncertainty density plots for different levels of noise.

measure the signal strength relative to the background noise,
usually expressed in decibels (dB). The SNR is calculated using the
following formula Equation 16:

SNR = 10 log10(
Psignal

Pnoise
) (16)

where Psignal represents the power of the signal and Pnoise represents
the power of the noise.

In this experiment, all noisy samples are considered OOD
regardless of the noise level. The confusion matrix depicted in
Figure 10 illustrates the performance of a fault classification model
under different noise conditions. The matrix is divided into sections
representing the true labels (ID and OOD) on the y-axis, and the
predicted labels (NC, CTF, SWF, MTF, OOD) on the x-axis. For
ID data, the classification accuracy of the model reaches 95.83%.
For OOD data under noise, the number of OOD samples that the
model can detect increases with the increase of noise, while the
MAR decreases with the increase of noise. When the noise is −5
and −10 decibels, the experimental results show that the model can
fully detect OOD samples. Table 4 lists the evaluation metrics. Since
the threshold is only related to the ID data, the FAR remains at
a low value of 3.65% when the ID data does not change. As the
SNR decreases, the MAR drops significantly, reaching 0 at SNRs
of −5 dB and −10 dB. This indicates that the model’s performance
in distinguishing ID from OOD samples improves with increasing
noise levels. The experimental results are consistent with our usual
understanding. When the noise is weak, the distribution deviation
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of the noisy signal from the original signal is small; when the noise
is very strong, the distribution deviation is large.

Figure 11 shows the uncertainty kernel density plot for ID
data and OOD data at different noise levels. The figure indicates
that ID data generally exhibits low uncertainty and is densely
distributed below the threshold. As the noise intensity increases, the
uncertainty of the OOD data also increases, and the uncertainty
values are spread in a wider range. Particularly at higher noise
levels (-5 dB and −10 dB), the uncertainty values of the OOD
data shift significantly to the right, crossing the threshold more
and correctly triggering the OOD classification. This indicates
that the model perceives a decrease in its diagnostic reliability
when faced with noisy conditions. This demonstrates the model’s
ability to detect and handle uncertain diagnostic results under
noisy conditions, ensuring reliable fault detection in real-world
scenarios. When −10 dB noise is added, the uncertainty value
distribution of the noisy samples is almost completely separated
from the ID samples. This means that when the noise power
is 10 times the signal power, the signal is overwhelmed by
the noise, allowing the model to detect all out-of-distribution
noise samples.

The Distance-Aware Res2Net model effectively handles noise
interference and keeps synchronous changes in uncertainty values
under varying noise conditions. This enables reliable fault diagnosis
and effective OOD detection.

5 Conclusion

This study presents the Distance-Aware Res2Net model,
designed to improve wind turbine gearbox fault diagnosis by
integrating Spectral Normalization and Gaussian Processes
for better out-of-distribution detection. Our findings show
that the model accurately classifies known faults and
effectively identifies out-of-distribution faults caused by
epistemic and aleatory uncertainty through uncertainty
quantification.

The model quantifies uncertainty to reduce overconfidence.
It makes more conservative decisions for high-uncertainty
samples, leading to fewer misclassifications and more reliable
fault detection.

1. The model helps manage epistemic uncertainty and
improves detection of unknown faults in wind turbine.
Unknown faults may arise from faults in other parts of
the wind turbine or compound faults. These faults may
not be in the training data, leading to increased epistemic
uncertainty. By quantifying uncertainty, the model assesses
the trustworthiness of its predictions when data deviates from
known conditions. This reduces the risk of overconfidence in
unknown faults.

2. The model helps manage aleatory uncertainty in fault
diagnosis. Noise can distort fault signals, making it
harder for the model to recognize fault characteristics.
If noise levels in the training data differ from real-world

conditions, performance may suffer. However, uncertainty
quantification allows themodel to assess its limitations in noisy
environments. The uncertainty value is positively correlated
with the level of noise, which helps reduce misclassification
risk and maintain effective fault detection.

In summary, the Distance-Aware Res2Net model represents a
meaningful progress in fault diagnosis for wind turbine gearbox.The
currentmodel shows promising results, further research is necessary
to refine its structure and optimize performance across a broader
range of unknown faults. Future work will also focus on selecting
appropriate uncertainty threshold to balance false alarm rate and
miss alarm rate. This will help make the model more reliable and
contribute to safer industrial operations.
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